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Abstract: This paper describes a nurse scheduling in Japanese standard general hospitals. In the standard general hospital
in Japan basically three shift system is adopted for nurses working in there. We have compiled evaluations of
the monthly nurse schedule into twelve penalty functions in the past work. These twelve penalty functions are
translated to twelve objective functions in this paper. The nurse scheduling with twelve objective functions
is solved as a multi-objective optimization problem by means of NSGA-II. The optimization is insufficient
when NSGA-II is applied to such an optimization problem with four or more objective functions, known as a
many-objective optimization problem. One method for reducing this problem is a technique based on Pareto
partial dominance. In this technique, the partial non-dominated sorting is executed by using a subset selected
from all objective functions. In the conventional technique, the schedule of subset size over optimization has
to be prepared beforehand in the form of a list. Moreover, the selection list brings a great influence on the
result of optimization. Creating such a selection list is a heavy burden for the user. This paper proposes a
technique of NSGA-II based on Pareto partial dominance with a linear subset-size scheduling. By embedding
the subset-size scheduling into the algorithm, the user, namely the chief nurse, is released from the designing
of the selection list.

1 INTRODUCTION

General hospitals consist of several sections such as
the internal medicine department and the pediatrics
department. Each section is organized by about fifty
to thirty nursing staffs. A section manager constitutes
a roster, or a shift schedule, of all nurses of her/his
section every month. In our interviewing research to
the actual hospitals (Ohki et al., 2006; Uneme et al.,
2008) , we found that the manager considers more
than fifteen requirements for the scheduling. Such
the schedule arrangement, in other words, the nurse
scheduling, is a very complex task. In the interview,
even a veteran manager usually spends 1 or 2 weeks
to complete nurse scheduling. Moreover, the schedule
obtained after such hardships is not always satisfac-
tory. This means a great loss of work force. There-
fore, computer software for the nurse scheduling has
been recently come to require in the general hospi-
tals (Goto et al., 1993; Berrada et al., 1996; Ikegami,
2001; Burke et al., 2001a; Burke et al., 2001b; Kawa-
naka et al., 2002; Itoga et al., 2003; Ohki et al., 2006;
Uneme et al., 2008; Ohki, 2012).

In fact, the nurse schedule is still made by the hand
of a manager or a chief nurse in many general hospi-
tals. In our survey (Ohki et al., 2006; Ohki, 2012),
many general hospitals does not do the nurse sche-
duling using a commercial software, even when they
have purchased it at high price. This is because the
purchased software gives unsatisfactory optimization
results and that it is very complicated to set and dif-
ficult to use. So that many interactions to correct the
schedule are also very complex for the user.

As a result of interviewing at many general hospi-
tals, twelve evaluation functions are defined for the
nurse scheduling. That is, the nurse scheduling is
a multi-objective optimization problem (MOP). This
paper discusses a creation of the nurse schedule and
an optimization of it by means of multi-objective
evolutionary algorithm (MOEA). When creating the
nurse schedule, the only one constraint condition for
this problem is the degree of satisfaction of the num-
ber of nurses in each work shift. This constraint is
invalidated by restricting a crossover operator and a
mutation operator proposed in this paper. Thus, the
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nurse scheduling is defined as an unconstrained multi-
objective optimization problem.

Although NSGA-II is well-known as one of ef-
fective optimizing frameworks for MOP, it is also
known that the ability of optimization significantly
decreases for the problem with 4 or more ob-
jective functions (Aguirre and Tanaka, 2007; Tsu-
chida et al., 2009; Sato et al., 2006), in ot-
her words, many-objective optimization problem
(MaOP)(Hughes, 2005). This paper focuses NSGA-
II based on Pareto partial dominance (Brockhoff and
Zitzler, 2006; Sato et al., 2010) for MaOP. Since
NSGA-II based on Pareto partial dominance requires
a scheduling list of the size of the target subset se-
lected from all objective functions beforehand. Since
the selection list for Pareto partial dominance largely
affects the quality of the optimization, it is very diffi-
cult to prepare by the user. Therefore, this paper pro-
poses a technique to automatically schedule the sub-
set size for Pareto partial dominance. By means of
the proposed technique the user is not only released
from creation of the selection list, but also obtain an
effectively optimized nurse schedule.

