
Revisiting the Notion of GUI Testing

Abdulaziz Alkhalid, Yvan Labiche and Sashank Nekkanti
Department of Systems and Computer Engineering, Carleton University, Ottawa, Canada

Keywords: System Testing, GUI Testing.

Abstract: The practitioner interested in reducing software verification effort may found herself lost in the many
alternative definitions of Graphical User Interface (GUI) testing that exist and their relation to the notion of
system testing. One result of these many definitions is that one may end up testing twice the same parts of
the Software Under Test (SUT), specifically the application logic code. We revisit the notion of GUI testing
and introduce a taxonomy of activities pertaining to testing GUI-based software. We use the taxonomy to
map a representative sample of research works and tools, showing several aspects of testing GUI-software
may be overlooked.

1 INTRODUCTION

Advances in technology used as platforms for
Graphical User Interface (GUI) software lead to
more complex, platform-independent GUI-based
software. Current GUI software are capable of
serving different types of users with different levels
of abilities (e.g. ordinary user, user with disability,
Web user, or Mobile user). These advances in
technology produce challenges for software testers
who are responsible for software verification of those
GUI-based software. One of them is that software
testers find themselves in front of several testing
types to choose and use, such as GUI testing and
system testing.

A well accepted definition of software system
testing is that it is a phase of software testing
conducted on the complete software to evaluate its
compliance with its requirements, be they functional
or non-functional (Desikan and Ramesh 2006).
However, there is a confusion about alternative
definitions of GUI testing one can find in the
literature. For example, Ammann and Offutt
classified GUI testing into usability testing and
functional testing and further classified the latter into
GUI system testing, regression testing, input
validation testing and GUI testing (Ammann and
Offutt 2008). They argue that GUI system testing is
system testing of the entire software through its GUI
while GUI testing is verifying that the GUI works
correctly without verifying the underlying
application code. Memon et al. defined GUI testing

as system testing for software that has a graphical
user interface (Banerjee, Nguyen et al. 2013). We
conclude that Memon’s notion of GUI testing
encompasses both notions of GUI testing and GUI
system testing of Ammann and Offutt. One could
argue that these are only two authors and that they
may not be representative. We conclude that there is
no agreement about the notion of “GUI testing”,
about what it is means and what it entails.

As further shown by our study of literature on the
topic, we conclude that the reader interested in
testing a GUI-based software may found herself lost
in the many alternative definitions of GUI testing that
exist and their relation to the notion of system
testing. For instance, using Memon’s definition of
GUI testing, one can use a tool like GUITAR
(Memon 2015) to trigger both the GUI and the
underlying functionalities whereas when using
Ammann and Offutt’s definitions one can use JUnit
to directly test the application code, bypassing the
GUI, and verify the GUI separately. One risk of
using incompatible definitions for GUI testing and
system testing is to duplicate testing effort: One
conducts system testing of the application logic by
bypassing the GUI and conducts GUI testing of the
software with GUITAR (Nguyen, Robbins et al.
2014), thereby testing the application logic twice.
This paper therefore attempts to answer the following
research question: What are available definitions of
system and GUI testing and how they relate to each
other?

640
Alkhalid, A., Labiche, Y. and Nekkanti, S.
Revisiting the Notion of GUI Testing.
DOI: 10.5220/0006901606400647
In Proceedings of the 13th International Conference on Software Technologies (ICSOFT 2018), pages 640-647
ISBN: 978-989-758-320-9
Copyright © 2018 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

Figure 1 illustrates the focus of this paper. It
illustrates several software testing definitions by
showing the software divided in its GUI layer and its
application logic layer.

Figure 1: Functional and non-functional system testing

It illustrates that system testing can focus on the
functional aspects of the System Under Test (SUT),
referred to as functional system testing, or the non-
functional aspects of the SUT also sometimes
referred to as the “alities”, referred to as non-
functional system testing. Both can trigger only the
GUI (an arrow stops at the GUI layer, meaning that
the application logic is being stubbed/mocked), the
GUI and the underlying application logic layer
(arrow to the GUI layer, going through the GUI as
dashed line and triggering the application logic layer)
or only the application logic layer. It also shows that
our scope, non-greyed-out part, is limited to
functional system testing and does not deal with the
alities of the SUT. Although our contribution
includes some discussion of the notion of testing the
alities of a GUI-based software, we decided to focus
on functional aspects rather than non-functional ones.
Additionally, the majority of related work and
available tools also focus on functional aspects rather
than non-functional ones. As justified later in the
paper and illustrated in the figure, when functional
system testing is applied through the GUI, we call it
GUI system testing in order to distinguish it from
functional system testing applied to the application
logic directly. We focus on GUI applications since
such applications typically require robust UIs
(Forrester and Miller 2000; Ganov, Killmar et al.
2008). Another motivation is the difficulty, to the
point of impracticality, of GUI system testing for any
SUT with non-trivial UI: for instance, using
GUITAR (Memon 2015) on Microsoft WordPad in
Windows 7 (Nguyen, Robbins et al. 2014), which
contains over 50 GUI events, is extremely expensive
(in terms of number of tests).

