
iArch-U/MC: An Uncertainty-Aware Model Checker

for Embracing Known Unknowns

Naoyasu Ubayashi, Yasutaka Kamei and Ryosuke Sato

Kyushu University, Fukuoka, Japan

Keywords: Model Checking, Uncertainty, Known Unknowns, Modular Uncertainty Representation, Partial Model, State

Explosion Problem.

Abstract: Embracing uncertainty in software development is one of the crucial research topics in software engineering.

In most projects, we have to deal with uncertain concerns by using informal ways such as documents, mailing

lists, or issue tracking systems. This task is tedious and error-prone. Especially, uncertainty in programming

is one of the challenging issues to be tackled, because it is difficult to verify the correctness of a program when

there are uncertain user requirements, unfixed design choices, and alternative algorithms. This paper proposes

iArch-U/MC, an uncertainty-aware model checker for verifying whether or not some important properties are

guaranteed even if Known Unknowns remain in a program. Our tool is based on LTSA (Labelled Transition

System Analyzer) and is implemented as an Eclipse plug-in.

1 INTRODUCTION

Embracing uncertainty in software development is

one of the crucial research topics in software engi-

neering. Garlan, D. discusses the future of software

engineering from the viewpoint of uncertainty (Gar-

lan, 2010). He argues that we must embrace un-

certainty within the engineering discipline of soft-

ware engineering. There are two kinds of uncertainty:

Known Unknowns and Unknown Unknowns (Elbaum

and Rosenblum, 2014). In Known Unknowns, there

are uncertain issues in the process of software de-

velopment. However, these issues are known and

shared among the stakeholders including developers

and customers. For example, there are alternative re-

quirements although it is uncertain which alternative

should be selected. On the other hand, in Unknown

Unknowns, it is uncertain what is uncertain. It is dif-

ficult to deal with Unknown Unknowns, because we

cannot predict the appearance of this kind of uncer-

tainty. In this paper, we focus on Known Unknowns

as the first research step.

It is important to systematically describe and ve-

rify a program if we have to embrace uncertainties in

the software development. Unfortunately, program-

ming under uncertainty is not yet appropriately sup-

ported. It would be preferable to be able to modu-

larize uncertain concerns and check whether the im-

portant properties concerning to the requirements and

designs are satisfied even if there are uncertain con-

cerns. We can continue the development if the pro-

perties hold, because the decision can be deferred.

To deal with this problem, we propose the design

and implementation of iArch-U/MC1, a model chec-

ker for verifying whether or not some important pro-

perties such as functionality and deadlock freedom

are guaranteed even if Known Unknowns remain in

a program. Using this uncertainty-aware model chec-

ker, we can postpone the decision for dealing with un-

certainty to the later software development phase if

the selection of uncertain alternatives does not affect

the correctness of the properties.

In this paper, we introduce a new programming

style to realize an uncertainty-aware model checking:

1) an interface mechanism for modular uncertainty re-

presentation based on partial model (Famelis et al.,

2012), a single model containing all possible alterna-

tive designs of a system; 2) type checker for guaran-

teeing the refinement simulation between an interface

and its source code; and 3) model checker for veri-

fying whether or not a partial model generated from

an uncertainty-aware interface satisfies an important

1The iArch-U (Watanabe et al., 2017) is an IDE (Integra-
ted Development Environment) for supporting uncertainty-
aware software development. The iArch-U/MC, one of the
iArch-U tool components, supports model checking. This
paper focuses on only the design and implementation of our
uncertainty-aware model checker.

176
Ubayashi, N., Kamei, Y. and Sato, R.
iArch-U/MC: An Uncertainty-Aware Model Checker for Embracing Known Unknowns.
DOI: 10.5220/0006889501760184
In Proceedings of the 13th International Conference on Software Technologies (ICSOFT 2018), pages 176-184
ISBN: 978-989-758-320-9
Copyright © 2018 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



property. Although model checking is performed at

the interface-level (an abstraction of the code), the

behavior of a program is also guaranteed in terms of

interface descriptions. The reason is that there is a si-

mulation relation between the interface and the code

if type checking is passed. Our approach can relax

the state explosion problem because of the combinati-

onal usage of interface-level model checking and type

checking. Our tool is implemented as an Eclipse plug-

in and supports uncertainty in Java programming.

This paper is structured as follows. We survey the

related work on uncertainty in Section 2. Section 3 in-

troduces an uncertainty-aware interface mechanism.