2 MANY OBJECTIVE NURSE
SCHEDULING

Many nurse organizations of the general hospitals in
Japan are operated according to the three shift system,
including a day shift, an evening shift and night shift.
About twenty to thirty nurses belong to each depart-
ment of the general hospital. The chief of each de-
partment creates a monthly nurse schedule as shown
in Fig1. The schedule shown in Fig1 is treated as an
individual to be optimized with NSGA-II in this pa-
per. The training, the meeting and the requested ho-
liday is called a fixed work and treated as a shift that
can not be modified.

Figure 1: A monthly nurse schedule, where ni denotes the i-
th nurse, d j denotes the j-th day, and D, E, N, T, M, H and R
denotes the daytime shift, the evening shift, the night shift,
a training, a meeting, a holiday and a requested holiday.

The schedule, in other words, the individual
of NSGA-II, is evaluated by the following penalty
functions.

p1i: work load to the nurse i given by evaluation of
each consecutive three shifts

p2i: concentration to the nurse i of the evening shift
and the night shift.

p3i: appearance of specific prohibited shift patterns
for the nurse i.

p4i: excess or shortage of the holiday number of the
nurse i.

p5i: excess or shortage of the evening shift and the
night shift for the nurse i.

p6i: excess number of days of consecutive shifts for
the nurse i.

p7 j: nursing level in the day shift of the day j.

p8 j: nursing level in the evening shift of the day j.

p9 j: nursing level in the night shift of the day j.

p10 j: compatibility among nurses during the night
shift of the day j.

p11 j: the number of new nurses at the night shift of
day j.

p12 j: absence of more than veteran at the day shift
and the night shift of day j.

These penalty functions are detailed in (Ohki, 2012) .
Objective functions for MOP are defined by the follo-
wing equation by using these penalty functions.

fk =





1

1+
N

∑
i=1

Pki

, k = 1,2, · · · ,6

1

1+
D

∑
i=1

Pk j

, k = 7,8, · · · ,12

(1)

In general, MOP is a problem which finds solu-
tions that maximizes the objective function vector,
where the solution x satisfies constraint conditions, S,
as follows.
{

maximize f(x) = [ f1(x), f2(x), · · · , fm(x)]T
subject to x ∈ S (2)

Satisfaction of the number of necessary nurses for
each shift on each day is the only constraint condi-
tion in the nurse scheduling treated in this paper. By
performing initial population generation and mating
operators as described below, the number of nurses
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assigned to each shift on each day is unchanged du-
ring the optimization. Therefor, the constraint condi-
tion is invalidated, and the nurse scheduling problem
is defined as the following unconstrained MOP.

maximize f(x) = [ f1(x), f2(x), · · · , fm(x)]T (3)

where m = 12.
First of all in the initialization, the fixed works are

placed onto the schedule. When the individuals of the
initial population is generated, the meeting and the
training is transformed to the day shift, and the reque-
sted holiday is transformed to the holiday. Taking a
look each day, in consideration of these fixed work
arrangements, one of the day shift, the evening shift
nor the night shift is randomly assigned to the nur-
ses unassigned with the fixed work so as to satisfy the
number of nurses assigned for each shift.

In the mating, a crossover operator and a muta-
tion operator are performed as shown in Figs.2 and
3. For each day, the crossover operator decides which
parent to extract the shift from. Since the fixed works
are assigned to the same place in either parent, they
are copied to a child. Then the shift of the nurse who
is not assigned fixed work is selected from a decided
parent and copied to a child. On the other hand, the
mutation operator selects two nurses and a day. Now,

Figure 2: Crossover operator.

