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Active Appearance Models (AAM) are a well-established method for facial landmark detection and face track-

ing. Due to their widespread use, several additions to the original AAM algorithms have been proposed in
recent years. Two previously proposed improvements that address different shortcomings are using robust
statistics for occlusion handling and adding feature descriptors for improved landmark fitting performance. In
this paper, we show that a combination of both methods is possible and provide a feasible and effective way to
improve robustness and precision of the AAM fitting process. We describe how robust cost functions can be
incorporated into the feature-based fitting procedure and evaluate our approach. We apply our method to the
challenging 300-videos-in-the-wild dataset and show that our approach allows robust face tracking even under

severe occlusions.

1 INTRODUCTION

Active Appearance Models (AAMs) are a state-of-
the-art method for facial landmark detection and
tracking. Introduced by Cootes in 1998 (Cootes et al.,
1998), they have ever since been an active area of re-
search and several relevant improvements to the orig-
inal algorithm have been proposed in recent years.
Apart from publications focusing on understanding
and improving the AAM fitting process that will be
described in more detail in Section 2.1, research has
also focused on improving robustness towards chal-
lenging in-the-wild scenarios, unseen faces and oc-
clusions. In this paper, we will focus on two of the
proposed approaches:

e Applying methods from robust statistics to AAM
fitting: as shown in (Gross et al., 2006; Theobald
et al., 2006), outlier-resistant robust statistics can
be used to improve AAM fitting under the pres-
ence of occlusions. Robust statistics allow ana-
lyzing modeled faces to detect occlusions and al-
low a subsequent exclusion of occluded face ar-
eas from the computation of the optimizer’s error
value. This way, only face areas that are more
likely to be occlusion-free will contribute to the
computation of the final landmarks.

e Feature-based AAMs as introduced in (Anton-
akos et al., 2015; Antonakos et al., 2014): in-
stead of using the input image itself for fitting,
feature-based AAMs increase the number of im-
age channels by applying a defined feature de-
scriptor such as HOG (Dalal and Triggs, 2005) or
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dense SIFT (Lowe, 1999) densely to each image
pixel and performing the fitting on the resulting
multichannel feature image. This approach allows
incorporation of local neighborhood information
into the holistic AAM algorithm, thereby increas-
ing precision and robustness of the fitting process.

Each of the above methods has been shown to im-
prove AAM fitting performance by addressing differ-
ent aspects of the original algorithm. In our work, we
will therefore inspect methods for combining both ap-
proaches and show on a challenging set of artificially
occluded real-world videos from the 300-videos-in-
the-wild dataset that our combined approach allows
better handling of occluded video sequences than un-
modified AAMs or applying each of the methods
alone.

The structure of this paper is as follows: The
next section will describe regular and intensity-based
AAMs and robust cost functions, while Section 3 in-
troduces our approach to combining robust cost func-
tions with intensity-based multichannel AAMs. Sec-
tion 4 describes a number of tests conducted to evalu-
ate these algorithms as well as the results.

2 PREVIOUS WORK

Here, we give a brief overview over constructing
and fitting an active appearance model, furthermore
feature-based AAMs and robust statistics for occlu-
sion handling will be described.
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2.1 Active Appearance Models

Active Appearance Models have been introduced
by Cootes et al. (Cootes et al., 2001) and signifi-
cantly improved in their applicability by Matthews
and Baker (Matthews and Baker, 2004) by introduc-
ing the project-out inverse compositional algorithm.
An AAM is built using a database of annotated train-
ing images which are aligned via procrustes analysis,
undergo a principal component analysis and are sub-
sequently split into a shape and an appearance model.
The shape model defines landmark positions via a
mean shape sy and a fixed number of eigenvectors
S, which contain the most significant deviations from
the mean shape. New shapes can be modelled using a
parameter vector p: s, = so +Sp. The same princi-
ple applies to the appearance model which represents
the images’s texture component. Using a mean ap-
pearance Ao and eigenfaces A warped into the mean
shape, a model instance is defined by a set of param-
eters A: Ay = Ay +AA\.

The process of finding appropriate model param-
eters that optimally represent a given face is called
fitting and solved using multidimensional optimiza-
tion algorithms. The most current and complete
overview of fitting algorithms can be found in the
2016 work by Alabort-i-Medina et al. (Alabort-i-
Medina and Zafeiriou, 2016). A precise yet compu-
tationally fast method described in their work is the
Wiberg Inverse Compositional Algorithm, which it-
eratively computes shape parameter updates similar
to a Gauss-Newton optimisation and appearance pa-
rameter with a closed solution. This aims to find
a set of parameters that minimizes the cost function
¢ = |[I(W(p)) — Ay||3, in which I(W(p)) describes
the current image warped into the mean shape space
using the parameter vector p. The difference image is
often called residual.