Section 4 shows our approach to type checking and

model checking. Section 5 shows the overview of

iArch-U/MC. We discuss on the originality and the ap-

plicability of our approach in Section 6. Concluding

remarks are provided in Section 7.

2 RELATED WORK

Recently, uncertainty has attracted a growing interest

among researchers. Most of the state-of-the-art stu-

dies focus on Known Unknowns. As a representa-

tive work, a method for expressing Known Unkno-

wns using partial model is proposed in (Famelis et al.,

2012; Famelis et al., 2015). A partial model is a single

model containing all possible alternative designs of a

system and is encoded in propositional logic. We can

check whether or not a model including uncertainty

satisfies some interesting properties. The idea of par-

tial model fits the needs in real software development

projects, because alternatives appearing in a software

design model or a source program can be represented

as a single model by using partial model. This partial

model is effective for a developer to manage uncer-

tainty in design and coding phases. For this reason,

our approach is based on partial model.

Perez-Palacin, D. and Mirandola, R. provide a

systematic review on uncertainty (Perez-Palacin and

Mirandola, 2014) and summarize as follows: The

most used definitions of uncertainty simply distin-

guish between natural variability of physical proces-

ses (i.e., aleatory or stochastic uncertainty) and the

uncertainties in knowledge of these processes (i.e.,

epistemic or state-of-knowledge uncertainty).

The state-of-the-art research themes spread over

uncertainty of requirements modeling, software ar-

chitecture, model transformations, programming,

testing, verification, and performance engineering.

In (Salay et al., 2013a), partial model is applied to

uncertainty in requirements to address the problem

of specifying uncertainty within a requirements mo-

del, refining a model as uncertainty reduces, provi-

ding meaning to traceability relations between models

containing uncertainty, and propagating uncertainty-

reducing changes between related models. In (Au-

tili et al., 2012; Esfahani et al., 2012; Esfahani et al.,

2013; Lago and Vliet, 2005), uncertainty is explored

in terms of software architecture. Letier, E et al. pre-

sent a support method for evaluating uncertainty, its

impact on risk, and the value of reducing uncertainty

in requirements and architecture (Letier et al., 2014).

In (Salay et al., 2013b), a method for change propa-

gation in the context of model uncertainty is propo-

sed. Most of these studies focus on epistemic uncer-

tainty. Uncertain< T >, a simple probabilistic pro-

gramming language for letting programmers without

statistics expertise easily and correctly compute with

estimates (Bornholt et al., 2014). Uncertain< T >
deals with aleatory uncertainty. Elbaum, S. and Ro-

senblum, D. S. explore how uncertainty affects soft-

ware testing (Elbaum and Rosenblum, 2014). Uncer-

tainty in self-adaptive systems is explored in (Cheng

and Garlan, 2007; Esfahani et al., 2011; Esfahani

and Malek, 2013; Perez-Palacin and Mirandola, 2014;

Whittle et al., 2010; Yang et al., 2014). Performance

and reliability analysis under uncertainty is explored

in (Devaraj et al., 2010; K. and S., 2003; Meedeniya

et al., 2011; Trubiani et al., 2013).

Uncertainty has been well studied in the field of

formal methods: PRISM (Hinton et al., 2006), a pro-

babilistic symbol model checker, can deal with ale-

atory uncertainty; and three-valued logic consisting

of True, False, and Undefined can represent epis-

temic uncertainty as in VDM (Vienna Development

Method) (Fitzgerald and Larsen, 1998). Unfortuna-

tely, it is not easy to check whether or not a program

behaves correctly at the source code level when there

are Known Unknowns, because there are many beha-

vioral possibilities in the program.

Although uncertainty is an important research is-

sue, uncertainty in programming and modular reaso-

ning has not been well explored. One of the reasons

why uncertainty cannot be dealt with in current pro-

gramming languages is that the state-of-the-art mo-

dule mechanisms do not regard an uncertain concern

as a first-class pluggable software module. If uncer-

tainty can be dealt with modularly, we can add or de-

lete uncertain concerns to/from code whenever these

concerns appear or disappear. Moreover, we can ve-

rify the correctness of a program modularly and effi-

ciently if uncertainty is represented modularly. In this

paper, we show an uncertainty-aware model checking

approach for modular reasoning.