The rest of this paper is structured as follows.
Section 2 describes our search method. Section 3
describes definitions of system testing and GUI
testing. Section 4 presents our definitions and
taxonomy. Section 5 uses the taxonomy to map a
representative sample of existing research activities
and tools on testing of GUI-based software. Section 6
presents conclusions.

2 OUR SEARCH METHOD

We present some definitions of system testing, GUI
testing, and other testing activities. As discussed
below, these definitions warrant the study of
differences (if any) between system testing and GUI
testing. The intent of this paper is not to report on a
systematic mapping study on GUI testing definitions
and other testing definitions. We simply report on
representative definitions of main software testing
terms to answer research question: What are
available definitions of system and GUI testing and
how they relate to each other?

We used a systematic method, though not a
systematic literature review or systematic mapping
study, to identify relevant definitions. The method
started by identifying textbooks in our possession or
at the University Library in the area of software
engineering and software testing. In the case of
library books, this meant using the Library search
engine to identify books using the following
keywords: testing, software GUI testing, software
verification, GUI testing. Then, we identified
chapters of those books which discuss software
testing and in particular GUI testing by browsing
through the tables of contents and skimming through
pages, looking for keywords like “GUI testing” or
“system testing”. We identified a total of 52
textbooks (Alkhalid and Labiche 2016). We believe
that, for our search for definitions, looking into
textbooks is an adequate procedure, rather than for
instance searching in academic paper databases. We
nevertheless surveyed by searching online resources
too, i.e., Google Scholar, IEEE Xplore, Science
Direct, ACM, Engineering Village and Scopus using
the following search strings: Graphical User Interface
Testing, GUI testing, GUI testing "AND" system
testing, definition of GUI testing, Oracle for GUI
testing, GUI testing tools, automated GUI testing,
survey of GUI testing, GUI testing taxonomy. This
step was necessary to find recent surveys or
taxonomies in the area of GUI testing. This allowed
us to identify a recent (2013) systematic mapping
study on GUI testing (Banerjee, Nguyen et al. 2013)

Revisiting the Notion of GUI Testing

641

which we later use when mapping existing work with
our taxonomy. We used the dblp Computer Science
Bibliography (Ley 1993) to look for publications on
GUI testing when needed for a specific author.

3 SYSTEM AND GUI TESTING

System testing is defined as a “testing phase
conducted on the complete integrated system to
evaluate the system compliance with its specified
requirements on functional and non-functional
aspects” (Desikan and Ramesh 2006). GUI testing
can be defined as system testing for software that has
a GUI (Banerjee, Nguyen et al. 2013; Nguyen,
Robbins et al. 2014), that is system testing of the
entire software performed through its GUI.
Assuming the standard, IEEE definition of system
testing we already discussed, we argue that GUI
testing as defined by Memon creates tests that do not
(necessarily or specifically) address “alities”.
According to Ammann and Offutt, determining
whether the GUI and the logic of a GUI-based
software behave as expected 1 includes usability
testing and functional testing (Ammann and Offutt
2008). The former refers to the assessment of how
usable the interface is according to principles of user
interface design. The latter refers to whether the user
interface works as intended. They further classified
functional testing in this context into four categories:
GUI system testing, regression testing, input
validation testing and GUI testing. GUI system
testing refers to “the process of conducting system
testing through the GUI”. Regression testing is about
“testing of GUI after changes are made” (Ammann
and Offutt 2008). Input validation testing aims to
verify whether the GUI “recognize[s] the user input
and respond[s] correctly to invalid input” (Ammann
and Offutt 2008).

