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Abstract: This paper describes a technique on an optimization of tree-structure data, or genetic programming (GP), by
means of a multi-objective optimization technique. NSGA-II is applied as a frame work of the multi-objective
optimization. GP wreaks bloat of the tree structure as one of the major problem. The cause of bloat is that the
tree structure obtained by the crossover operator grows bigger and bigger but its evaluation does not improve.
To avoid the risk of bloat, a partial sampling (PS) operator is proposed instead to the crossover operator.
Repeating processes of proliferation and metastasis in PS operator, new tree structure is generated as a new
individual. Moreover, the size of the tree and a tree-structural distance (TSD) are additionally introduced into
the measure of the tree-structure data as the objective functions. And then, the optimization problem of the
tree-structure data is defined as a three-objective optimization problem. TSD is also applied to the selection
of parent individuals instead to the crowding distance of the conventional NSGA-II. The effectiveness of the

proposed techniques is verified by applying to the double spiral problem.

1 INTRODUCTION

A technique of genetic programming (GP)(Koza,
1992; Koza, 1994) is an algorithm to optimize struc-
tured data based on a genetic algorithm(Goldberg,
1989; Mitchell et al., 1996). GP is applied to various
fields such as program synthesis(David and Kroening,
2017), function generations(Jamali et al., 2017) and
rule set discoveries(Ohmoto et al., 2013). Although
GP is very effective for optimizing structured data,
it has several problems such as getting into a bloat,
inadequate optimization of constant nodes, being eas-
ily captured in local optimal solution area when ap-
plied to complicated problems. The main cause of
bloat is a crossover operator which exchanges par-
tial trees of parent individuals(Nordin et al., 1995;
Angeline, 1997; Angeline, 1998; De Jong et al.,
2001), where this paper focuses on the optimization
of tree-structure data by means of GP. Several tech-
niques to reduce the bloat have been proposed by im-
proving the simple crossover operation(Koza, 1994;
De Bonet et al., 1997; Miihlenbein and Paass, 1996;
Ito et al., 1998; Langdon, 1999; Francone et al.,
1999). Although these methods have successfully in-
hibited bloat to a certain extent, effective search has
not necessarily been performed. Moreover, there is
no theoretical basis that crossover is effective for op-
timizing the tree-structure data.
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Apart from reduction of the bloat, a search method
for optimizing the graph structure has been pro-
posed(Karger, 1995). Although this method is suit-
able for searching various structural data consisting
of nodes and branches, the algorithm is complicated
and the computation cost is high.

In this paper, we exclude the crossover operator
which is the cause of bloat in GP, and propose a par-
tial sampling (PS) operator as a new operator for GP
instead. In PS operator, first of all, a partial sample
of a partial tree structure is extracted from several in-
dividuals of a parent individual group by a prolifera-
tion. Next, the partial tree structure obtained by the
proliferation is combined with a new tree structure by
a metastasis. In this paper, two types of metastasis
are prepared for GP, one that depends on the origi-
nal upper node and the other that does not. Repeating
the proliferation and the metastasis regenerates a new
tree-structure data for the next generation.

In addition, in this paper, MOEA technique for
suppressing bloat and acquire many kinds of various
tree-structure data is applied for GP by adding the size
and the distance of the tree-structure data to the eval-
uation. One of the newly added objective functions
is the size of the tree-structure data. Furthermore, the
relative position of the target individual in the popu-
lation in terms of the tree-structural distance (TSD)
is also evaluated as an objective function. The tree-
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Figure 1: The initial proliferation in PS operator.

structure data optimization problem is formulated as
a three objective optimization problem by defining
these three objective functions.

NSGA-II(Deb et al., 2000; Deb, 2001) is applied
to this three objective optimization problem. In the
conventional NSGA-II, a crowding distance (CD) is
applied for ranking the front set overflowing from the
parent group. In optimizing the tree-structure data,
we can not maintain diversity of the population by fo-
cusing only on the value of the objective function and
storing the solution near the extreme solution. In this
paper, TSD is applied, instead of CD, for ranking the
front set overflowing from the parent group.