iArch-U/MC: An Uncertainty-Aware Model Checker for Embracing Known Unknowns

177



[List 1]
01: interface component cPrinter {
02: public void get();
03: public void put();
04: public void print();
05: [public void utility();]
06: }
07:
08: interface component cScanner {
09: public void get();
10: public void put();
11: public void scan();
12: [public void utility();]
13: }
14:
15: interface component cCopyMachine {
16: public void copy();
17: }

18: interface connector cSystem (
19: cCopyMachine P, cCopyMachine Q,
20: cPrinter printer, cScanner scanner) {
21:
22: GET = (printer.get -> scanner.get);
23: PUT = (printer.put -> scanner.put);
24: COPY = (scanner.scan -> printer.print);
25:
26: P.copy = (GET -> COPY -> PUT -> P.copy);
27: Q.copy = (GET -> COPY -> PUT -> Q.copy);
28: }

[List 2]
01: interface connector uSystem
02: extends cSystem (
03: cPrinter printer, cScanner scanner) {
04:
05: GET = ({printer.get -> scanner.get,
06: scanner.get -> printer.get});
07: }

Figure 1: Archface-U Description (Printer-Scanner System).

3 MODULAR PROGRAMMING

FOR UNCERTAINTY

We adopt an interface mechanism to realize modular

programming for uncertainty. In this section, we in-

troduce the interface mechanism called Archface-U to

represent uncertainty based on partial model by refer-

ring our preliminary work (Fukamachi et al., 2015a;

Fukamachi et al., 2015b).

Archface-U, an abbreviation of architectural in-

terface for uncertainty, represents an abstract pro-

gram structure in terms of component-and-connector

architecture consisting of two kinds of interface: com-

ponent and connector. Figure 1 (Printer-Scanner Sy-

stem), a well-known parallel system that falls into

a deadlock (Magee and Kramer, 2006), is an exam-

ple of Archface-U descriptions. Two processes P and

Q acquire the lock from each of the shared resour-

ces, the printer and the scanner, and then releases

the locks. The symbols
{}

and
[]

represent alter-

native and optional, respectively. A component is

the same with ordinary Java interface. A connector,

which is specified using the notation similar to FSP

(Finite State Processes) (Magee and Kramer, 2006),

defines the message interactions among components.

In Archface-U, uncertain concerns are defined as a

sub interface as shown in List 2. By extending the

existing interface, we can introduce uncertainty mo-

dularly. The uSystem interface, an extension of the

cSystem interface, introduces uncertainty by over-

writing the existing GET message sequence. In List

2, it is uncertain how to acquire printer and scanner

Table 1: Checking Property on Partial Model (Famelis et al.,
2012).

ΦM ∧Φp ΦM ∧¬Φp Property p

SAT SAT Maybe

SAT UNSAT True

UNSAT SAT False

UNSAT UNSAT (error)

resources in two processes, P and Q. In the overwrit-

ten GET message sequence, there can be two alterna-

tives: printer.get → scanner.get and scanner.get →
printer.get. As shown here, uncertainty can be intro-

duced modularly without invading existing interfaces.

As shown in Figure 1, we can explicitly represent

Known Unknowns-type uncertainty using alternative

and optional language constructs. If a developer is

writing a program (currently, the target programming

language is Java) and he or she becomes aware of

the existence of uncertainty, the developer only has

to modify Archface-U as shown in List 2. The deve-

loper does not have to modify the original code, be-

cause the essential information containing uncertain

concerns is expressed in the Archface-U and the be-

havioral properties can be checked using only this in-

formation as explained in Section 4. If an uncertain

concern is fixed to certain, a developer only has to

delete the corresponding inheritance (List 2) and mo-

dify the original Archface-U (List 1) if needed. As

explained here, uncertainty can be managed at only

interface level and the original program code is not

basically affected. This is why we adopt an interface

mechanism to represent uncertainty modularly.

ICSOFT 2018 - 13th International Conference on Software Technologies

178



!"#"$%&" '(#)"$&

*(

+",

-./"0'1"230
456789%&6(#:

;(<6=.

;(<"90'1"236#>

?%)% 2(<" @"1%)",
2($$"2&9. ")"# 6=
8#2"$&%6#&. "A6,&,B

?%)%02(<"01%,0&(0,6789%&"0(#"0
(=00&1"0@"1%)6($%907(<"9,

C#2"$&%6#&.07%.02%8,"0@"1%)6($%90"$$($,B

D%$&6%90;(<"9

;(<6=.

Figure 2: Modular Reasoning for Known Unknowns.