We first notice that Ammann and Offutt’s
definitions do not account for alternative non-
functional requirements of the UI to usability and
robustness (input validation), which also need to be
verified. Contrasting Amman and Offutt’s definition
to Memon’s definition, we see that Memon’s notion

1 Ammann and Offutt discuss that usability testing and
functional testing are the two activities of GUI testing. They
then split functional testing into four categories, including
GUI testing, which results in a circular definition of the
notion of GUI testing. We believe this circular definition was
not intentional. To avoid this circular definition, we write
that usability testing and functional testing are the two
activities involved in determining whether the GUI and the
logic of a GUI-based software behave as expected.

of GUI testing is identical to the notion of GUI
system testing by Ammann and Offutt, except with
regards to some non-functional requirements. The
top part of Figure 2 illustrates the main definitions
we have encountered in our survey and that we just
discussed (the “orange” arrows are discussed next).

Figure 2: Relationship between different testing types.

In red the figure illustrates Ammann & Offutt's
definitions. GUI testing is about the functional
aspects of the GUI, focusing only on the UI layer, so
the arrow goes to the functional part of the GUI and
stops there.

From their definitions, we do not have evidence
that GUI testing also focuses on non-functional
characteristics, especially since usability testing is a
separate activity in their discussion. Usability testing
is about an "ality" so the arrow goes to the "alities"
part of the GUI and stops there. GUI system testing
is system testing through the UI so arrows go to the
UI (both functional and non-functional) and go
through to the application logic.

4 A TAXONOMY OF TERMS
PERTAINING TO TESTING OF
GUI-BASED SOFTWARE

In this section, we present an initial, therefore likely
incomplete, taxonomy of terms that pertain to testing
of a GUI-based software. In line with the majority of
the references on the topic, including the IEEE
definition, we abide by the definition that states that
system testing is about evaluating compliance of an
entire software system with its specified functional
and non-functional requirements. It follows that,
although prominent definitions of system testing
(Abbott 1986; Lewis 2004; Desikan and Ramesh
2006; Homes 2012) do not explicitly mention the
GUI, in case the software system has a GUI, system

ICSOFT 2018 - 13th International Conference on Software Technologies

642

testing encompasses the evaluation of the GUI
against (GUI-specific) functional and non-functional
requirements because system testing works on the
entire product. This confirms that system testing
includes GUI testing, which is very much like,
though slightly different to, Ammann & Offutt
definition, as discussed earlier. A direct consequence
of this statement is that system testing and GUI
testing are two different things and that GUI testing
cannot be system testing applied on the GUI.

Figure 2 is slightly different from Figure 1 and
illustrates the general definitions of system testing
we abide to (orange arrows): directly exercising the
UI or the application logic layers (direct, plain
arrows), possibly exercising the latter through the
former (dotted arrows). Those tests focus on either
functional or non-functional characteristics, which
we refer to as functional system testing and non-
functional system testing, respectively.

We define functional system testing as checking
conformance of the entire GUI-based software
against its functional requirements, either by directly
interacting with the application logic (arrow 3 in
Figure 2), by isolating (stubbing/mocking the
application logic) and focusing only on the UI (arrow
1), by focusing on the UI in combination with the
application logic (arrows 1 and 2), or a combination
of those.

We also define non-functional system testing as
checking conformance of the entire GUI-based
software against its non-functional requirements,
either by directly interacting with the application
logic (arrow 6), by isolating and focusing only on the
UI (arrow 4), by focusing on the UI in combination
with the application logic (arrows 4 and 5), or a
combination of those.

GUI system testing can be either functional or
non-functional, thus we use the terms GUI functional
system testing for arrows 1+2 and GUI non-
functional system testing for arrows 4+5. GUI
functional system testing therefore encompasses
system level tests exercising the entire software, that
is through its UI, and checking conformance with
both GUI-specific functional requirements and
application logic-specific functional requirements.
GUI non-functional system testing encompasses
system level tests exercising the entire software, that
is through its UI, and checking conformance with
both GUI-specific and application logic-specific non-
functional requirements.

We also refer to system testing of the application
logic code, whereby the UI is bypassed, to as
functional system logic testing (arrow 3) and non-
functional system logic testing (arrow 6). Functional

system logic testing therefore encompasses system
level tests that specifically check conformance of the
application logic code with application logic-specific
functional requirements.

Non-functional system logic testing encompasses
system level tests that specifically check
conformance of the application logic code with
application logic-specific non-functional
requirements.

