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Abstract: We perceive pleasant and unpleasant stimuli using different modality systems, such as visual and acoustic 
tactile and olfactory modalities. In our study we investigated the specificity of emotional perception in four 
modalities using EEG. 20 healthy participants were instructed to assess the stimuli using emotional scales. 
We used power spectrum density, alpha-peak frequency, wavelet analysis and method of "emotional spaces" 
for EEG data and DNN classifier for modality specific and non-specific classification of pleasant and 
unpleasant stimuli. We found, that difference of EEG power spectrum density and alpha-peak frequency 
between states of pleasant and unpleasant stimulation varied from one modality to another. Meanwhile, the 
above-stated differences were more similar between tactile and olfactory modalities and acoustic and visual 
modalities. the method of "emotional spaces" and DNN classification showed general, modality nonspecific 
features of pleasantness evaluation. 

1 INTRODUCTION 

The perception of emotionally charging stimuli is 
possible in variable sensory-specific systems: visual, 
auditory, olfactory and tactile, each of them should 
be accompanied by the different brain activity (Wu 
et al., 2018). Nevertheless, researchers reported, that 
the assessment of the "pleasantness" and 
"unpleasant" of stimuli should include sensory-non-
specific components (Grabenhorst et al., 2007). The 
aim of our study was to detect the modalities’ 
specific and non-specific features of emotional 
perception that could be used for the forehead 
classification. 

Some researchers previously reported about 
similar physiological mechanisms for assessing 
emotions in different modalities (Delplanque et al., 
2008).  One of these mechanisms could be related 
with the activation of the limbic system. The 
activation of the limbic system was shown to be 
accompanied with theta-rhythm activity (Lévesque 
et al., 2017), responsible for emotional perception in 
different sensation systems (Diao et al., 2017). Some 
authors reported, that the emotional perception of 
pleasant and unpleasant stimuli in visual modality 
has EEG specific delta- theta- rhythm PSD patterns 

(Iosilevich et al., 2012), which was higher for 
unpleasant stimulation. Moreover, higher alpha-
rhythm frequency during visual emotional 
perception was related with the predisposition to the 
prevalence of positive emotions (Tumyalis et al., 
2010). The emotional perception in tactile modality 
was also accompanied changes of the theta- and 
alpha-rhythm PSD (Monosova, 1994). The pleasant 
pleasurable feeling, induced by light pressure that 
excites C-tactile fibers, as was shown previously 
related with processing of the sensation in limbic 
cortical areas (McGlone et al., 2014, McGlown et 
al., 2012). 

The general mechanisms of emotional perception 
originate from asymmetry of pleasant and 
unpleasant emotions (Coan and Allen, 2004). The 
differential roles of left and right cortex for 
processing of pleasant and unpleasant emotional 
information was repeatedly reported (Fernandez-
Carriba et al., 2002). Resting EEG measures figure 
prominently in this literature. These studies have 
established differential roles of left and right 
prefrontal cortex (PFC) for processing pleasant and 
unpleasant emotional information, respectively.  For 
example, Loken and co-authors reported that 
pleasant tactile stimulation activate left anterior 
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insula, related with the processing of pleasant 
emotions (Loken et al., 2009).  

Thus, in our study we attempted to investigate 
both sensory specific and non-specific mechanisms 
of emotional reception and processing using 
innovation method of visualization of EEG patterns 
(Roik et al., 2014) and Deep neural network 
classifier, which was previously reported as effective 
tool to detect the emotional states using EEG data 
(Stuhlsatz  et al., 2011).  

2 METHODS 

2.1 Subjects 

20 healthy right-handed subjects participated in our 
study (9 male, 11 female, 30.2±2.7 years old). 
Exclusion criteria were:  menstrual cycle phase, use of 
oral contraceptives, previous neurological or 
psychiatric history, pregnancy, treatment with anti-
depressants and anxiolytics and high levels of anxiety 
or hostility during the examination (Spielberger et al., 
1970; Buss and Durkee, 1957). Peers have signed the 
informed consent for research document indicating 
willingness to participate in the study. 

2.2 Stimuli 

The experiment consisted of 4 series corresponded 
to 4 modalities. The quantity of stimuli varied 
depending on modality: 16 pictures from IAPS 
(Lang, 2008) (6 pleasant, 6 unpleasant, 4 neutral), 12 
sound (4 pleasant, 4 unpleasant, 4 neutral), 10 tactile 
stimuli (4 pleasant, 4 unpleasant, 2 neutral), 14 odors 
(5 pleasant, 5 unpleasant, 4 neutral). Participants 
assessed the pleasantness and arousal of stimuli both 
during EEG recording (by choosing bottom for most 
pleasant (9), neutral (5) and most unpleasant (1), the 
gradient was marked on keyboard (1-9)) and after 
the experiment using visual scale. Two stimuli (most 
pleasant and unpleasant) were selected for farther 
classification. All the stimuli’ presentation was 
randomized separately for each modality and repeated 
4 times for tactile and olfactory modalities (these 
stimuli were presented for 24 seconds) and 40 times 
for auditory and visual modalities (presented for 8 
seconds). The stimuli were presented using Presenta-
tion Software (Neurobehavioral Systems, USA). 