4 MODULAR REASONING

BASED ON PARTIAL MODEL

Without modular reasoning about uncertainty, a deve-

loper has to rely on global reasoning to check whether

some properties are satisfied. In this section, we show

the Archface-U-based verification in details.

4.1 Uncertainty-aware Verification

We can use the verification power provided by partial

model. The behavioral correctness of a program is

guaranteed modularly using our compiler (type chec-

ker) and model checker. Figure 2 illustrates the ve-

rification process. The type checker based on the re-

finement calculus focusing on simulation checks the

conformance between Archface-U and its code. The

model checker verifies the behavioral properties such

as a deadlock by only using the information descri-

bed in Archface-U. Integrating type checker and mo-

del checker, we can verify behavioral properties at the

code level. ΦM and Φp in Table 1 (Famelis et al.,

2012) correspond to logical formula expressing a par-

tial model generated from Archface-U and the proper-

ties to be checked.

In this paper, we provide two types of true-

false decisions for a property p: 1) verified by type

checking; and 2) verified by model checking. Φp

corresponds to the consistency among code or user-

defined properties. When a property p is True, we can

continue to develop even if uncertainty exists. When

a property p is Maybe, we have to take care of the cor-

responding properties as a development risk. In other

cases, we have to reconsider the code.

4.2 Type Check

Uncertainty is a target of compilation. Our type chec-

ker verifies 1) whether a partial model ΦM generated

from Archface-U satisfies a property Φp such as con-

sistency; and 2) whether code is a subset of the partial

model ΦM (or whether code simulates one of the be-

havioral models contained in the partial model). It

is important that 1) is performed by only Archface-

U definitions. If code conforms to Archface-U in

terms of 2), Φp is also satisfied in the code. That

is, the verification of Φp results in modular interface

checking. All of the code files are needed for property

checking without an interface mechanism provided

by Archface-U. Fixing the inter-model/code inconsis-

tency is an important problem (Egyed et al., 2008).

Our approach can verify inconsistency among code

files by type checking even if uncertainty exists. For

example, our compiler generates an error message if

a method is defined in a component interface and its

call is not appeared in the connector interface.

In our compiler, Archface-U is translated into a

partial model as shown in Figure 2. The followings is

the algorithm for Archface-U containing Alternative

uncertainty.

iArch-U/MC: An Uncertainty-Aware Model Checker for Embracing Known Unknowns

179



1 32
C1

U1

U2

A

B

C2

Par�al Model

4

1 32
C1 U1 C2

4 1 32
C1 U2 C2

4

Merge

Model1 Model2

Alterna�ve

C1 -> {U1,U2} -> C2

Figure 3: Partial Model Generation (Alternative)

C1 -> [U1] -> C2

1 32
C1 U1

4

C2

1 2
C1

4

C2

U1

Par�al Model

Model1 Model2

Op�onal

1 32
C1

4

C2
C2

A
B

CD

Merge

Figure 4: Partial Model Generation (Optional).

STEP 1. Divide a connector interface including Al-

ternative to a set of connector interfaces repre-

sented by original Archface-U that does not con-

tain uncertainty. Each Archface-U description re-

presented by LTS (Labelled Transition System) is

translated into a state transition model. The upper

part of Figure 3 shows the result of transformation

in case of C1 → {U1,U2}→ C2. The number in

Figure 3 indicates a state.

STEP 2. State transition models generated in STEP

1 are merged into a state transition machine as

shown in the lower part of Figure 3. This state

transition model is a partial model. Mandatory

edges and nodes appeared in all state transition

models are represented by solid lines. Other non-

common edges and nodes are represented by das-

hed lines. After generating a partial model, it is

translated into logical formula.

The algorithm in case of Optional uncertainty is ba-

sically the same to the above algorithm as illustrated

in Figure 4. In case of C1 → [U1] → C2, this Opti-

onal uncertainty is translated into two state transition

models as shown in the upper part of Figure 4. This

procedure corresponds to STEP 1 in Alternative un-

certainty. After that, these two models are merged

into a state transition machine as shown in the lower

part of Figure 4. This procedure corresponds to STEP

2 in Alternative uncertainty. C2 is represented by two

dashed lines, because the source of transition C (state

Figure 5: Expansion of uncertain FSP.

number 3) is different from that of transition D (state

number 2).

4.3 Model Checking Embracing

Uncertainty

Behavioral properties represented by LTL can be au-

tomatically verified using existing model checkers.