We also call GUI functional testing the testing of
the functional aspects of the UI that does not require
the application logic (arrow 1 only), and GUI non-
functional testing the testing of the non-functional
aspects of the UI that does not require the application
logic (arrow 4 only). In both cases the application
logic is stubbed/mocked. Therefore, GUI functional
testing encompasses system level tests that
specifically check the conformance of the UI part of
the software (and only the UI) against UI-specific
functional requirements. And GUI non-functional
testing encompasses system level tests that
specifically check the conformance of the UI part of
the software (and only the UI) against UI-specific
non-functional requirements. These are specific,
focused version of the notions of functional system
testing and non-functional system testing discussed
earlier.

One general issue with software testing is how to
provide the right values to the software. Software
controllability describes how easy it is to provide a
program with the needed inputs, in terms of values,
operations, and behaviours (Ammann and Offutt
2008). For example, it is easy to control a piece of
software for which all inputs are values entered from
a keyboard (Freedman 1991; Gao 2000; Ammann
and Offutt 2008). On the other hand, when the
software gets its input values from sensors, it may be
difficult to control. Typically, a tester has less control
with component/system testing than with unit testing.
Therefore, controllability can also mean the ease to
reach some predefined level of coverage, i.e., to
exercise specific behaviour or pieces of code: it is
more difficult to reach coverage of units with system
testing than with unit testing. In general, with a
higher level of testing (e.g., system testing) it is
harder to trigger specific elements of the
code/functionality provided by lower levels of the
code than with a lower level of testing (e.g., unit
testing). When doing integration testing, it is harder
to trigger specific statements of the code than with
testing those units of the code directly. Similarly,
when doing GUI functional system testing (arrows 1
plus 2 of Figure 2), it is harder to trigger code
elements or behaviour of the application logic than

Revisiting the Notion of GUI Testing

643

Table 1: Classification Results.

Ref Primary Secondary Ref Primary Secondary

(Kepple 1992) 1+2 1 +2 (Derezinska and Malek 2007) 1+2 1+2
(Li, Huynh et al. 2007) 1+2, 3 1+2, 3 (Yuan and Memon 2010) 1+2 1+2, 4+5

(Mateo Navarro, Sevilla Ruiz et al. 2009) 1+2 1+2 (Yuan, Cohen et al. 2011) 1+2 1+2

(Tsujino 2000) 1+2 1+ 2 (Yang, Chen et al. 2014) 1+2 1+2

(Takahashi 2001) 1 1 (Memon, Pollack et al. 2001) 1+2 1+2
(Memon 2007) 1+2 1+2 (Mao, Boqin et al. 2006) 1+2 1+2
(Ye, Feng et al. 2007) 1+2 1+2 (Chen, Tsai et al. 2005) 1+2 1+2
(Memon 2008) 1+2 1+2, 4+5 (Yuan and Memon 2010) 1+2 1+2

(Memon, Nagarajan et al. 2005) 1+2 1+2, 4+5 (Chen and Subramaniam 2002) 1+2 1+2

(McMaster and Memon 2008) 1+2 1+2 (Memon and Xie 2005) 1+2 1+2

(Karam, Dascalu et al. 2006) 1+2 1+2 (Pham, Holzmann et al. 2014) 1+2 1+2
(Xie and Memon 2007) 1+2 1+2 (Xie and Memon 2008) 1+2 1+2
(Memon 2006) 1+2 1+2 (Alsmadi 2013) 1+2 1+2
(Alsmadi, Samarah et al. 2011) 1+2 1+2

when doing functional system logic testing while
bypassing the UI (arrow 3 in Figure 2), and even
more so than when doing unit testing. This is another
reason that helps justify the distinctions we make
between the different testing activities mentioned
earlier and illustrated in Figure 2.

5 MAPPING EXISTING WORK
WITH OUR TAXONOMY

In this section, we use the new terms we introduced
to map existing research. To do that, we look for
primary studies in literature. We found a recent
(published in 2013) systematic mapping study of
GUI testing techniques (Banerjee, Nguyen et al.
2013). As an initial study we sampled the list of
references Banerjee et al. classified and selected the
29 journal papers they identified. Two of them,
references (Rubel and Quitslund 2007) and (Janicki,
Katara et al. 2012), are surveys and cannot be
mapped with our taxonomy, resulting in 27 studies to
map. We selected journal papers since they
admittedly represent the most developed research
activities in the field. To classify a paper, we follow a
set of steps: (1) We study the testing technique
presented in the paper; (2) We identify the testing
objective of that technique and classify it as one or
more of the testing types we introduced earlier
(arrows 1, 2, 3, 4, 5, 6 in Figure 2); (3) We analyze,
based on our own judgment, whether the technique
potentially (though this is not the primary purpose)
covers other elements of our taxonomy. Table 1
shows the results of our classification (short

