
Model Predictive Path Integral Control for Car Driving with Dynamic
Cost Map

Alexander Buyval, Aidar Gabdullin and Alexander Klimchik
Robotics Institute, Innopolis University, 1 University Street, Innopolis, Russian Federation

Keywords: Stochastic Control, Path Integral Control, Model Predictive Control, Dynamic Cost Map.

Abstract: Path planning in a complex dynamic environment is one of the key subsystems in an autonomous vehicle. This
paper presents an extension of Model Predictive Path Integral (MPPI) control method which is able to take
moving objects into account while path planning and driving. To obtain real-time performance, cost map up-
date with respect to dynamic objects both as basic MPPI is implemented as a set of concurrent processes using
CUDA technology. The algorithm’s performance is demonstrated on a model of a stock car in a simulation
environment.

1 INTRODUCTION

Control systems of autonomous vehicles have signifi-
cantly evolved in last decades. Nowadays millions of
kilometers were traversed by the selves-driving cars
developed by different research groups and technolo-
gical companies. However, most of the time autono-
mous cars are working under conditions that are far
from being critical. But in real conditions, it is hard
to avoid critical regimes due to several reasons: (I)
step-like change in friction coefficient (II) unexpected
change in trajectories of other vehicles on the road.

At the same time, control of the car in critical and
close-to-critical conditions still is a challenging task.
Main problems arising here are (I) strict time con-
straints applied to decision making (II) uncertainties
and noise in the object of control and surroundings
(III) dynamic objects in the environment moving with
trajectories hard to predict.

A number of modern approaches to the control of
unmanned vehicles in particular and robotic systems
in general use the reinforcement learning to obtain
an optimal control signal by minimizing the prede-
fined cost function provided with a large set of trai-
ning data. In this set of methods two classes can be
highlighted: approaches that do not utilize the mo-
del of the system (model-free approaches) and those
which use it (model-based approaches). In model-
free approaches, there is a class of end-to-end lear-
ning methods, which convert camera images directly
into control signals. (Bojarski et al., 2016), (Bojarski
et al., 2017) describe in details such approaches re-

garding their application to the autonomous driving.
But both groups of methods have the same key pro-
blem - insufficient generalizing ability. This leads
to a requirement to have a large set of training data
and time-consuming learning procedure. The situa-
tion gets even worse while the system works in critical
conditions because it is hard to obtain a representative
selection of all critical situations.

In contrast, model predictive control (MPC) met-
hods provide the ability to reach good generalization
by optimizing the cost function in real-time. In the
works of Verschueren, Frasch ((Verschueren et al.,
2014), (Frasch et al., 2013)) the authors demonstrate
the efficiency of the MPC algorithm for controlling
the vehicle in close to critical conditions including
the obstacle avoidance. However, the main problem
for MPC is that the model should be bidifferentiable.

(Williams et al., 2015) (Williams et al., 2016)
(Williams et al., 2017a) suggest using a more flexible
alternative of MPC - model predictive path integral
(MPPI) control. MPPI is a sample-based approach
allowing to use any form of the objective function.
However, in the mentioned works, the method could
be used with control affine dynamics system models
only. In following work (Williams et al., 2017b) the
authors overcame that constraint and used the artifi-
cial neural network for sampling trajectories.

But still all papers listed above have one common
issue - all surrounding environment within one itera-
tion of the algorithm is considered to be static. In
the previous work of (Buyval et al., 2017) it was sug-
gested including moving objects into the MPC mo-

248
Buyval, A., Gabdullin, A. and Klimchik, A.
Model Predictive Path Integral Control for Car Driving with Dynamic Cost Map.
DOI: 10.5220/0006901702480254
In Proceedings of the 15th International Conference on Informatics in Control, Automation and Robotics (ICINCO 2018) - Volume 1, pages 248-254
ISBN: 978-989-758-321-6
Copyright © 2018 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

del and the objective function, because that allowed
to consider dynamics while optimizing. The negative
side of this implementation of MPC is that each par-
ticular moving object has to be included in the mo-
del as a separate equation. With a big amount of ob-
jects that tends to reduce the computational perfor-
mance, which is highly critical to control the autono-
mous vehicle.

In this paper, we present an improvement of
the MPPI algorithm introduced in (Williams et al.,
2017b) which is able to change the cost map dynami-
cally in accordance with dynamics of the surrounding
objects while sampling the trajectories.