2.3 EEG Registration 

During the EEG recording the subjects sat in a 
comfortable position in an armchair in an 

acoustically and electrically shielded chamber. The 
participants were instructed to remain calm and to 
hear to the presented sounds (via earphones), watch 
the visual stimuli (presented in the monitor), smell 
the odors, and percept tactile stimuli avoiding falling 
asleep. The auditory olfactory and tactile stimuli 
were presented while the subject’s eyes were closed, 
to avoid visual interference. EEG was recorded 
using a recording device Neurotravel-24D (ATES 
Medica, Italy) with 32-channel Electro-Cap (USA).  
The amplifier bandpass filter was nominally set to 
1.6-30 Hz. The electrooculogram (EOG) was 
measured with AgCl cup electrodes placed 1 cm 
above and below the left eye, and the horizontal 
EOG was measured with electrodes placed 1 cm 
lateral from the outer canthi of both eyes.  The 
recording was separated on two datasets with 30-40 
minute interruption. 

2.4 Data Processing 

EEG intervals corresponding to a specific stimulus 
were concatenated. These epochs lasting about 300-
400 seconds were analyzed further. Eyes movement 
artifacts were cleaned out using EOG data by 
EEGLab. Small intervals affected by muscle activity 
were excluded (cut) manually using visual 
inspection. All the following processing was 
performed using EEGLab (Delorme and Makeig, 
2004) plugin for MatLab (Mathwork Inc.). The 
“emotional spaces” calculations were implemented 
on C# programming language by the lab’s engineer.   

2.5 Power Spectral Density 

Fast Fourier Transform (FFT) was used to analyze 
PSD.  The EEG spectrum was estimated for each 
310±6.8 seconds long interval. The resulting spectra 
were integrated over intervals of unit width in the 
range of interest (2-2.5Hz, 2.5-3 Hz … 19.5-20 Hz). 
We analyzed asymmetry of differences between 
pleasant and unpleasant stimuli over symmetric 
channels (F7-F8, F3-F4, FC5-FC6, T3-T4, C3-C4, 
CP5-CP6, T5-T6, P3-P4, O1- O2), the results were 
presented on figure 2. 

2.6 Variability of Rhythm  
(Wavelet SD) 

We applied mathematical method the Morlet 
wavelet (or Gabor wavelet). This is a complex 
exponential modulated by a Gaussian function 
which depends on a tunable parameter is related to 
the time and frequency resolutions (Tallon-Baudry 
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et al, 1996). We calculated the standard deviation for 
the intervals of unit width in the range of interest (2-
4Hz, 4-6 Hz, … 18 -20 Hz). 

2.7 Peak Alpha Frequency (PAF) 

PAF was taken as the frequency from range 8-13 Hz 
with maximal PSD. 

2.8 Emotional Spaces 

We used “cognitive space” construction method 
(Roik and Ivanitskii, 2013) to visualize how 
close/distant these emotional sound and background 
fragments are according to EEG data. As the stimuli 
in this study are emotional, the constructed space 
will be called “emotional” space. The method 
consists of the following steps (figure 1): 

1) EEG of each emotional sound and 
background fragments was divided into small 
non-overlapping epochs of 8 seconds 
(approx. 30-40 pieces). 

2) FFT (absolute value) was calculated for the 
epochs in 2-20 Hz band for electrodes (F3, 
F4, F7, F8,  FC5, FC6, T3, T4, T5, T6, CP5, 
CP6, P3, P4, C3, C4, O1, O2 international 
10–20 system) 

3) The distance between each pair of emotional 
stimuli was calculated: for each frequency 
bin two samples of FFT values (of the epochs 
of these fragments) were compared using 
Mann-Whitney U-test (p < 0.05). The 
distance was equal to the percentage of 
differing frequency bins.  

4) Emotional stimuli were placed onto a plane 
using multidimensional scaling method, 
namely Sammon projection (Sammon, 1969). 

  

Each type of modality is depicted using the shape 
the pleasant and unpleasant stimuli were depicted 
using color (see Figure 3 A). So, the distances 
between the stimuli types on the plane were as 
similar as possible to the distances calculated by 
FFT values. This similarity was always good enough 
to claim the projection is legit. 

