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Abstract: The increasing interest of cast Aluminium alloys in structural application asks for appropriate simulation 
approaches. Besides the constitutive behaviour, damage properties play an important role for this material. 
The damage behaviour is significantly influenced by the microstructure. Due to the specific morphology of 
cast microstructure and the random spatial deviation of voids, a novel concept of material modelling is 
necessary. In this study, a concept for stochastic material characterisation and modelling in structural Finite 
Element simulations is introduced. Therefore, a test matrix for experimental tests is discussed. Based on the 
generated experimental data a stochastic evaluation is performed by a goodness-of-fit test. The achieved 
characterisation knowledge is used to introduce the concept for stochastic material modelling of Aluminium 
cast alloys.  

1 INTRODUCTION 

Since light weight demand raises in automotive 
application, cast Aluminium alloys gain more 
relevance for structural parts. Therefore, an accurate 
capturing of material behaviour is necessary for 
structural Finite Elemente (FE) simulations. Due to 
the casting process the material gets its characteristic 
morphology with certain small amounts of voids 
which is substantially influenced by process 
parameters, e.g. time dependent pressure distribution, 
cooling rate, flow behaviour. Furthermore, the quality 
of melted Aluminium is a sensitive parameter which 
depends on air exhibition duration and accuracy of 
designated mass fraction for each alloy component. 
The set of these parameters causes a material with 
varying microstructure which results in 
inhomogeneous mechanical properties. In 
conventional modelling approaches, e.g. (Gurson, 
1978) or subsequent works (Tvergaard and 
Needleman, 1984) the material is considered as 
continuum with smoothed micromechanical 
behaviour. These models capture the damage 
behaviour by the evolution of void fractions within 
the material due to ductile fracture mechanisms. 
Furthermore, phenomenological approaches are 
proposed by (Wilkins, et al., 1980) and (Johnson and 
Cook, 1985) which describe the material damage by 
a triaxiality dependent fracture strain. The standard 

implementation of these models is as well smoothed 
and does not consider the spatial variation of material 
parameters.  

In this paper, a phenomenological approach 
combined with a concept of stochastic consideration 
for cast material characterisation and modelling is 
introduced. 

2 DUCTILE FRACTURE 

Structural materials are characterised by several 
engineering parameters, e.g. yield stress and tensile 
strength. Furthermore, the damage behaviour is a 
characteristic of a material which is composed by 
the evolution of certain micromechanical 
phenomena. Essentially, two different failure modes 
can be observed at metallic materials which appear 
as brittle or ductile fracture. The characterisation of 
the failure mode is basically done by monitoring the 
plastic strain until fracture occurs. Aluminium die 
cast alloys show a ductile fracture behaviour with 
distinct plastic deformations (Fagerholt, et al., 2010; 
Muehlstaetter and Hartmann, 2016). The evolution 
of ductile fracture is based on micromechanical 
mechanisms including nucleation, growth and 
coalescence of micro voids within a material as 
depicted in Figure 1. 
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Figure 1: Evolution of material damage by different stress 
states (Engelen, 2005). 

2.1 Solid Mechanics 

A certain stress state, denoted by the stress tensor	࣌, 
causes a characteristic damage mechanism after 
exceeding yield strength. Normal stresses (Figure 1 
top) lead to expansion and coalescence of voids. 
Shear stresses (Figure 1, bottom) cause the formation 
of shear bands. Therefore, an arbitrary stress state 
needs to be evaluated regarding the damage effect of 
the material. A well-established method is proposed 
by (Bao and Wierzbicki, 2004) which consider the 
fraction strain as function of the stress triaxiality, 
defined as  η = ெ௜௦௘௦. (1)ߪுߪ

The triaxiality quantifies a stress state in terms of the 
multiaxiality by the ratio between the hydrostatic 
stress σୌ, given by   

σୌ = 13 (2) ,(࣌)ݎݐ

which is extracted from the stress tensor ࣌ and the 
von Mises equivalent stress σெ௜௦௘௦, calculated as   

σெ௜௦௘௦ = ටଷଶ ௜௝஽, (3)ߪ௜௝஽ߪ

composed by the stress deviator ߪ௜௝஽	in Einstein 
notation which is formulated as residual of the stress 
tensor with respect to the hydrostatic strain, therefore  ોୈ = ࣌ − (4) ࡱுߪ

with the threedimensional unity matrix ࡱ.  
 