In our uncertainty-aware model checker, LTSA (LTS

Analyzer) 2 is used as a model checking engine

because Archface-U is based on FSP supported by

LTSA. Optional and Alternative are translated into or-

dinary FSP descriptions as shown in Figure 5.

If a property is verified by LTSA and the type

check is successfully passed, the program satisfies the

property too. Although we used LTSA, our appro-

ach takes a standard approach and can be implemen-

ted with other popular off-the-shelf checkers such as

FDR (Failures Divergences Refinement) 3, a refine-

ment checker for the process algebra CSP (Commu-

nicating Sequential Processes).

4.4 Usage Scenario

We explain our verification process using a printer-

scanner system as an example. There are four pos-

sible resource acquisition sequences as shown in Fi-

gure 6. These cases are generated from a partial mo-

del described as Archface-U (List 2). Type check is

passed if the code simulates one of these sequences.

The Java code below (List 3) simulates the sequence

1 in Figure 6 and the type check is passed.

2http://www.doc.ic.ac.uk/ltsa/, Last accessed 19 April
2018.

3https://www.cs.ox.ac.uk/projects/fdr/, Last accessed 19
April 2018.

ICSOFT 2018 - 13th International Conference on Software Technologies

180



Figure 6: Partial Model and Java Program.

[List 3]
01: public class Printer implements uPrinter {
02: public void get() { ... };
03: public void put() { ... };
04: public void print() { ... };
05: }
06:
07: public class Scanner implements uScanner {
08: public void get() { ... };
09: public void put() { ... };
10: public void scan() { ... };
11: }
12:
13: public class CopyMachine
14: implements uCopyMachine {
15: public void copy() {
16: printer.get(); scanner.get();
17: scanner.scan(); printer.print();
18: methodX();
19: printer.put(); scanner.put();
20: }
21: }

As shown in Figure 2, each behavioral model of

a partial model is converted into the corresponding

FSP description. Behavioral properties represented

by LTL can be automatically verified using our mo-

del checker. If counterexamples are not generated by

our model checker, we can select any sequence (either

of 1, 2, 3, or 4 is OK). We can proceed development

even if uncertain concerns exist, because the code si-

mulating any sequence is correct. Of course, List 3

simulating the sequence 1 is correct. Unfortunately,

counterexamples are generated in case of the sequen-

ces 3 or 4 and these counterexamples show that the

acquisition order must be the same. We are notified

that uncertainty specified in Archface-U (List 2) may

cause a deadlock although the code (List 3) is correct.

We cannot embrace uncertainty in this scenario. We

should not modify List 3 but change List 2 to remove

the alternatives of get operation orders. After that,

We have to run the model checker again and confirm

that no counterexamples are generated. As explained

here, we can resolve uncertain concerns and make a

correct program before debugging and testing.

Our type checker consists of a partial model gene-

rator, a refinement verifier, and a consistency verifier.

The partial model generator creates a partial model, a

set of possible behavior models from FSPs containing

alternative and optional descriptions extended by

Archface-U. The refinement verifier checks whether

the code simulates one model included in the genera-

ted partial model. In List 3, a sequence printer.get →
scanner.get → scanner.scan → printer.print →
methodX → printer.put → scanner.put simulates the

sequence 1 (Figure 6) generated from the Archface-U

definitions (List 1 and 2). The call of methodX does

not violates an LTS defined by FSP in Lists 1 and

2. As a result, properties satisfied by the LTS are

also held in the code that passes compile check. The

consistency verifier checks the inconsistency not only

among Archface-U definitions but also among code

files. An error is generated if a method is defined in

a component interface and its call does not appear in

the connector interface. Our approach can verify the

inconsistency even if uncertainty exists.

Our compiler adds only type checking embracing

uncertainty to the original Java compiler. Compiled

code is executable, because Archface-U is just a con-

straint to the code. Program behavior is also guaran-

teed, because the code simulates just one of the pos-

sible models described in Archface-U.

4.5 State Explosion Problem

State explosion is a crucial problem when applying

model checking to a real project. Especially, it is dif-

ficult to apply model checking to source code even if

several tools such as CBMC (Bounded Model Chec-

ker for C and C++) 4 and Java Pathfinder 5 are already

provided. On the other hand, in our approach, model

4http://www.cprover.org/cbmc/, Last accessed 19 April
2018.