justifications available in our technical report
(Alkhalid, Labiche et al. 2018)). For each referenced
journal paper (1st/4th column), the table indicates the
primary purpose of the work in terms of arrows in
Figure 2 (2nd/5th columns) and potential purposes
(3rd/6th columns). We do not use the terminology in
the table for space reasons. Results show that the vast
majority of works (25, 93%) do GUI functional
system testing (arrows 1+2). Only one study does
GUI functional system testing and functional system
logic testing (arrows 1+2, and 3), and only one study
does GUI functional testing (arrow 1).

We did not find any work that specifically focuses
on non-functional aspects (Primary objective). Only
Memon and colleagues, with GUITAR, incidentally
achieve more than their Primary objective, which is
GUI functional system testing (Memon, Nagarajan et
al. 2005; Memon 2008; Yuan and Memon 2010). This
is due to the fact that their tool, GUITAR, can be used
to provide erroneous inputs to the GUI under test:
there is some GUI non-functional system testing.

In addition to published academic papers, we
briefly characterize a number of GUI testing tools
according to our taxonomy of testing activities
(Alkhalid, Labiche et al. 2018). Our main focus is
tools that support Java: in an initial use of our
taxonomy, we wanted to scope the search for tools
and Java is a popular programming language for tool
development. Characterizing a specific tool accord-
ing to our taxonomy involve either one or more of
the following activities: (1) reading available, online
documentation about the tool; (2) downloading
(possibly a trial, time-limited) version of the tool and
reading documentation that comes with it; (3) trying
the downloaded tool on a case study.

ICSOFT 2018 - 13th International Conference on Software Technologies

644

Whenever possible we performed the
classification based on evidence, which is either
documentation that can be referenced, or
experimental results obtained by using a tool on a
case study. We selected 18 tools out of a set of 39
documented GUI testing tools (Desyatnikov 2016),
making sure we have variety: freeware, open source,
commercial. The procedure we used to select the
tools was the following: We scanned the
documentation or downloaded the tools; we excluded
the ones with unavailable download (e.g. the
download link was broken); we excluded commercial
ones for which we cannot get a student or a limited
license as well as the ones which do not support Java.
The results Table 2 shows our results of
classification of tools. All the tools do GUI
functional system testing except Fitnesse and LoadUI
as both of them are dedicated to non-functional
aspect of software.

Table 2: Classification of Gui Testing Tools.

Tool 1 4 1+2 4+5 3 6

Abbot
(Java apps only)

Yes No Yes Yes Yes No

Fitnesse No No No No Yes No
Sikuli Yes Yes Yes Yes No No
SWTBot
(SWT apps only)

Yes No Yes Yes Yes No

Jubula Yes No Yes No Yes No
GTT
(Java Swing apps only)

Yes No Yes Yes Yes No

PowerShell Extensions
(Windows apps only)

Yes No Yes Yes No No

AutoIt
(Windows platform only)

Yes No Yes Yes No No

Maveryx
(Java&Android only)

Yes No Yes Yes Yes No

Selenium Yes No Yes Yes No No
Sahi Yes No Yes Yes No No
Cucumber# Yes No Yes Yes Yes No
Cubic test Yes No Yes Yes No No
EggPlant Yes Yes Yes Yes No No
Ranorex# Yes No Yes Yes Yes No
LoadUI No No No No Yes Yes
Squish# Yes No Yes Yes Yes No
SilkTest# Yes No Yes Yes Yes No

6 CONCLUSION

Recognizing there exist ambiguities around
definitions of GUI testing, we presented a taxonomy
of terms that distinguishes testing of a GUI-based
software along two dimensions: whether functional
or non-functional aspects are specifically targeted;
whether tests exercise the UI only, the UI and the

application logic together, or only the application
logic.

We evaluated a select number of most developed
related works and tools against this taxonomy and
reported that the vast majority of works look alike in
light of the taxonomy: they conduct what we coined
GUI functional system testing, which is system
testing through the UI of functional aspects of the
entire application, that is functional aspects of the UI
as well as functional aspects of the application logic.
We first note that our definitions help distinguish
functional aspects of the UI from functional aspects
of the application logic. It appears from our mapping
that existing works and tools primarily focus on
functional aspects of the application logic, through
the UI, and not necessarily on functional aspects of
the UI.