Figure 3: Mutation operator.

two shifts have been selected. If one of them or both
have the fixed work, two nurses and a day is selected
again. If both are not fixed work, both are exchan-
ged. In the mating, few child individuals are gene-
rated with a low probability using only the mutation
operator, and remaining most child individuals are ge-
nerated using the crossover operator. Furthermore,
the mutation operator is applied with a low probability
to child individuals generated by the crossover opera-
tor. These mating operators always generate the indi-
vidual satisfying the number of necessary nurses for
each shift on each day. Therefor, the nurse scheduling
shown in this paper has no constraint condition.

Now, we are facing to the nurse scheduling pro-
blem (NSP), which is a multi-objective symbol matrix
optimization problem, with twelve objective functi-
ons. First, we consider applying NSGA-II as shown
in Fig.4 to this MOP. NSGA-II applies non-dominated
sorting (ND sorting) to the population Q, and the
individuals are classified to several ranked subsets,
F1,F2,F3, · · · . While not exceeding the size of the
parent set P, the individuals of each subset are moved
to the parent set in order. Individuals of the subset
that exceeds the size of the parent set is sorted using
crowding distance (CD sorting) and moved to the pa-
rent set. The individuals not selected are culled. The
mating operators generates the child set C from the
parent set P by using the crossover and mutation ope-
rators.

3 SUB-SET SIZE SCHEDULING
FOR PARETO PARTIAL
DOMINANCE

Although NSGA-II, shown in Fig.fig:NSGA-II,
successfully solves the multi-objective optimization
problem with three or fewer objective functions, as
the objective functions increases to four or more, the
performance of the optimization gradually decreases.
When NSGA-II is applied to the optimization pro-
blem having many objective functions, since the num-
ber of the objective functions is large, the superiority
/ inferiority relationship is difficult to decide among
the individuals of the population. As a result, most
individuals belong to the 1st front set, F1. Then, the
individuals are ranked only by CD sorting, not ND
sorting, and the selection pressure drops remarkably.

In this paper, NSGA-II based on Pareto partial do-
minance (Sato et al., 2010) (PPD-NSGA-II) is app-
lied to the nurse scheduling having twelve objective
functions. PPD-NSGA-II takes out from all m ob-
jective functions and performs ND sorting only with
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Figure 4: NSGA-II, where g denotes a generation cycle.

Figure 5: NSGA-II based on Pareto partial dominance.

these r objective functions as shown in Fig.5. PPD-
NSGA-II takes r objective functions out from all m
objective functions and performs ND sorting only
with these r objective functions. This is an mCr ND
sorting in Fig.5. In contrast, ND sorting using all m
objective functions is shown as mCm ND sorting. The
mCm ND sorting is performed in Ig generation cycle.

PPD-NSGA-II requires a selection list for se-
lecting r objective functions. The contents of the se-
lection list greatly influence the optimization result.
On the other hand, the creation of the selection list is
a very troublesome and difficult task for the user, na-
mely the chief nurse. In order to solve this difficulty,
we propose a technique to simply schedule the para-
meter r, the subset size. PPD-NSGA-II treated in this
paper does not use the selection list for each Ig ge-
neration cycle, randomly selects the subset using the
parameter r given by the following equations.

r′ =
g ·m

G
+ rand int(2B+1)−B

r =





B , r′ < B
r′ , B 5 r′ < m
m , m 5 r′

(4)

where rand int(·) denotes a function returns a random
integer less than the argument, B denotes an integer

Figure 6: A simple subset-size scheduling for PPD-NSGA-
II. The possible value of the subset size r, which takes a
value in the colored range according to the generation g.

parameter less than m/2, and G denotes the final ge-
neration. Therefore, the parameter r is decided as
shown in Fig.6.