5https://github.com/javapathfinder/, Last accessed 19
April 2018.

iArch-U/MC: An Uncertainty-Aware Model Checker for Embracing Known Unknowns

181



!"#$%&#'()

*(+"%',-"./012

Figure 7: iArch-U/MC.

checking is performed in terms of only FSP descripti-

ons in Archface-U. Code is not the direct target of mo-

del checking. As a result, the number of states is re-

duced. Nevertheless, as repeatedly claimed, code can

be indirectly verified by the model checker if the code

conforms to its Archface-U via type checker. Our ap-

proach mitigates the problem of state explosion by in-

tegrating type checking with model checking.

5 TOOL IMPLEMENTATION

The iArch-U, an IDE for supporting uncertainty-

aware programming, consists of Java program editor,

uncertainty-aware compiler, uncertainty-aware model

checker, unit testing support, and Git-based uncer-

tainty management support. The iArch-U IDE is open

source software and its preliminary version can be do-

wnloaded from GitHub 6.

The iArch-U/MC, a new tool component for mo-

del checking, is implemented as an Eclipse plug-in as

shown in Figure 7. Figure 2 illustrates the overview

of our approach. As roughly explained in Section 4,

a partial model is generated from Archface-U definiti-

ons. Each behavioral model consisting the partial mo-

del is converted into the corresponding FSP descrip-

tion. Behavioral properties represented by LTL can be

6http://posl.github.io/iArch/, Last accessed 19 April
2018.

automatically verified using LTSA supporting FSP. If

a property is verified by a model checker and the type

check is successfully passed, the program satisfies im-

portant properties such as deadlock freedom. When a

property is True, we can continue to develop even if

uncertainty exists. Otherwise, we have to reconsider

the code. Using iArch-U/MC, we can explore which

uncertainty can be permitted by interactively modi-

fying not program code itself but Archface-U descrip-

tions and checking the behavioral correctness.

6 DISCUSSION

In this section, we discuss on the originality and the

applicability of our idea.

Someone might consider that Archface-U is simi-

lar to variability modeling in SPL (Ba̧k et al., 2014).

How different is our approach from SPL? If there is

no difference, we can deal with uncertainty by only

using SPL technologies. Indeed, uncertainty in struc-

tural aspects (a component interface in Archface-U)

can be represented by defining uncertain features in a

feature model. Although it is difficult to represent be-

havioral aspects of uncertainty (a connector interface

in Archface-U) in a feature model, there are studies

on behavioral variability (Classen et al., 2012; Ghezzi

and Sharifloo, 2011).

Our most important contribution is to introduce

ICSOFT 2018 - 13th International Conference on Software Technologies

182



the interface-based variability to the world of SPL.

As claimed in this paper, this interface enables the

valuable integration of code-conformance check via

type checker and model checking taking into account

abstraction. Only using current SPL technologies, it

is not easy to integrate important facilities mentioned

above. Moreover, our idea can be basically applied

to SPL by not limiting to variability in uncertain con-

cerns. Similarity to SPL comes from the characte-

ristics of Known Unknowns in which uncertainty is a

subset of variability.

Although the interface mechanism of Archface-U

can be applied to SPL, the process of SPL is different

from that of uncertainty-aware software development.

The former focuses on generating a product from a set

of features represented by optional and alternatives.

Product structure does not basically change through a

software development, although product regeneration

may occur several times to deal with small changes.

On the other hand, our approach focuses on the ma-

nagement of uncertainty frequently appearing or di-

sappearing in a software development. Product gene-

ration is out of scope. The main concern is to ve-

rify whether some important properties are guaran-

teed even if uncertainty exists and to decide whether

resolution of uncertainty can be postponed. For this

reason, modular reasoning realized by type checking

and model checking is important.

When modifying a large product, it is necessary

to impose constraints among alternatives because a

large number of checking for relatively complex sy-

stems would result in errors. It makes sense to ex-

tend the alternative and optional operators to in-

clude constraints. However, the number of constraints

might be overwhelming due to combinatorial explo-

sion. The lack of precision may indeed identify more

constraints than necessary in order to keep a sound

verification. This issue is our future work.

7 CONCLUSIONS

In this paper, we proposed iArch-U/MC, an

uncertainty-aware model checker for verifying

whether or not some important properties are guaran-

teed even if Known Unknowns remain in a program.

Our approach deals with epistemic uncertainty at the

program code level. As the next step, we plan to

integrate iArch-U/MC with LTSA-PCA (Probabilistic

Component Automata) (Rodrigues et al., 2014) to

support aleatory uncertainty.