We also note that controllability issues are not
discussed in these works and tools. Specifically,
controllability issues may arise and prevent achieving
all objectives in terms of functional testing of the
application logic code through the UI, which calls for
additional system level testing of the application
logic which we coined functional system logic
testing.

Our results also show that very few works and
tools consider non-functional aspects of a GUI-based
software, i.e. both non-functional characteristics of
the UI as well as non-functional characteristics of the
application logic. Very few of them distinguish the
(testing) verification of the UI from the (testing)
verification of the application logic, despite the fact
that, according to our discussion and according to
standard software design principles, the two might be
different. For instance, it is conceivable to observe a
GUI-based software that passes verification
conditions (functional and non-functional)
established for the application logic but fails to pass
verification conditions (functional or non-functional)
established for the UI.

Acknowledging our taxonomy may be debated,
we believe it is nevertheless a good starting point to
continue the discussion as to what we should call
“GUI testing”. We argue the taxonomy is useful to
have an overview of the field and pave the way to
future work: e.g., do GUI functional system testing
(arrows 1+2) and functional system logic testing
(arrow 3) exercise functionalities differently? How is
this related to controllability, if ever? What GUI
functional testing, the testing of the functional
aspects of the UI without the application logic (arrow
1) look like? What about specifically focusing on
non-functional aspects?

Revisiting the Notion of GUI Testing

645

REFERENCES

Abbott, J. (1986). Software testing techniques, NCC.
Alkhalid, A. and Y. Labiche (2016). Comparing GUI

System Testing with Functional System Testing-An
Experiment. Technical Report TR-SCE-16-01. Ottawa,
Carleton University.

Alkhalid, A., Y. Labiche, et al. (2018). Revisiting the
notion of GUI testing. Technical Report TR-SCE-18-
02. Ottawa, Carleton University.

Alsmadi, I., S. Samarah, et al. (2011). Evaluate and
Improve GUI Testing Coverage Automatically, IJSE.

Alsmadi, I. M. (2013). "Using Mutation to Enhance GUI
Testing Coverage." IEEE software 30(1): 67-73.

Ammann, P. and J. Offutt (2008). Introduction to Software
Testing. New York, Cambridge University Press.

Banerjee, I., B. Nguyen, et al. (2013). "Graphical user
interface (gui) testing: Systematic mapping and
repository." Information and Software Technology
55(10): 1679-1694.

Chen, J. and S. Subramaniam (2002). "Specification-based
testing for GUI-based applications." Software Quality
Journal 10(3): 205-224.

Chen, W.-K., T.-H. Tsai, et al. (2005). Integration of
specification-based and CR-based approaches for GUI
testing. Advanced Information Networking and
Applications, 2005. AINA 2005. 19th International
Conference on, IEEE.

Derezinska, A. and T. Malek (2007). "Experiences in
Testing Automation of a Family of Functional-and
GUI-similar Programs." IJCSA 4(1): 13-26.

Desikan, S. and G. Ramesh (2006). Software testing:
principles and practice. India, Pearson Education

Desyatnikov, R. (2016). "Top 39 GUI Testing Tools List."
Retrieved 2016, from http://www.softwaretestinghelp.
com/best-gui-testing-tools/.

Forrester, J. E. and B. P. Miller (2000). An empirical study
of the robustness of Windows NT applications using
random testing. Proceedings of the USENIX Windows
System Symposium.

Freedman, R. S. (1991). "Testability of software
components." IEEE Transactions on Software
Engineering 17(6): 553-564.

Ganov, S. R., C. Killmar, et al. (2008). Test generation for
graphical user interfaces based on symbolic execution.
Proceedings of the 3rd international workshop on
Automation of software test, ACM.

Gao, J. (2000). Component testability and component
testing challenges. Proceedings of International
Workshop on CBSE, held in conjunction with the
ICSE.

Homes, B. (2012). Fundamentals of software testing, John
Wiley & Sons.

Janicki, M., M. Katara, et al. (2012). "Obstacles and
opportunities in deploying model-based GUI testing of
mobile software: a survey." Software Testing,
Verification and Reliability 22(5): 313-341.