In PPD-NSGA-II, individuals having the same
contents as an individual already existing in the child-
ren, Ct , or the archive set, A, are generated and stored
by the mating, so that duplicates of individuals given
good evaluation increases within the population. If
the problem is relatively simple, individuals with the
same content frequently appear during the optimiza-
tion. The second improvement is killing such the in-
dividuals having the same contents of an individual
already existing in the children and the archive set af-
ter the mating. By setting the value of all objective
functions of such the individual to 0, the individual
are killed.

4 NURSE SCHEDULING IN
ACTUAL HOSPITAL

In order to verify the effectiveness of the proposed
technique, the nurse schedule is created and optimi-
zed based on the same information as the actual hos-
pital. This information represents the standard hos-
pital nurse organization in our country among the in-
formation obtained by our survey (Ohki et al., 2006;
Uneme et al., 2008) . In the nurse scheduling, the
number of nurses is 23, the number of days is 28. The
nurse schedule is optimized for 1,000,000 generati-
ons by NSGA-II. In this paper, we try to apply two
techniques, the conventional NSGA-II and the impro-
ved PPD-NSGA-II, to the nurse scheduling.

In this NSP handled in this paper, several objective
functions has saturated to a maximum number of 1.
These objective functions do not always saturate.

Fig.7 shows individual distribution on the f1—
f11 plane at the final generation. This figure shows
an example where PPD-NSGA-II has given dominant
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results compared to the conventional NSGA-II. This
means that focusing on these two objective functions
shows that PPD-NSGA-II has given dominant result.
The same results are obtained also in Figs.8 and 9.

Fig.10 shows individual distribution on the f2—
f3 plane at the final generation. In this figure, several
advantageous points overlap. In other words, when
focusing on these two objective functions, the conven-
tional NSGA-II and PPD-NSGA-II have given nearly
equivalent results. The same results are obtained also
in Figs.11 and 12.

Fig.13 shows individual distribution on the f1—
f7 plane at the final generation. This figure shows an
example where the conventional NSGA-II has given
dominant results compared to PPD-NSGA-II. This
means that focusing on these two objective functions
shows that the conventional NSGA-II has given do-
minant result. The same results are obtained also in
Fig.14.

Fig.15 shows individual distribution on the f9—
f11 plane at the final generation. In this figure, the
conventional NSGA-II is advantageous for the ob-
jective function f11 while PPD-NSGA-II is advanta-
geous for the objective function f9. Thus, we could
find many cases that superiority or inferiority can not
be distinguished by the objective function of interest.

Since 12 objective functions are defined in NSP
handled in this paper, as shown above, 2 objective
functions are necessary to select from 12 in order to
visualize the individual distribution . These 12 ob-
jective functions can be classified into 6 objective
functions related to the shift of each nurse and 6 ob-
jective functions based on evaluation on each work
day. Therefore, partial sums of the objective functi-
ons are defined as follows.

s1 =
6

∑
i=1

fi (5)

s2 =
12

∑
i=7

fi (6)

By using these partial sums, the transition of the indi-
vidual distribution is observed on the s1—s2 plane as
shown in Figs.16—24. In the optimization up to the
600 thousand generation, we can observe that the po-
pulation given by the both techniques gradually mo-
ves in the upper right direction. Especially in PPD-
NSGA-II, the population converges to the upper right
direction more quickly. After that, both populations
concentrate on the upper right part in the generation
of about 700 thousand. The reason for concentrating
like this is unknown. Although the population given
by the conventional NSGA-II then spreads again to

a wide range, the population given by PPD-NSGA-
II remains relatively dense afterwards. In the case of
using the conventional NSGA-II, no significant pro-
gress is observed in the optimization after the 800
thousand generation. On the other hand, in the case
of using PPD-NSGA-II, the optimization progressed
thereafter, and gives several excellent solutions in the
900 thousand generation. However, in the final gene-
ration of PPD-NSGA-II, each solution of the popula-
tion has been deteriorated. As one of the reason for
this result, it can be considered that the value of r of
PPD-NSGA-II is almost equal to m at the end of the
optimization.