 

2.2 Characterisation of Damage 
Behaviour 

For structural mechanics, numerical simulation 
software calculates displacements which appears due 
to external loads and boundaries. Therefore, strains 
are determined based on a defined constitutive law 
which leads to a stress field. In addition, the induced 
stresses cause certain micromechanical effects and 
the evolution of damage. As  already outlined in the 
previous section, the damage mechanism depends on 
the stress state. State of the art damage modelling is 
based on the approach of (Bao and Wierzbicki, 2004), 
where a characteristic fracture strain is defined as 
function of the stress triaxiality η (see Figure 2).  
Based on this approach a damage variable D is 
formulated as function of the plastic strain ߝ௣௟ and the 
fracture strain function ߝ௙(η): D = f ቀε୮୪, ௙(η)ቁ (5)ߝ

 

Figure 2: Characteristic metal fracture strain curve as 
function of the stress triaxiality (Bao and Wierzbicki, 
2004). 

Hence, for structural simulations including damage, 
additional material characterisation effort is 
necessary. Figure 3 shows a set of test coupons to 
capture different stress states which cause various 
damage mechanisms. Therefore, test geometries are 
manufactured and tested under tension load. The 
specific morphology within the gauge length, where 
fracture occurs, leads to triaxiality regimes of 0, for 
shear tensile and Merklein shear, to 0.33 for flat 
tensile tests and 0.57 for notched test. The negative 
triaxiality regime cannot be covered with this 
characterisation strategy.     
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Figure 3: Test geometries for characterisation of the 
damage behaviour (from left: flat tensile, notched, shear 
tensile and Merklein shear). 

2.3 Experimental Results 

The intention of this study is to characterise a cast 
material which is produced by a stable and steady 
state die casting process. Therefore, the process runs 
a certain time to ensure constant process parameters, 
e.g. temperature field within the casting plant. The 
test specimens are extracted from casted hat profiles. 
For the experimental characterisation, a test matrix 
with at least 10 valid tests of each test geometry is 
defined. Furthermore, the spatial location of 
extraction with respect to the casting inlet is 
documented.  

The output of these tests are force vs. 
displacement curves. Figure 4 shows the results of the 
flat tensile tests. The force-displacement curves show 
a significant deviation for a pure tension load with 
theoretical triaxiality of 0.33. A similar behaviour is 
observed for the notched tension tests (Muehlstaetter, 
2015).  

 

Figure 4: Experimental force vs. displacement curves of flat 
tensile tests for different regions within the casted part. 

The test results of the Merklein tests are depicted in 
Figure 5. Deviation is also apparent in these results, 
although it is lower than in the triaxiality regimes of η ൐ 0.33.  

 

Figure 5: Experimental force vs. displacement curves of 
Merklein test geometry for different regions within the 
casted part. 

3 STOCHASTIC EVALUATION 

Based on the experimental data of the previous 
chapter an evaluation regarding the stochastic 
behaviour is performed.   

3.1 Goodness-of-fit Test 

In this section, a strategy for a stochastic 
consideration of the experimental data is introduced. 
The objective is to characterise the obtained 
scattering of the force-displacement curves. The 
scattering consists of the variation in the flow 
behaviour and the failure displacement. This study 
aims to consider only the failure displacement. 
Hence, discrete failure displacement values are 
extracted from the experiments.  

By application of stochastic theory, the problem 
appears as issue of seeking a formulation of a 
potential underlying stochastic distribution. 
Therefore, goodness-of-fit tests are available 
(Schiefermayr and Weiß, 2014). These tests need an 
initial estimation of a stochastic distribution including 
their parameters, e.g. standard deviation for the 
normal distribution, as input. Based on the 
Cumulative Density Function (CDF) ܨ	of this 
stochastic distribution, the null hypothesis ʜ଴	is tested 
against the alternative hypothesis	ʜଵ.  ʜ଴ is defined as: The claim that the test data 
follows the estimated stochastic distribution is true; 	ʜଵ has the opposite meaning. Several goodness-of-fit 
tests are available in literature, e.g. (Schiefermayr and 
Weiß, 2014). The application of each test depends on 
the range of available data. In this study, the test data 
is relatively low for a stochastic consideration. 
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Therefore, the Kolmogorov-Smirnov (KS) test which 
delivers accurate results for low data is suitable. 