5) The resulting pictures (obtained for each 
subject) have arbitrary rotation because of 
Sammon projection algorithm and different 
sizes because of high individuality of EEG. 
Before the averaging over group these 
pictures should be standardized. We used 
scaling to equalize the size (the sum of 
squared distances to the figures from the 
“center of mass”) and rotation/reflection so 
that pleasant visual stimulus (white rhomb) 
was on the top of the picture and the 
unpleasant and pleasant auditory stimuli 
(circles) were on the left and right sides 
correspondingly laying on a horizontal line. 

6) After standardization individual pictures are 
averaged over groups. So, these pictures 
show relational distances between emotional 
sounds based on how much the 
corresponding EEG data differ in terms of 
rhythms magnitudes. 

 

Figure 1: Steps of “Cognitive spaces” method. 

2.9 Statistical Analysis 

A one way ANOVA with Bonferroni correction for 
multiple comparisons, p < 0.05, were used to 
determine lateralization  effects on EEG metrics. We 
analyzed differences of EEG distances using 
Student's t-test to compare indices  for each stimulus 
(p < 0.05). The Pearson’s correlation coefficient 
between EEG indices and emotional assessments 
was calculated. Significant R values were used for 
further analysis (p < 0.05). 

2.10 Classifier 

The Deep neural network (DNN) and Extreme 
Learning Machines (ELM) was used for the 
classification of pleasant and unpleasant stimuli 
recognition using the EEG signals (Han, 2014; 
Tripathi, 2017). The testing sample was taken from 
the dataset 1 and then passed on to the trained 
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network. We had three data arrays, which contained 
from 32 different channels: power spectral density, 
alpha-peak frequency, and wavelet data. Wе 
prepared two datasets 

2.10.1  Dataset I 

EEG data was taken from a first part of study, when 
subjects assessed the pleasantness of different 
stimuli. After the first type of EEG study subjects 
assessed the stimuli using psychological scales. The 
most “pleasant” and “unpleasant” stimuli was 
selected using self-reported assessment and 
psychometric scales and divided in two groups: 
training and testing.  

The classifier was trained on two types of EEG 
data: 1) using most pleasant and unpleasant stimuli 
separately for different modalities (8 groups, 
sensory-specific) 2) using most pleasant and 
unpleasant stimuli averaged over all modalities (2 
groups, sensory-non-specific). 

2.10.2  Dataset II 

EEG datasets were taken from the second part of 
study, when subjects were instructed as previously. 
The tested EEG data contained pleasant and 
unpleasant stimuli with the similar emotional 
characteristics. The percentage of correct 
classification was measured for each subject 
separately. 

2.11 Emotional Assessment of Stimuli 

After the first part of the EEG registration subjects 
were instructed to assess stimuli using specially 
prepared questionnaire. The questionnaire included: 
specification of presented stimuli and several scaled, 
measuring emotional features (“Pleasantness”, 
“Fear”, “Arousal”, “Disgust” and etc.) Participants 
were instructed to indicate how the stimuli describe 
their affective state on a scale from 0 (“not at all”) to 
5 (“extremely”).  

3 RESULTS 

3.1 Power Spectral Density 

The rhythmic spectral activity of more ancient 
modalities (tactile and olfactory) was differed from 
more modern modalities (auditory and visual): the 
slow-wave rhythm PSD was lower and beta-rhythm 

BSD was higher for ancient sensory systems 
(p<0.05). 

The differences of PSD between pleasant and 
unpleasant stimuli showed significant asymmetry 
(Figure 2). In the right hemisphere we found 
significant differences of PSD between pleasant 
stimuli for each modality type. In the left 
hemisphere only visual and olfactory pleasant and 
unpleasant stimuli’ PSD had significant differences.  
The visual pleasant stimuli (compared to unpleasant) 
had lower delta-rhythm PSD in the left hemisphere 
and higher alpha-and beta-rhythm bilateral.  The 
auditory pleasant stimuli had lower delta and theta-
rhythm PSD and higher beta-rhythm in the right 
hemisphere. The tactile pleasant stimuli had higher 
alpha- and beta-rhythm in the right hemisphere. The 
olfactory pleasant stimuli had higher alpha- and 
beta-rhythm in the right hemisphere and lower beta-
rhythm in the left hemisphere. 

 
Figure 2: The differences of the PSD in the right (A) and 
left (B) hemisphere between pleasant and unpleasant 
stimuli. 

3.2 Alpha-peak Frequency 

The alpha-peak frequency was significantly higher 
for unpleasant stimuli compared to pleasant in the 
right central and temporal areas (C4, T4, F8, Cz, 
Pz). These differences were found for tactile, 
auditory and visual stimuli.  
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3.3 Wavelet Standard Deviation 

Significant differences were found only for visual 
stimuli. Standard deviation was significantly higher 
for pleasant visual stimuli: for theta- and delta-
rhythm in the right temporal areas (F8,T4,T6) and 
for the alpha- and beta-rhythm in the central and 
parietal areas (F8, F4, C4,Cz, C3 T4, T6, T5 Pz, P3, 
O1). 