Finally, in order to numerically compare the per-
formance of both, we consider on Norm (Sato et al.,
2006) value and Maximum Spread (MS) (Zitzler,
1999) value. These values are obtained by the fol-
lowing equations.

Norm(P OS) =

|P OS|
∑
j=1

√
m

∑
i=1

fi(x j)
2

|P OS| , (7)

MS(P OS) =√
m

∑
i=1

(
max|P OS|

j=1 fi(x j)−min|P OS|
j=1 fi(x j)

)2
, (8)

where P OS denotes the individuals of the first front
set at the final generation. These values obtained
by both are summarized in Table.1. PPD-NSGA-II
dominates to the conventional NSGA-II in terms of
the convergence property of the population to POS,
or Norm value. On the other hand, the conventional
NSGA-II is somewhat predominat with regard to the
diversity of the population at the final generation, or
MS value.

Table 1: Comparison of Norm value and MS value of the
population at the final generation.

NSGA-II PPD-NSGA-II
Norm 1.5589 2.1795
MS 2.9126 2.3970

5 CONCLUSION

This paper has treated the nurse scheduling in Ja-
panese standard general hospitals. Twelve objective
functions have been defined for the nurse scheduling.
The nurse scheduling problem is solved as a multi-
objective optimization problem by means of NSGA-
II in this paper. It is known that optimization is insuf-
ficient when NSGA-II is applied to an optimization
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Figure 7: Individual distribution on the
f1— f11 plane at the final generation.

Figure 8: Individual distribution on the
f2— f11 plane at the final generation.

Figure 9: Individual distribution on the
f3— f11 plane at the final generation.

Figure 10: Individual distribution on
the f2— f3 plane at the final genera-
tion.

Figure 11: Individual distribution on
the f3— f9 plane at the final genera-
tion.

Figure 12: Individual distribution on
the f4— f10 plane at the final genera-
tion.

Figure 13: Individual distribution on
the f1— f7 plane at the final genera-
tion.

Figure 14: Individual distribution on
the f5— f6 plane at the final genera-
tion.

Figure 15: Individual distribution on
the f9— f11 plane at the final genera-
tion.

problem with four or more objective functions. One
method for reducing this problem is a technique ba-
sed on Pareto partial dominance. PPD-NSGA-II is
applied to the nurse scheduling treated in this paper.

PPD-NSGA-II requires to receive the number r of
objective functions, or the subset size, to be selected
from all m objective functions in the form of a list in

advance. Moreover, this selection list has a great in-
fluence on the result of optimization. Creating such
a selection list is a heavy burden for the user and is
also substantially impossible. This paper has propo-
sed a technique of PPD-NSGA-II with linear subset-
size scheduling. By embedding the subset-size sche-
duling into the algorithm, the user, namely the chief
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Figure 16: Individual distribution on
the s1—s2 plane at the 100k-th gene-
ration.

Figure 17: Individual distribution on
the s1—s2 plane at the 200k-th gene-
ration.

Figure 18: Individual distribution on
the s1—s2 plane at the 400k-th gene-
ration.

Figure 19: Individual distribution on
the s1—s2 plane at the 500k-th gene-
ration.

Figure 20: Individual distribution on
the s1—s2 plane at the 600k-th gene-
ration.

Figure 21: Individual distribution on
the s1—s2 plane at the 700k-th gene-
ration.

Figure 22: Individual distribution on
the s1—s2 plane at the 800k-th gene-
ration.

Figure 23: Individual distribution on
the s1—s2 plane at the 900k-th gene-
ration.

Figure 24: Individual distribution on
the s1—s2 plane at the final generation.

nurse, is released from the designing of the selection
list.

In order to verify the effectiveness, the proposed
technique and the conventional NSGA-II have been
applied to the nurse scheduling problem. Although
the proposed method is somewhat inferior on the di-

versity of the population as compared with the con-
ventional NSGA-II, it is significantly effective on the
convergency of the population to the Pareto optimal
solution set.
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