2 PATH INTEGRAL CONTROL

The path integral control is a mathematical basis for
building algorithms of optimal control, based on the
stochastic generation of trajectories (Kappen, 2005).
In this paper, we do not present the theoretical back-
ground for the utilized algorithm since all additional
details and argumentation can be found in work of
(Williams et al., 2016). In total, one iteration of es-
timating the control signals with a use of MPPI can
be described as a following algorithm 1

Algorithm 1: Model Predictive Path Integral Control.

1: procedure COMPUTECONTROL(uinit ,x0,∆t)
2: for k← 0 to K-1 do
3: x = x0;
4: for i← 1 to N-1 do
5: for j← 1 to C do
6: ui j = uinit

i j +N (0,σ j);

7: xi+1 = xi +RK4(f ,ui,∆t);
8: U pdateDynamicCostmap(∆t);
9: S(τk) = S(τk)+q(xi,ui);

10: Smin←mink S(τk);
11: for i← 0 to N-1 do
12: for k← 0 to K-1 do
13: ui = ui +

exp(−λ(S(τk)−Smin))

(∑K
k=1 S(τk))

;

14: return u0

Here K is the number of trajectory samples and
N is the number of time steps. τk denote k-trajectory
and S(τk) is a cost of the trajectory. q and λ are cost
parameters.

It should be noted that in order to achieve a real-
time performance of that algorithm, all loops work
concurrently on different cores of the graphics pro-
cessing unit.

3 SYSTEM MODEL FOR
TRAJECTORY SAMPLING

The key component of the MPPI algorithm, so as
for any other MPC algorithm is a forecasting model.
There are several criteria applied to that model: (I) it
should reflect the behavior of the real object as much
as it can (II) it should have as small computational
complexity as possible. An additional criterion for
MPC is bi-differentiability of the model. There is no
such a constraint in the MPPI algorithm, that is why
we can include additional logical statements and other
non-differentiable components. An additional requi-
rement to the forecasting model in MPPI is an ability
to parallel its computation, which provides an additi-
onal advantage when using the CUDA technology.

In research of (Williams et al., 2016) the authors
suggest using 24 basis function for approximating
a car model. Additional machine learning approa-
ches are used for identifying parameters of those basis
functions and better approximation of a real car.

Authors of the paper (Williams et al., 2017b) pre-
sent a usage of multilayered neural network for the
approximation of the vehicle dynamics. In spite of
the higher computational complexity of those models,
authors claim that it has better forecasting and lear-
ning ability comparing to set of basis functions.

We believe that using such models as a set of basis
functions or multi-layered neural networks is rational
when MPPI is used for controlling the same object.
Keeping in mind that parameters of the object should
remain constant after the learning process. Such mo-
dels do not fully suit the MPPI control for production
cars because they need to do the full process of rele-
arning for each type and model of the vehicle. In this
work, we offer using the analytical model of the car
dynamics which allows to setup parameters of the car
manually. On another hand, it allows to use different
approaches to obtaining those parameters and other
parameters of the system.

3.1 Chassis Dynamics

For the analytical car model we used a 4 wheel model
presented in Fig. 1 which was also used in some pre-
vious works (Buyval et al., 2017) (Frasch et al., 2013).
The chassis dynamic equations used in this paper are
presented in (1a)-(1e)

Model Predictive Path Integral Control for Car Driving with Dynamic Cost Map

249

mv̇x = Fx
f r +Fx

f l +Fx
rr +Fx

rl +mvyψ̇, (1a)

mv̇y = Fy
f r +Fy

f l +Fy
rr +Fy

rl−mvxψ̇, (1b)

Izψ̈ =a(Fy
f l +Fy

f r)−b(Fy
rl +Fy

rr)

+ c(Fx
f r−Fx

f l +Fx
rr−Fx

rl),
(1c)

ẋ = vx cosψ− vy sinψ, (1d)
ẏ = vx sinψ+ vy cosψ, (1e)

where m denotes the mass and Iz the moment of in-
ertia of the car. The geometric parameters of the car
are characterized by a, b and c, in Fig. 1. The compo-
nents of the tire contact forces are denoted by Fx

.. and
Fy

Figure 1: The 4-wheel vehicle model in inertial coordinates.