ACKNOWLEDGMENTS

We thank Syunya Nakamura, Keisuke Watanabe, and

Takuya Fukamachi for their great contributions. They

were students of Naoyasu Ubayashi. This work

was supported by JSPS KAKENHI Grant Numbers

JP26240007.

REFERENCES

Autili, M., Cortellessa, V., Ruscio, D. D., Inverardi, P., Pel-
liccione, P., and Tivoli, M. (2012). Integration archi-
tecture synthesis for taming uncertainty in the digital
space. In Proceedings of the 17th Monterey Confe-
rence on Large-Scale Complex IT Systems: Develop-
ment, Operation and Management, pp.118-131.

Ba̧k, K., Diskin, Z., Antkiewicz, M., Czarnecki, K., and
Wa̧sowski, A. (2014). Clafer: Unifying class and fea-
ture modeling. In Software & Systems Modeling, De-
cember 2014, pp.1-35.

Bornholt, J., Mytkowicz, T., and McKinley, K. S. (2014).
Uncertain< t > : A first-order type for uncertain data.
In Proceedings of the 19th International Conference
on Architectural Support for Programming Languages
and Operating Systems (ASPLOS 2014), pp.51-66.

Cheng, S. W. and Garlan, D. (2007). Handling uncertainty
in autonomic systems. In Proceedings of the Interna-
tional Workshop on Living with Uncertainties (IWLU
2007).

Classen, A., Cordy, M., Heymans, P., Legay, A., and Schob-
bens, P. Y. (2012). Model checking software product
lines with snip. In International Journal on Software
Tools for Technology Transfer, 14(5), pp.589-612.

Devaraj, A., Mishra, K., and Trivedi, K. S. (2010). Uncer-
tainty propagation in analytic availability models. In
Proceedings of the Symposium on Reliable Distribu-
ted Systems (SRDS 2010), pp.121-130.

Egyed, A., Letier, E., and Finkelstein, A. (2008). Genera-
ting and evaluating choices for fixing inconsistencies
in uml design models. In Proceedings of the 23rd In-
ternational Conference on Automated Software Engi-
neering (ASE 2008), pp.99-108.

Elbaum, S. and Rosenblum, D. S. (2014). Known unkno-
wns: Testing in the presence of uncertainty. In Procee-
dings of the 22nd ACM SIGSOFT International Sym-
posium on Foundations of Software Engineering (FSE
2014), pp.833-836.

Esfahani, N., Kouroshfar, E., and Malek, S. (2011). Taming
uncertainty in self-adaptive software. In Proceedings
of the 8th Joint Meeting of the European Software En-
gineering Conference and the ACM SIGSOFT Sym-
posium on the Foundations of Software Engineering
(ESEC/FSE 2011), pp.234-244.

Esfahani, N. and Malek, S. (2013). Uncertainty in self-
adaptive software systems. In Software Engineering
for Self-Adaptive Systems II, volume 7475 of LNCS,
pp.214-238. Springer.

iArch-U/MC: An Uncertainty-Aware Model Checker for Embracing Known Unknowns

183



Esfahani, N., Malek, S., and Razavi, K. (2013). Guidearch:
Guiding the exploration of architectural solution space
under uncertainty. In Proceedings of the 35th Inter-
national Conference on Software Engineering (ICSE
2013), pp.43-52.

Esfahani, N., Razavi, K., and Malek, S. (2012). Dealing
with uncertainty in early software architecture. In
Proceedings of the 20th International Symposium on
the Foundations of Software Engineering (FSE 2012),
pp.21:1-21:4.

Famelis, M., Ben-David, N., Sandro, A. D., Salay, R., and
Chechik, M. (2015). Mu-mmint: an ide for model
uncertainty. In Proceedings of the 37th Internatio-
nal Conference on Software Engineering (ICSE 2015),
Demonstrations Track, pp.697-700.

Famelis, M., Salay, R., and Chechik, M. (2012). Partial
models: Towards modeling and reasoning with uncer-
tainty. In Proceedings of the 34th International Confe-
rence on Software Engineering (ICSE 2012), pp.573-
583.

Fitzgerald, J. and Larsen, G. P. (1998). Modeling Systems,
Practical Tools and Techniques in Software Develop-
ment. Cambridge University Press.

Fukamachi, T., Ubayashi, N., Hosoai, S., and Kamei, Y.
(2015a). Conquering uncertainty in java program-
ming. In Proceedings of the 37th International Con-
ference on Software Engineering (ICSE 2015), Poster
Track, pp.823-824.