In order to verify the effectiveness, the proposed
technique and the conventional techniques is applied
to a double spiral problem (De Bonet et al., 1997;
Yang and Kao, 2000). The double spiral problem is a
classification problem containing two classes of point
sets arranged on a spiral shape to be classified with a
function. This problem is well known as one of dif-
ficult problem to solve with a neural network. In this
paper, GP obtains the classifying function composed
of the finite mathematical elements.

2 PARTIAL SAMPLING
OPERATOR FOR MATING

One of the main causes of bloat is the crossover oper-
ator generally applied in the conventional GPs, used
for regenerating a new tree-structure data. This pa-
per proposes to exclude the crossover operator from
the conventional GP and to apply PS operator for re-
generation of a new tree-structure data instead of the
crossover operator. The PS operator creates a new
tree-structure data by partially sampling tree struc-
tures from a parent individual and joining them to-
gether. This procedure is called a proliferation. The
proliferation is terminated according to the probabil-
ity, p;. Partially sampled subtree structures by the
proliferation are combined together by a metastasis.
Two types of the metastasis are prepared, one that de-

pends on the original upper node and the other that
does not. We call the the former as an upper node de-
pend metastasis and the latter as a random metastasis.

In the initial proliferation, a root node, 7; root, Of
an individual, indiv;, randomly selected from a parent
group P¢ is copied to a set Ngypiree as shown in Fig.1.
The initial proliferation is started from the root node,
Njroot> Of the individual, indiv;. In this example, the
starting root node contains an identification, A. Let
Necandidate D€ a set of all lower nodes under the node
of Ngubtree, Where that node is not selected as a node
of Ngubtree Yet. One node is randomly selected from
Ncandidate @and copied to Ngybiree. The proliferation ter-
minates according to the proliferation terminate prob-
ability, p¢, or when Ncandidaie = 0. When the prolif-
eration is terminated, the set Ngypiree thus obtained is
copied to Nyew, Where is a set of nodes as a new tree-
structure data. The set Ngypiree 1S initialized to 0. Fur-
thermore, the root node of the partial tree structure
Niew in the initial proliferation is randomly generated
in a low probability on the initial proliferation.

In the conventional GP with variable structure
length, small partial structures are assembled by an
regenerating operator, for example, crossover or mu-
tation, and these partial structures are combined to
generate a new tree-structure data of a large size(Poli
and Langdon, 1998; Poli et al., 2008). When the con-
ventional GP increases the average size of the tree-
structure data, the size of the partial structure also pre-
served for the next generation increases. Therefor, the
probability, p; is scheduled as follows.

1
0
= 1
P AverageSize(R¢)’ M
1 0
o+l ¢ o0y Succeed(P¢) L 0
Pt :(Pt_Pt) 1 +p, 2

0
Succeed(R$) P
where p? denotes the probability, py, at the initial gen-
eration, p¢ denotes the probability, p, at the g-th gen-
eration, R# denotes a population at the g-th genera-
tion, P8 C R# denotes the parent group at the g-th
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Figure 2: Outline of how a new tree structure is created by PS operator.

generation, AverageSize(-) denotes a function return-
ing the average size of the tree set, and Succeed(+)
denotes a function returning the average size of the
partial tree structure that the argument set takes over
from the previous generation. Scheduling the prob-
ability, p;, as shown above prevents the size of the
partial tree structure from explodingly increasing.

A partial tree structure is grown by applying one
of two kinds of metastasis to the partial tree struc-
ture obtained by the initial proliferation. One of two
kinds of metastasis is a random metastasis. The ran-
dom metastasis activates according to a metastasis se-
lection probability, pme. The other one metastasizes
depending on the upper node. The upper node de-
pend metastasis activates according to the probabil-
ity, 1 — pmer. The partial tree structure Npey shown
in the Fig.1 has three empty branched numbered as
1, 2 and 3. The branch 1 has the upper node A, and
the branches 2 and 3 have upper node D. Now, sup-
pose that the branch 1 is selected as a target of the
upper node depend metastasis. In the next prolifera-
tion, a node having the upper node A is selected from
the parent group, P8. On the other hand, if the ran-
dom metastasis is applied to the partial tree structure
Niew, the beginning node for the next proliferation is
randomly selected from the parent group, P%.