As opposed to the model presented by (Frasch
et al., 2013) we decided to avoid modelling of the
wheel rotation dynamics. That was done to improve
the computational efficiency. For the same reason, we
utilized Pasejka’s magic formula only for estimating
lateral tire forces. Also, we decided to exclude the
engine and the transmission and only account them
together as a torque force.

The equation for the calculation of longitudinal
tire forces is presented in (2).

F l
.. = Ftr ∗D..+Cr +Carv2

x/4 (2)

where Ftr is the traction force produced by the engine
or brakes, Cr and Car are parameters of rolling and air
resistance forces respectively. D.. traction distribution
factor for each wheel.

Also in comparison with papers (Buyval et al.,
2017) (Frasch et al., 2013) papers we did not modify
the time-dependent model into the track-dependent
one, because in MPPI algorithm this allows us es-
timating trajectories with a cost map which is more
convenient. In addition, this gives the ability to ac-
count dynamics of the vehicle and its surroundings in
a more comfortable time-depended form.

3.2 Suspension Model

To get all of the advantages of the 4 wheel chassis mo-
del it is needed to consider the weight transfer across
different wheels while performing turns. In our pre-
vious work (Buyval et al., 2017) we utilized algebraic
expressions, describing the weight transport as with
respect to linear and angular speeds of the car. Howe-
ver, this approach does not allow to consider suspen-
sion dynamics.

In this work we used the model of lateral rolling
with one degree of freedom which was presented by
(Rajamani, 2011). For this reason into the system of
equations (1) two additional state variables were ad-
ded: φ - rolling angle and φ̇ - angular speed of rolling.
The equation for estimation of the angular speed of
rolling is showed in (3)

(Ixx +mh2
R)φ̈ = mayhRcos(φ)+mghRsin(φ)

−0.5ksl2
s sin(φ)−0.5bsl2

s φ̇cos(φ)
(3)

where Ixx is the roll moment inertia around center of
gravity, m is the total vehicle mass, ls is the distance
between the left and the right suspension locations, ay
is the lateral acceleration experienced by the vehicle,
hr is the height of the c.g. of the sprung mass from the
roll center, bs is the suspension damping coefficient
and ks is the suspension stiffness.

Despite the fact that additional state variables in-
crease the computational time of the model, they do
not increase the approximation of the real object, but
also give the ability to use the estimated rolling an-
gle in the object function of the MPPI algorithm. It is
especially important for vehicles with soft suspension
and a hight center of gravity.

4 DYNAMIC COST MAP

One of the critical components of the object function
which is optimized by MPPI is a cost of the path along
the estimated trajectory. This cost is formed based on
sum of costs present at each particular point along a
trajectory which is obtained from cost map.

Paper (Williams et al., 2016) describes the appro-
ach utilizing a statically generated cost map corre-
sponding to a priori known track configuration. Aut-
hors of (Drews et al., 2017) offer using a convolution
neural network to build a cost map based on camera
images. Both works consider the cost map to be static
within one iteration of MPPI even if it contains dyna-
mic objects.

Dynamic cost map that we suggest using in this
work assumes that during the trajectory sampling the

ICINCO 2018 - 15th International Conference on Informatics in Control, Automation and Robotics

250

algorithm should move dynamic obstacles after each
sampling step. Fig. 2 shows the comparison of several
MPPI trajectory sampling steps in the case of static
and dynamic cost map usage.

On the presented figure in the case when the sta-
tic cost map is used the red car plans an overcoming
maneuver at the end of the trajectory because it assu-
mes blue car to be there. But in a real situation at the
moment of time when the red car reaches the point
the blue car will be gone ahead. In addition, there
may be cases when MPPI may fail to find the solution
using static cost map. For example, while moving al-
ong the tight road, where overcoming is not possible
the MPPI will not find a solution if there will be a car
moving ahead of the object car.

The main difficulty of the algorithm implementa-
tion is a constraint of keeping relatively good time
performance. A sampling of each particular trajec-
tory is done on a separate CUDA core, which allows
to provide pretty good amount of concurrently sam-
pled trajectories. In addition, all operations referred
to trajectory’s cost estimation are done in GPU me-
mory. So cost map update related to dynamic ob-
stacles should be done in between sampling steps in
GPU memory too. Also, it is needed to be considered
that the size of cost map may be pretty big so upda-
ting it with one GPU core may be slow. This creates
a bottle neck where estimated by separate cores tra-
jectories will have to wait for one GPU core to update
the map. For that reason, we have implemented con-
current map update. That was done via binding of
each particular dynamic object with a separate GPU
core. So each thread should update only cost map’s
part related to the bound object. If dynamic objects
are absent in the current moment of time than no re-
sources are spent on updating the map.