Feature-based AAMs have been proposed by An-
tonakos et al. in 2014 (Antonakos et al., 2014). They
allow AAM fitting on a multichannel feature image
computed from the original image using a feature de-
scriptor. While increasing the computational load, in-
cluding features into the AAM fitting process allows
to enhance specific image properties such as local gra-
dient or texture information depending on the used de-
scriptor. Especially gradient-oriented features such as
HOG or DSIFT have been shown to improve fitting
performance. In combination with a diversified train-
ing database such as LFPW (Belhumeur et al., 2013),
feature-based AAMs have shown a remarkable per-
formance when fitting faces under challenging condi-
tions such as strong illumination variation and partial
occlusions.
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2.2 Robust Statistics for AAM Fitting

As active appearance model fitting compares the in-
tensities of a model — which in our assumption is
trained on data containing only limited types of oc-
clusion or no occlusion at all — and the original im-
age, occlusions can have a large impact on fitting ac-
curacy and may lead to a diverged result. This is even
more problematic in video tracking, as a fitting result
is commonly used as the initial shape estimate for the
next frame, therefore potentially increasing misalign-
ment with each subsequent frame. To allow detection
of occluded pixels, Gross et al. (Gross et al., 2006)
introduced the idea of applying robust cost functions
to the images during model fitting. Robust cost func-
tions weight each pixel of the warped image based on
the value of the residual and this pixel’s standard de-
viation in the training data set. The basic assumption
is that high residual values are likely to be caused by
occlusions in the original image. Depending on the
used robust cost function, occluded pixels contribute
only partially or not at all to the final fitting result.
Different cost functions can be used to compute pixel
weights; in (Theobald et al., 2006), several functions
in terms of detection accuracy and fitting robustness
have been inspected.

Our work presents a novel approach that com-
bines feature-based models with robust cost func-
tions. Since robust cost functions require an estima-
tion of the standard deviation of residual values, we
also introduce and evaluate methods to compute these
for feature-based models.

3 METHODOLOGY

3.1 Standard Deviations

In this work, standard deviations are used to normal-
ize residuals prior to the fitting procedure. Similar
to (Gross et al., 2006), we use the median absolute
deviation (MAD) (Huber and Ronchetti, 1981) as an
estimate. The standard deviation is computed for each
model pixel. In addition to using this method for
computing pixel-wise MADs, this paper introduces
the novel idea of using a single, image-wide MAD.
The motivation behind this approach is our obser-
vation from initial experiments that have shown that
MAD values computed on the model’s DSIFT chan-
nels are very similar across all channels. This leads
to the following two approaches to compute standard
deviations and normalize residuals which will both be
inspected in this paper: Pixel-wise computation as in-
troduced in (Gross et al., 2006) is based on the resid-



uals of the last iteration, and computes the MAD for
every single pixel in every single channel (intensity
and/or one of the 36 DSIFT channels). This allows the
standard deviation estimates to be dependent on the
position in the image, reflecting that some areas such
as the cheeks may be more homogeneous than other
high-variance areas such as mouth or eyes. Addition-
ally, we introduce an image-wide method that com-
putes a combined MAD for all channels based on the
results of the last iteration. The 36 DSIFT channels
are analyzed in combination, resulting in one value
for the intensity channel and equal values for every
DSIFT channel. This approach allows a computa-
tionally inexpensive MAD computation. Areas with
higher standard deviation estimates in the pixel-wise
case — often detailed facial features — are more likely
described as occluded in this case.

3.2 Applying Robust Cost Functions to
Feature-based AAMs

Instead of performing Gauss-Newton optimization
Ap = H’llTr, where H = J7J is an approximation
of the Hessian and J the Jacobian of the residuals with
respect to the parameter vector p, a weight map W is
applied according to the iteratively re-weighted least
squares algorithm: Ap = H;VIJVTVr with Hy = JTWJ
and Jy = WJ. W is a diagonal matrix containing the
weights w;, which are computed according to the ro-
bust cost functions in (Theobald et al., 2006). This
work uses the Huber, Talwar, Tukey bisquare and
Cauchy robust cost functions as well as standardized
distance (stadis), Gaussian probability density func-
tion (pdf) and decaying exponentials (decexp) to com-
pute weights:
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Since both the original image data (often called
the intensity channel) and the DSIFT channels contain
complementary information we extend the DSIFT
model with an additional channel containing the un-
processed image itself. The values of both intensity
and DSIFT descriptor are weighted according to the
chosen estimate of standard deviations. We propose
and evaluate two approaches for weight map com-
putation on feature-based multichannel models: The
weight can be computed either independently for each
channel or on the intensity channel only and then
applied to the DSIFT channels. The motivation be-
hind using the intensity channel for map computa-
tion is computation speed as well as the assumption
that information on potential occlusions can be found

preferably in this channel.

4 EXPERIMENTS AND RESULTS

Figure 1: One artificially occluded frame (left: light hand,
right: dark hand) with 18.5 % occlusion and 14 of 68 land-
marks covered. As the occlusion is added algorithmically,
the ground truth landmarks are known.