A new node is selected from the parent group, P8,
according to the decided metastasis type. This node
is not necessarily a root node. The proliferation is
started from the selected node again.

By repeating the proliferation and the metastasis,
new tree-structure data is generated as shown in Fig.2.
However, when the metastasis applied to only one
parent individual, or when a parent individual having
the same structure as the generated tree structure, the
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generated tree structure is eliminated and PS operator
is performed again. The terminal nodes are given as
a random number in a low probability, where this is
based on the conventional mutation idea.

3 MULTI-OBJECTIVE GENETIC
PROGRAMMING

Optimizing the tree-structure data based only on the
index of its own goodness brings problems that causes
bloat but also that the optimization is caught in a local
optimum region. Depending on the structure of the lo-
cal optimum region, the optimization stagnates, caus-
ing an illusion as if it were the ultimate optimal solu-
tion. To avoid the risk of such the problems, this pa-
per, therefor, proposes a technique to optimize based
on the size of the tree structure and TSD in the popu-
lation in addition to the index of the goodness of tree
structure.

In this paper, three objective functions are defined
as follows to be used for the multi-objective optimiza-
tion . An objective function according to the goodness
of an individual, indiv;, is described by the following
equation.

hy (indiv;) = performance(root;), 3)

where root; denotes a root node of the individual,
indiv;, and performance(root;) denotes a function that
returns value of the goodness of the tree structure be-
ginning from the root node, root;.

An objective function according to the size of tree
structure is defined by the following equation.

1

hy(indiv;) = ———,
2(indiv;) Size(root;)
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Figure 3: An example of giving weights to the tree structure
and TSD.

where Size(root;) denotes a function that returns the
number of the nodes of the tree structure beginning
from the root node, root;.

An objective function according to average of
TSD in the population is defined by the following
equation.

NPOP
Y Distance(root;, rooty),  (5)
Pop f—1

h3 (indivi) =

where Npop denotes the size of the population, and
Distance(root;, root;) denotes a function that returns
TSD between indiv; and indiv,. In order to calculate
TSD, weights are given to all the nodes of the tree
structured data by means of the following steps, when
the tree structured data is initially generated. An ex-
ample of giving weights to the tree structure is shown
in Fig.3.

(Step 1) Give weight 1 to the root node.

(Step 2) Assume that W is a weight given to the cur-
rent node.

(Step 3) Equally distribute weights to the lower nodes
of the current node so that the total is W /2.

Two tree structures are compared in order from
the root node to check conformity of both nodes as
shown in Fig.3. The distance, Distance(root;,rooty),
is initialized as zero. When different nodes are found
in the conformity comparison, the weight of that
node is added to the distance. The lower nodes
below this node are all ignored. Especially, when

non-dominated sorting parents

o B
[

i
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Figure 4: Conventional NSGA-II with CD.
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Figure 5: Modified NSGA-II with tree-structural distance.

children

the tree structures of both are completely different,
Distance(root;,root;) is given 1 as the maximum
value.

Now, we have defined the three-objective opti-
mization problem. NSGA-II shown in Fig.4 is applied
to solve this problem. NSGA-II selects parent indi-
viduals by using non-dominated sorting and ranking
with CD. Since tree-structure data is to be optimized
in this paper, CD based only on the value of the objec-
tive function does not necessarily bring the diversity
of the tree structure. Therefore, this paper propose
to use TSD when selecting parents from the rank set
overflowing from the parent group. A block chart of
the modified NSGA-II with TSD is shown in Fig.5.

4 DOUBLE SPIRAL PROBLEM

A double spiral problem is applied to verify an effec-
tiveness of the proposed techniques. The double spi-
ral problem is a problem of classifying two data sets
arranged in a spiral shape, and it is known as a prob-
lem that is difficult to solve even using neural net-
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works(De Bonet et al., 1997; Yang and Kao, 2000).
These two data sets are arranged as shown in Fig.6
and are to be classified by the following function f.

f(xay)>0 <~ ()C,y)GD],
f(x,y) <0 <= (x,y) €Dy, (6)
f(x,y)=0 <= FALSE,

where (x,y) denotes the coordinates of each point on
the two-dimensional plane, and D; and D, denote the
data sets expressed with the red crosses and the blue
circles shown in Fig.6 respectively. In this paper, the
case when f(x,y) = 0 is treated as classification fail-
ure at the point (x,y).