5 SIMULATION EXPERIMENTS

To proof the workability of the described approach
we used the simulator based on Unity engine. It al-
lows us to model the car dynamics with a high preci-
sion including such components as transmission, bra-
king system and tires. In addition, simulator gives the
opportunity to model a variety of sensors: lidars, ra-
dars, GPS and IMU. The algorithm was implemented
in ROS framework. Utilizing ROS allowed us to make
debugging and logging easier. All simulation results
were obtained on a PC with the following specs: Intel
i7-7700 CPU at 2.8GHz with NVIDIA GeForce GTX
1050 Ti 4GB under Ubuntu 16.0 and ROS Kinetic.

All experiments were done using a car with follo-
wing parameters: m = 1000kg, Iz = 600kgm2 , a =

1.68m, b = 1.35m, c = 0.7m. Length of planning ho-
rizon is equal to 50 steps and control rate is 20 Hz for
all cases.

We have conducted 3 experiments to demonstrate
the efficiency of presented method: (I) bypass of a sta-
tic obstacle with lane changing (considering the dy-
namics of other cars) (II) overcoming of a bus with
driving in the oncoming lane considering oncoming
cars (III) intersection crossing with giving a way to
vehicles moving along main road.

In the first experiment, the controlled car is loca-
ted in a right lane of the road in an initial moment of
time. On the left lane, there are 3 buses moving in
the same direction with a speed of 10 m/s. Approxi-
mately, after 150 meters on right lane roadworks are
taking place. For this reason, the algorithm should
plan to get around this obstacle with consideration of
buses on the neighbor lane. The trajectory obtained
during this experiment is presented in Fig. 3

In the second experiment, the object car was mo-
ving along the right lane behind the bus that was mo-
ving at a constant speed of 10 m/s. On the oncoming
lane in opposite direction, 2 buses are moving with
the same constant speed. Trajectory obtained in this
experiment is represented in Fig. 4

In the third experiment the car was moving to-
wards the crossing where it had to give the road to 3
buses moving from left direction along the main road.

On all three figures the trajectory of the car con-
trolled by MPPI is shown as a gradient line with co-
lor denoting the current speed. Sampled positions of
buses are represented with triangles of different co-
lors. Numbers along the trajectory represent same
moments of time. Fig. 6 represents the example of
road conditions modeled in Unity simulation environ-
ment.

To estimate the efficiency of the algorithm while
estimating different numbers of trajectories we used
a basic scenario of overcoming the bus moving for-
ward with a speed of 10 m/s. While experimenting
the time required to travel 250 meters and overcome
the bus was estimated. in addition, the quality of con-
trol was visually judged. Table 1 represents the re-
sults of execution of this experiment with a different
number of generated trajectories. We can see from
the table 1 that the execution of one iteration almost
not increasing with the growth of the number of the
trajectories. That is definitely a merit of concurrent
estimation run on separate NVidia GPU cores. The
total time of an overcoming maneuver on 250 meter
distance also does not change significantly. However,
with a decrease of the generated trajectories the qua-
lity of the control was getting worse. In general, that
could be observed as a presence of steering control

Model Predictive Path Integral Control for Car Driving with Dynamic Cost Map

251

Figure 2: Comparison of static and dynamic cost maps.

Figure 3: Trajectory of the car in experiment of avoiding static obstacle and lane changing.

Figure 4: Trajectory of the car in experiment with bus overcoming.

Table 1: Iteration time, maneuver execution time for diffe-
rent number of trajectories.

Number
of trajec-
tories

Iteration
time, ms

Exec.
time, s

Quality control

512 13.6 15.1 Some oscillations
1024 14.1 14.85 Some oscillations
2048 15.3 14.9 Stable
4096 16.5 14.9 Stable
8192 19.3 14.85 Very stable

oscillations.
Trajectories of the car and other dynamic objects

with time marks and speeds. Table of MPPI stages
execution time distribution

The video of all three experiments is availa-
ble through the following link: https://youtu.be/
9FY93a2lq28.