This goodness-of-fit test is based on the steady 
distribution proposed by Kolmogorov with the CDF 
defined as 

௙൯ߝ௄൫ܨ = 1 + 2	෍(−1)௞݁ିଶ௞మఌ೑మஶ
௞ୀଵ ݔ)				 ≥ 0). (6)

The random variable is the fracture strain ߝ௙ from the 
experiments.  
For the application of goodness-of-fit tests a 
significance level α needs to be defined. The 
significance level sets the probability, that the true 
null hypothesis is rejected accidentally. A common 
value for α is 5 %. Based on this parameter the 
condition for the rejection of the null hypothesis is 
formulated as ܶ ≥ ௄ିܨ ଵ(1 − (7) ݊√/(ߙ

whereas ܨ௄ି ଵ is the Quantile of the Kolmogorov CDF 
and ݊ is the amount of available test data for ߝ௙. The 
parameter ܶ is based on the experimental data and the 
CDF of the estimated underlying distribution, defined 
as  ܶ:= (௙ߝ)௘௠௣ܨห݌ݑݏ − ห. (8)(௙ߝ)ܨ

This parameter determines the maximum deviation, 
or mathematically formulated as supremum between 
the empirical CDF ܨ௘௠௣(ߝ௙), given by 

(௙ߝ)௘௠௣ܨ = 	 ௜௙݊, (9)ߝ

and the estimated CDF. ߝ௜௙ in Equation 9 is the 
number of data which fulfil the condition ≤  ݊ ௙ andߝ
is the total number of test data. The second term in 
Equation 8 is the CDF of the estimated stochastic 
distribution. In applied sciences, many processes 
succeed the normal distribution. Therefore, it is 
reasonable to choose this distribution for the first 
iteration of the KS test. The CDF of the normal 
distribution is defined as 

௙൯ߝ൫ܨ = 2π√ߪ1 න expቆ− ݑ) − ଶߪଶ2(ߤ ቇ ఌ೑ݑ݀
ିஶ . (10)

The normal distribution has 2 parameters, the 
expectation value ߤ	and the variance ߪ which needs 

to be defined by application of moment estimators. 
Hence, ߤ and ߪ are calculated by the arithmetic mean 
value and the standard deviation.  

The introduced test of this chapter is applied on 
the experimental data of the flat tensile test, depicted 
in Figure 4. The determination of the condition for the 
rejection of the null hypothesis from Equation 7 
yields a value for T of 0.41. The determination of the 
parameter T leads to a value of 0.139. Thus, the 
condition of Equation 7 is not fulfilled, and the null 
hypothesis is true. Furthermore, the tested data 
follows the normal distribution.  

If the first iteration leads to a rejection of the null 
hypothesis, an alternative distribution needs to be 
defined for the second KS test iteration. The concept 
of the KS test is depicted in Figure 6 in graphical 
representation. The empirical density function 
appears as step function in black line and the CDF of 
the normal distribution with estimated parameters in 
magenta line. The CDF of the normal distribution 
crosses every plateau of the empirical CDF, except 
at	ߝ௙ = 17.5. This is the visual interpretation of 
Equation 8 with the supremum between ܨ௘௠௣(ߝ௙) and ܨ(ߝ௙). 

 

Figure 6: Visual representation of the Kolmogorov-
Smirnov goodness-of-fit test with normal distribution and 
empirical CDF for tensile test data. 

The application of this strategy for each test data 
set builds the concept for the development of an 
innovative approach for damage modelling. The 
fundament of this approach is the consideration of 
material damage proposed by (Bao and Wierzbicki, 
2004) which is implemented in several Finite Element 
codes, e.g. LS-Dyna. In addition, the stochastic 
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behaviour of a material is added by the concept of this 
study. Figure 7 depicts this combined approach.   

 

Figure 7: Schematic concept for the stochastic damage 
modelling (red and dashed line) based on the approach of 
(Bao and Wierzbicki, 2004) (black, solid line). 

The black solid line represents the well-
established approach of (Bao and Wierzbicki, 2004). 
The red Gauss’ curve at ߟ = 0.33 is introduced by the 
concept in this chapter. The remaining Gauss’ curves 
are schematic for any probability function which 
needs to be establish by the KS test. Based on the 
probability functions, the dashed bounds are defined. 
This concept is intended as input for a random 
variable generator which delivers fraction strain 
curves as function of the triaxiality for each 
integration point in a simulation model. Hence, a 
random field of material property is generated 
initially for structural Finite Element simulations. 

4 CONCLUSIONS 

Damage modelling under consideration of the 
fracture strain as function of triaxiality is a well-
established method. However, for cast Aluminium 
alloys the inhomogeneous material/damage 
behaviour is neglected. The introduced concept can 
overcome this drawback and builds a potential for 
more accurate capturing of material scatter of cast 
Aluminium alloys. 
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