The following nodes are prepared as ele-
ments for constituting the classifying function f.
-nonterminal nodes: {4, —,*, <+, sin, cos, tan,ifltz}

-terminal nodes:  {x,y, constant}
where ifltz denotes a function with three arguments
representing a conditional branch as follows,

ifltz(a,b,c) 2 if a < 0 then b else c,
b < 0),
:{ (@ <0) )

¢ (otherwise).

In order to verify the effectiveness, the follow-
ing four combinations are applied to the double spi-
ral problem, combination of the conventional opera-
tors and CD (expressed as "CO+MU & CD”), com-
bination of the conventional operators and TSD (ex-
pressed as "CO+MU & TSD”), combination of PS
operator and CD (expressed as "PS & CD”) and
combination of PS operator and TSD (expressed as
“PS & TSD”). The conventional operators denotes
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X
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» XOOOooxXoX
O0 X x % X o X
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X

Figure 6: Arrangement of two data sets for double spiral
problem. The red cross denotes a point in the class D; and
the blue circle denotes a point in the class Dj.

114

o
# CO+MU & CD
03 ACO+MU & TSD
< B PSM & CD
_‘é}o.zs 20 O PSM & TSD
2
502 1O
k]
E A O
Z20.15
5 A
= A
z 2o o
O 01
& o
[
>
£0.05
O_oo
° :CD
0
0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

correct classification rate hy

Figure 7: Distribution on the hy-h; plane of the first front
set in the final generation when using each method.

the conventional crossover and the conventional mu-
tations(Koza, 1992; Koza, 1994; Ito et al., 1998;
Sawada and Kano, 2003). The size of the population,
the running generations, the number of points in the
double spiral problem are defined as 100, 1,000,000
and 190 respectively. The probability, pmet, for se-
lecting the type of the metastasis is set to 0.5, 0.25
and 0.75.

Fig.7 shows distributions on the h, — /1 plane of
the first-front set in the final generation. As shown by
Fig.7, NSGA-II with combining PS operator and TSD
has given the best solution set, distributed in the upper
right direction, in the widest range. The solutions ob-
tained by NSGA-II with combining PS operator and
CD has relatively high diversity but their evaluations
are not so good. NSGA-II with combining the con-
ventional operators and CD has given relatively good
solutions but their diversity is low. NSGA-II with
combining the conventional operators and TSD has
given the worst solution set with the lowest diversity.

Fig.8 shows a comparison of distribution on the
hs-h1 plane of the first front set in the final generation
when 3-objective and 2-objective optimizations are
executed by using the PS operator with ppe; = 0.50
and TSD for the ranking. Compared to the distribu-
tion of solutions given by 2-objective optimization,
the 3-objective optimization has acquired far better
solutions in wider range. When PS operator with
Pmet = 0.50 and CD are combined, the same result has
been obtained as shown in Fig.9. This shows an effec-
tiveness of multi-objective optimization of the tree-
structure data as proposed in this paper.
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Figure 8: Comparison of distribution on the /3-h; plane of
the first front set in the final generation when 3-objective
and 2-objective optimizations are executed by using the PS
operator with ppmer = 0.50 and TSD for the ranking.

0.35
@
03 @ 3-objective
@ 2-objective
~ 0.25 o
) 0.25 ° A l-objective
:3
ho
202 o)
c ®
9 0.15 @
S oo
R o o
= 0.1 [}
Q .0
% AA o Op
z 0.05 4 15.0
k= AA 00%
2 o2, A
A
0
0.65 0.75 0.85 0.95

correct classivication rate /,

Figure 9: Comparison of distribution on the hy-h; plane of
the first front set in the final generation when 3-objective
and 2-objective optimizations are executed by using the PS
operator with ppmer = 0.50 and CD for the ranking.