6 CONCLUSION

This work presents the extension to the MPPI algo-
rithm which allows to plan the trajectory and cont-
rol signals for an autonomous car in a dynamic envi-
ronment considering relative surrounding object mo-
vement. The cost map update and the core algorithm
MPPI are implemented as concurrent processes on
NVidia multi-core graphics processing unit. This in-
sures the 50Hz control rate. The straightforward mat-
hematical model was used to describe a car as a sy-
stem under control, allowing to use the algorithm on
different cars only by changing parameters. Unity
was used to carry out simulation experiments aided
to test and proof the developed algorithm.

For the future plans, authors think of extending
the cost map synthesis procedure with data acquired
from cameras and 3D lidar. Also it is planned to fuse
a priori knowledge about road maps with data from

ICINCO 2018 - 15th International Conference on Informatics in Control, Automation and Robotics

252

Figure 5: Trajectory of the controlled car obtained during passing road crossing.

Figure 6: An example of intersection crossing in simulation
environment.

sensors. In addition, we think of testing this approach
on a truck and a car equipped with relevant sensors
and actuators.

ACKNOWLEDGEMENTS

This research has been supported by the Russian
Ministry of Education and Science within the Fe-
deral Target Program grant (research grant ID RF-
MEFI60917X0100).

REFERENCES

Bojarski, M., Del Testa, D., Dworakowski, D., Firner, B.,
Flepp, B., Goyal, P., Jackel, L. D., Monfort, M., Mul-
ler, U., Zhang, J., et al. (2016). End to end learning for
self-driving cars. arXiv preprint arXiv:1604.07316.

Bojarski, M., Yeres, P., Choromanska, A., Choromanski,
K., Firner, B., Jackel, L., and Muller, U. (2017).
Explaining how a deep neural network trained with
end-to-end learning steers a car. arXiv preprint
arXiv:1704.07911.

Buyval, A., Gabdulin, A., Mustafin, R., and Shimchik,
I. (2017). Deriving overtaking strategy from nonli-
near model predictive control for a race car. In 2017
IEEE/RSJ International Conference on Intelligent Ro-
bots and Systems (IROS), pages 2623–2628.

Drews, P., Williams, G., Goldfain, B., Theodorou, E. A.,
and Rehg, J. M. (2017). Aggressive deep driving: Mo-
del predictive control with a cnn cost model. arXiv
preprint arXiv:1707.05303.

Frasch, J. V., Gray, A., Zanon, M., Ferreau, H. J., Sager, S.,
Borrelli, F., and Diehl, M. (2013). An auto-generated
nonlinear mpc algorithm for real-time obstacle avoi-
dance of ground vehicles. In 2013 European Control
Conference (ECC), pages 4136–4141.

Kappen, H. J. (2005). Linear theory for control of non-
linear stochastic systems. Physical review letters,
95(20):200201.

Model Predictive Path Integral Control for Car Driving with Dynamic Cost Map

253

Rajamani, R. (2011). Vehicle dynamics and control. Sprin-
ger Science & Business Media.

Verschueren, R., Bruyne, S. D., Zanon, M., Frasch, J. V.,
and Diehl, M. (2014). Towards time-optimal race car
driving using nonlinear mpc in real-time. In 53rd
IEEE Conference on Decision and Control, pages
2505–2510.

Williams, G., Aldrich, A., and Theodorou, E. (2015).
Model predictive path integral control using covari-
ance variable importance sampling. arXiv preprint
arXiv:1509.01149.

Williams, G., Aldrich, A., and Theodorou, E. A. (2017a).
Model predictive path integral control: From theory to
parallel computation. Journal of Guidance, Control,
and Dynamics, 40(2):344–357.

Williams, G., Drews, P., Goldfain, B., Rehg, J. M., and The-
odorou, E. A. (2016). Aggressive driving with model
predictive path integral control. In Robotics and Auto-
mation (ICRA), 2016 IEEE International Conference
on, pages 1433–1440. IEEE.

Williams, G., Wagener, N., Goldfain, B., Drews, P., Rehg,
J. M., Boots, B., and Theodorou, E. A. (2017b). Infor-
mation theoretic mpc for model-based reinforcement
learning. In Robotics and Automation (ICRA), 2017
IEEE International Conference on, pages 1714–1721.
IEEE.

ICINCO 2018 - 15th International Conference on Informatics in Control, Automation and Robotics

254