Fukamachi, T., Ubayashi, N., Hosoai, S., and Kamei, Y.
(2015b). Modularity for uncertainty. In Proceedings
of the 7th International Workshop on Modelling in
Software Engineering (MiSE 2015), pp.7-12.

Garlan, D. (2010). Software engineering in an uncertain
world. In Proceedings of FSE/SDP Workshop on Fu-
ture of Software Engineering Research (FoSER 2010),
pp.125-128.

Ghezzi, C. and Sharifloo, A. M. (2011). Quantitative ve-
rification of non-functional requirements with uncer-
tainty. In Dependable Computer Systems, pp.47-62.

Hinton, A., Kwiatkowska, M., Norman, G., and Parker, D.
(2006). Prism: A tool for automatic verification of
probabilistic systems. In Proceedings of the 12th In-
ternational Conference on Tools and Algorithms for
the Construction and Analysis of Systems (TACAS
2006), pp.441-444.

K., G.-P. and S., K. (2003). Assessing uncertainty in relia-
bility of component-based software systems. In Pro-
ceedings of the 14th International Symposium on Soft-
ware Reliability Engineering (ISSRE 2003), pp.307-
320.

Lago, P. and Vliet, H. (2005). Explicit assumptions enrich
architectural models. In Proceedings of the 27th Inter-
national Conference on Software Engineering (ICSE
2005), pp.206-214.

Letier, E., Stefan, D., and Barr, E. T. (2014). Uncertainty,
risk, and information value in software requirements
and architecture. In Proceedings of the 36th Inter-
national Conference on Software Engineering (ICSE
2014), pp.883-894.

Magee, J. and Kramer, J. (2006). Concurrency: State Mo-
dels & Java Programs Second Edition. Wiley.

Meedeniya, I., Moser, I., Aleti, A., and Grunske, L. (2011).
Architecture-based reliability evaluation under uncer-
tainty. In Proceedings of the 7th International ACM
Sigsoft Conference on the Quality of Software Archi-
tectures (QoSA 2011), pp.85-94.

Perez-Palacin, D. and Mirandola, R. (2014). Uncertainties
in the modeling of self-adaptive systems: a axonomy
and an example of availability evaluation. In Procee-
dings of the 5th ACM/SPEC International Conference
on Performance Engineering (ICPE 2014), pp.3-14.

Rodrigues, P., Lupu, E., and Kramer, J. (2014). Ltsa-pca:
Tool support for compositional reliability analysis,.
In ICSE Companion 2014 Companion Proceedings of
the 36th International Conference on Software Engi-
neering (ICSE 2014), pp.548-551.

Salay, R., Chechik, M., Horkoff, J., and Sandro, A. D.
(2013a). Managing requirements uncertainty with
partial models. In Requirements Engineering, Volume
18, Issue 2, pp.107-128.

Salay, R., Gorzny, J., and Chechik, M. (2013b). Change
propagation due to uncertainty change. In Procee-
dings of the 16th International Conference on Fun-
damental Approaches to Software Engineering (FASE
2013), pp.21-36.

Trubiani, C., Meedeniya, I., Cortellessa, V., Aleti, A., and
Grunske, L. (2013). Model-based performance analy-
sis of software architectures under uncertainty. In Pro-
ceedings of the 9th International ACM Sigsoft Confe-
rence on the Quality of Software Architectures (QoSA
2013), pp.69-78.

Watanabe, K., Ubayashi, N., Fukamachi, T., Nakamura,
S., Muraoka, H., and Kamei, Y. (2017). iarch-u:
Interface-centric integrated uncertainty-aware deve-
lopment environment. In 9th International Workshop
on Modelling in Software Engineering (MiSE 2017),
pp.40-46.

Whittle, J., Sawyer, P., Bencomo, N., Cheng, B. H. C., and
Bruel, J. M. (2010). Relax: A language to address
uncertainty in self-adaptive systems requirement. In
Requirements Engineering, 15(2), pp.177-196.

Yang, W., Xu, C., Liu, Y., Cao, C., Ma, X., and Lu, J.
(2014). Verifying self-adaptive applications suffering
uncertainty. In Proceedings of the 29th International
Conference on Automated Software Engineering (ASE
2014), pp.199-210.

ICSOFT 2018 - 13th International Conference on Software Technologies

184