3.4 Classification 

The results of sensory-specific and sensory non-
specific classification are presented in Table 1. 

Table 1: The percentage of correct classification (averaged 
over the group). 

DNN for 8 classes 

 Pleasant Unpleasant 

Visual 0.81±0.02 0.84±0.05 

Auditory 0.78±0.06 0.85±0.07 

Tactile 0.80±0.01 0.71±0.05 

Olfactory 0.88±0.04 0.89±0.03 

Sensory-non-specific   

DNN for 2 classes 

 Pleasant Unpleasant 

Visual 0.65±0.01 0.71±0.04 

Auditory 0.64±0.06 0.61±0.02 

Tactile 0.72±0.02 0.58±0.01 

Olfactory 0.69±0.03 0.76±0.05 

Sensory-non-specific 0.64±0.07 0.67±0.04 

3.5 Emotional Spaces 

EEG differences represent the both sensory-specific 
and sensory-non-specific differences between 
stimuli (Figure 3). The unpleasant stimuli for each 
modality were in the left side of the emotional space, 
compared to pleasant stimuli. The more ancient 
sensory systems were separated from the more 
modern sensory systems. EEG distances between 
pleasant and unpleasant stimuli positively correlated 
with the distances of emotional assessment by the 
scale “Pleasantness” (r>0.48, p<0.05). To calculate 
distances of emotional assessment we analyzed 
difference between scores of pleasant and unpleasant 
stimuli. 

 
Figure 3: A: “emotional spaces”, B: the subjective 
assessment of stimuli using scales “Arousal” and 
“Pleasantness”. 

4 DISCUSSION 

In our study we found that modern sensory systems 
(visual and auditory) had similar EEG patterns and 
differed from more ancient sensory systems 
(olfactory and tactile). In spite of a small amount of 
data, which analyzed emotional perception in four 
different modalities simultaneously, some 
researchers reported about similarity of the EEG 
rhythmic activity in alpha- and beta-bands between 
visual and auditory systems (Jessen and Kotz, 2011). 
These data correspond to our results showed similar 
beta-rhythm PSD between pleasant and unpleasant 
stimuli in visual and auditory modalities. 

We hypothesized that modality-independent 
mechanisms of emotional processing always 
accompany the emotional perception of pleasant and 
unpleasant stimuli; the results of our study seem to 
confirm this assumption. For example, we found the 
good level of classification accuracy trained on 
sensory-non-specific EEG distances. This modality-
independent difference between pleasant and 
unpleasant stimuli also could be visualized using 
“Emotional spaces” method. Other researchers also 
reported about modality non-specific emotional 
stimuli processing, which occurs when subjects 
solve tasks, presented in different sensory systems 
(Brosch, 2009). Previous research has demonstrated 
that emotions from faces and emotions from voices 
are also represented using similar mechanisms, for 
example, both types of emotional stimuli have been 
shown to be processed in the superior temporal 
sulcus (Haxby et al., 2002; von Kriegstein and 
Giraud, 2004). 

Our results also demonstrated the asymmetry of 
EEG changes during of emotional perception. This 
data is consistent with the previous studies reported 
about the brain asymmetry during processing of 
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pleasant and unpleasant stimuli and hypothesized 
that positive emotions correspond to the right 
hemisphere, and negative – to the left (Fernandez-
Carriba  et al., 2002). For example, the emotion-
modulated asymmetries, related with processing 
pleasant and unpleasant emotional information were 
found in the frontal cortex (Coan and Allen, 2004). 
The clinical EEG studies have shown that depression 
is associated with the greater activation of the right 
prefrontal cortex (Davidson et al., 2002), other 
researchers also reported about the higher activation 
of the right amygdala (Abercrombie et al., 1998). 
Furthermore, our results showed that most 
pronounced differences of the EEG between 
pleasant and unpleasant stimuli were found in the 
right hemisphere. Previously, a general right 
hemispheric advantage for emotion processing was 
reported (Martin and Altarriba, 2017; Kesler-West et 
al., 2001).  

5 CONCLUSIONS 

Visual and auditory sensory systems had similar 
EEG patterns and differed from olfactory and tactile 
sensory systems. The good level of classification 
accuracy trained on sensory-non-specific EEG 
distances was found. The advantage of the right 
hemisphere for emotional processing was found. The 
modality-independent difference between pleasant 
and unpleasant stimuli is primarily visualized with 
the “Emotional spaces” method. Further work is 
needed to be done with the increased number of 
healthy participants. Moreover, we are going to 
include the patients with emotional impairments in 
our study. The techniques used for classification 
should be extended to support reported findings  
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