Norm (Sato et al., 2006) and Maximum Spread
(MS)(Zitzler, 1999) are applied for evaluation of each
method. Norm denotes a measure of the convergence
of the population to the Pareto front PF and is defined
by the following equation.

|PF] [ m
\TF\Z th X/

Norm(PF) =

Table 1: Values of Norm and MS as a result of three-
objective optimization given by each method. CO+MU de-
notes the conventional crossover operator and the conven-
tional mutation operators. PS denotes PS operator.

| operator | ranking [[ Norm [ MS |

CO+MU CD 0.820 | 1.110
TSD 0.795 | 1.100

PS CD 0.835 | 1.125

pa =0.25 TSD 0.835 | 1.125
PS CD 0.845 | 1.130
pa=0.50 | TSD 0.865 | 1.140
PS CD 0.825 | 1.110
pa=0.75 TSD 0.850 | 1.140

where X; denotes the j-th individual of the Pareto
front PF . The larger the Norm value, the closer the
approximate Pareto front PF. MS denotes a mea-
sure of the spread of the first front at the final gen-
eration(Zitzler, 1999) and is defined by the following
equation.

MS(PF) =

m 2
\/Z (max‘jiqlﬁ(xj) - min‘JiFl‘fi(xj)) . 9)
i=1

The larger the MS value, the wider the spread of the
population given by the optimization.

Table 1 shows values of Norm and MS given by
each method. CO+MU denotes when the conven-
tional crossover operator and the conventional muta-
tion operators are used for the mating, PS denotes PS
operator, and ppet = *. * * denotes when PS operator
with the metastasis selection probability, pmet, Which
is equal to *. * x is used for the mating. Fig.10 is a
graphical representation of the contents of Table 1. In
this figure, PSx. x * denotes when PS operator with the
metastasis selection probability, pmet, Which is equal
to *.** is used for the mating. Concerning both Norm
and MS values, the best result has been obtained by
the method using PS operator with ppe = 0.50 and
TSD. The results using PS operator have gathered in
the upper right of the figure, whereas the results using
the conventional crossover and the conventional mu-
tation have gathered in the lower left. This shows the
superiority of PS operator. On the other hand, the ad-
vantage of TSD has not been clearly shown by this ex-
periment. TSD have optimized relatively better only
when combined with PS operator. NSGA-II even with
TSD has given the worst results when combined with
the conventional operators. The reason for this result
is considered as that TSD has a low ability to pre-
serve extreme solutions as CD does. In the case of the
multi-objective optimization of the tree structure, the
ability to retain the diversity of tree structures like the
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Figure 10: Comparison of results by each method on MS-
Norm plane. CO+MU denotes when the conventional
crossover operator and the conventional mutation operators
are used for the mating. PSx. * x denotes when PS opera-
tor with the metastasis selection probability, pmer, which is
equal to *. x x, is used for the mating.

ranking with TSD is necessary, then an improvement
to add ability to preserve the extreme solutions like
CD should be considered.

5 CONCLUSION

In this paper, multi-objective optimization technique
have been applied to the optimization of the tree-
structure data, or GP. The size of the tree structure
and the tree structural distance (TSD) are addition-
ally introduced into the measure of the goodness of
the tree structure as the objective functions. Further-
more, the partial sampling (PS) operator is proposed
to effectively search the tree structure while avoiding
bloat. In order to verify the effectiveness of the pro-
posed techniques, they have applied to the double spi-
ral problem.

By means of the multi-objective optimization of
tree-structure data, we found that more diverse and
better tree structures are acquired. The proposed
method incorporating PS operator and TSD in NSGA-
II has given relatively good results. However, since
PS operator has low ability to numerically optimize
constant nodes of the tree structure, it has not well
worked effectively for the function optimization. In
addition, since ranking with TSD in NSGA-II has low
ability to preserve extreme solutions in the objective

116

function space, solutions not have been effectively se-
lected.

In the future, a technique to incorporate numeri-
cal optimization ability such as a particle swarm opti-
mization (Kenny, 1995) and the mutation to PS op-
erator and the ranking selection technique combin-
ing TSD and CD should be considered in the future.
The PS operator proposed in this paper has a mecha-
nism to terminate the proliferation, but does not have
no mechanism to forcibly exit from the PS operator.
Such the mechanism to forcibly exit from the PS op-
erator should be considered.
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