Karam, M. R., S. M. Dascalu, et al. (2006). "Challenges
and opportunities for improving code-based testing of
graphical user interfaces." Journal of Computational

Methods in Sciences and Engineering 6(5, 6
Supplement 2): 379-388.

Kepple, L. R. (1992). "A new paradigm for cross-platform
automated GUI testing." The X Resource 3(1): 155-
178.

Lewis, W. E. (2004). "Software testing and continuous
quality improvement." CRC press.

Ley, M. (1993). "Digital Bibliographic Library Browser
(DBLP) Computer Science Bibliography." Retrieved
2014, from http://dblp.uni-trier.de/.

Li, P., T. Huynh, et al. (2007). "A practical approach to
testing GUI systems." Empirical Software Engineering
12(4): 331-357.

Mao, Y., F. Boqin, et al. (2006). "Important usage paths
selection for GUI software testing." Information and
Technology Journal 5(4): 648-654.

Mateo Navarro, P. L., D. Sevilla Ruiz, et al. (2009). "A
proposal for automatic testing of GUIs based on
annotated use cases." Advances in Software
Engineering vol. 2010.

McMaster, S. and A. Memon (2008). "Call-stack coverage
for gui test suite reduction." IEEE Transactions on
Software Engineering 34(1): 99-115.

Memon, A. (2015). "GUITAR." Retrieved 2015, from
http://sourceforge.net/projects/guitar/.

Memon, A., A. Nagarajan, et al. (2005). "Automating
regression testing for evolving GUI software." Journal
of Software Maintenance and Evolution: Research and
Practice 17(1): 27-64.

Memon, A. M. (2006). "Employing user profiles to test a
new version of a GUI component in its context of use."
Software Quality Journal 14(4): 359-377.

Memon, A. M. (2007). "An event-flow model of GUI-
based applications for testing." Software Testing
Verification and Reliability 17(3): 137-158.

Memon, A. M. (2008). "Automatically repairing event
sequence-based GUI test suites for regression testing."
ACM TOSEM 18(2): 4.

Memon, A. M., M. E. Pollack, et al. (2001). "Hierarchical
GUI test case generation using automated planning."
IEEE Transactions on Software Engineering 27(2):
144-155.

Memon, A. M. and Q. Xie (2005). "Studying the fault-
detection effectiveness of GUI test cases for rapidly
evolving software." IEEE Transactions on Software
Engineering 31(10): 884-896.

Nguyen, B. N., B. Robbins, et al. (2014). "GUITAR: an
innovative tool for automated testing of gui-driven
software." Automated Software Engineering 21(1): 65-
105.

Pham, R., H. Holzmann, et al. (2014). "Tailoring video
recording to support efficient GUI testing and
debugging." Software Quality Journal 22(2): 273-292.

Rubel, D. and P. Quitslund (2007). Automating GUI
testing for Eclipse RCP applications, Software Test and
Performance.

Takahashi, J. (2001). "An automated oracle for verifying
GUI objects." ACM SIGSOFT Software Engineering
Notes 26(4): 83-88.

Tsujino, Y. (2000). "A verification method for some GUI

ICSOFT 2018 - 13th International Conference on Software Technologies

646

 dialogue properties." Systems and Computers in Japan
31(14): 38-46.

Xie, Q. and A. M. Memon (2007). "Designing and
comparing automated test oracles for GUI-based
software applications." ACM TOSEM 16(1): 4.

Xie, Q. and A. M. Memon (2008). "Using a pilot study to
derive a GUI model for automated testing." ACM
TOSEM 18(2): 7.

Yang, W., Z. Chen, et al. (2014). "GUI testing assisted by
human knowledge: Random vs. functional." Journal of
Systems and Software 89: 76-86.

Ye, M., B. Feng, et al. (2007). "Automated oracle based on
multi-weighted neural networks for gui testing."
Information Technology Journal 6(3): 370-375.

Yuan, X., M. B. Cohen, et al. (2011). "GUI interaction
testing: Incorporating event context." IEEE
Transactions on Software Engineering 37(4): 559-574.

Yuan, X. and A. M. Memon (2010). "Generating event
sequence-based test cases using GUI runtime state
feedback." IEEE Transactions on Software
Engineering 36(1): 81-95.

Yuan, X. and A. M. Memon (2010). "Iterative execution-
feedback model-directed GUI testing." Information and
Software Technology 52(5): 559-575.

Revisiting the Notion of GUI Testing

647