Our method was evaluated on a subset of the 300
Videos in the Wild (Shen et al., 2015; G. S. Chrysos
and Snape, 2015; Tzimiropoulos, 2015) test set. A ten
second sequence from each video was selected and
overlaid with a hand image which was either light or
dark to compensate differences in skin tone. In ev-
ery subsequence, the hand moved four times along the
chin landmarks — each time occluding a larger part of
the face. This results in a test set with 18352 frames
in 2-31 sequences. The largest occluded area in the
test sequences covers 69.1 % of the mean shape and
53 out of 68 landmark points.

The AAM was created using an AAM based on
the Helen and LFPW training data — with consistent
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and corrected annotations provided by the iBug group
(Sagonas et al., 2016). The combined model has a
resolution of 120 pixels, two layers, 50 appearance
and 9 shape components.

The error norm is the normalized mean Euclidean
distance between ground truth shape and fitting result.
The normalization factor is the average of height and
width of the ground truth shape.

4.1 Computing the Standard Deviation

In an initial step, we have conducted preliminary ex-
periments to determine the influence of the training
data for the computation of standard deviation. To this
end, we constructed active appearance models based
on training data of the the Helen dataset, LFPW, and
both. For each model, the corresponding training as
well as test data was used to compute image-wide me-
dian absolute deviation values. Results suggest that
that MADs — and therefore, standard deviations — do
not depend significantly on the input images used to
train the model. Therefore, the following evaluations
are based on the standard deviations estimated based
on the combined Helen and LFPW training sets as this
was the combination containing the maximal possible
amount of image data.

4.2 Experiments

Two main experiments have been conducted to eval-
uate our methods: For the first set, each of the cost
functions described in 3.2 has been evaluated on each
of the test sequences to determine the best perform-
ing cost function. Image-wide standard deviation es-
timates have been used with an intensity only weight
map calculation. As baseline, we also track the se-
quences with an AAM using the same features (inten-
sity plus DSIFT with normalization by standard de-
viation) whithout applying the robust cost function.
For the second set of experiments, using the probabil-
ity density function as weights for the iteratively re-
weighted least squares algorithm, every combination
of standard deviation (’image-wide’ and "pixel-wise’)
and weight map computation (’all channels’ and ’in-
tensity only’) was evaluated. For comparison, a regu-
lar active appearance model was fitted as well. For the
regular model, the variants ’intensity only’ and ’all
channels’ are equivalent since the model consists of a
single intensity channel. Every sequence was tracked
independently and initialized with a perturbed shape
from the ground truth’s bounding box. The fitting
result of each frame was then subsequently used as
starting position for the succeding frame.

424

80 -

a 60 ~ — -~ reference

<

g —— cauchy

% ~@ hampel

o 40 —v— huber -

g O talwar

5 .

% 20 O Stjlfhs

A~ —*P
—A—decexp

|
0.1 0.15 0.2
Error

‘
0 0.05

Figure 2: Cumulative error distribution plot of cost function
performance.

4.3 Results

All results are plotted as a cumulative error distribu-
tion of the error norm values of all frames, thereby
allowing evaluation of fitting accuracy as well as ro-
bustness. Steeper curves indicate better fitting per-
formance. The results of the cost function evalua-
tion can be found in Figure 2. They show that using
our method for combining robust cost functions with
feature-based AAMs improves both accuracy and ro-
bustness of the fitting procedure. Out of all eval-
uated cost functions, only the standardized distance
and the Talwar threshold yield a slightly lower ro-
bustness, while still being more precise for the most
part. It is interesting to note that these two are the
only binary weight functions (either O or 1, no val-
ues in between) that have been tested, while all other
approaches yield continous results between 0 and 1.
The best performing weight functions are the Huber
function and the probability density function, which
also performed best in (Theobald et al., 2006) for
robust fitting of regular AAMs. The results for the
evaluation of our novel standard deviation and weight
map computation methods are displayed in Figure 3.
It shows that using feature-based models with robust
cost functions outperforms the robust intensity-based
model fitting introduced in (Gross et al., 2006) in all
cases. The significant differences are caused by eval-
uating the methods on image sequences and not on
single frames: Errors propagate from one frame to the
next and may lead to larger deviations over time. Our
experiments show that it is generally beneficial to use
only the intensity channel for computation of a weight
map, even if a robust feature descriptor is used. This
might be due to DSIFT using neighborhood informa-
tion and not single pixels, thereby lowering the spatial
resolution of the weight map. The impact of choosing
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Figure 3: Cumulative error distribution plot comparing
feature-based and regular AAMs, weight maps computed
on all channels or on the intensity channel only and global
vs. per-pixel intensity maps.

either image-wide or pixel-wise intensity map com-
putation on the fitting performance is small. There-
fore, image-wide intensity map computation is a vi-
able approach especially when additionally consider-
ing its drastically reduced computation time.

5 CONCLUSION

We have shown that AAM fitting precision can be
improved by combining robust cost functions with
feature-based AAMs. We presented and evaluated
two methods to estimate the standard deviations and
two methods to compute weight maps that are both
needed for robust fitting. An extensive evaluation
has shown that our proposed approach allows highly
improved tracking performance in video sequences
compared to regular AAMs.
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