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Abstract: This paper investigates deep classifier structures with stacked autoencoder (SAE) for higher-level feature 
extraction, aiming to overcome difficulties in training deep neural networks with limited training data in high-
dimensional feature space, such as overfitting and vanishing/exploding gradients. A three-stage learning 
algorithm is proposed in this paper for training deep multilayer perceptron (DMLP) as the classifier. At the 
first stage, unsupervised learning is adopted using SAE to obtain the initial weights of the feature extraction 
layers of the DMLP. At the second stage, error back-propagation is used to train the DMLP by fixing the 
weights obtained at the first stage for its feature extraction layers. At the third stage, all the weights of the 
DMLP obtained at the second stage are refined by error back-propagation. Cross-validation is adopted to 
determine the network structures and the values of the learning parameters, and test datasets unseen in the 
cross-validation are used to evaluate the performance of the DMLP trained using the three-stage learning 
algorithm, in comparison with support vector machines (SVM) combined with SAE. Experimental results 
have demonstrated the advantages and effectiveness of the proposed method.

1 INTRODUCTION 

In recent years, deep learning for feature extraction 
has attracted much attention in different areas such as 
speech recognition, computer vision, fraud detection, 
social media analysis, and medical informatics 
(LeCun et al.,  2015; Hinton and Salakhutdinov, 
2006; Najafabadi et al., 2015; Chen and Lin, 2014; 
Hinton et al., 2012; Krizhevsky et al., 2012; Ravì et 
al., 2017). One of the main advantages of deep 
learning due to the use of deep neural network 
structures is that it can learn feature representation, 
without separate feature extraction process that is a 
very significant processing step in pattern recognition 
(Bengio et al., 2013; Bengio, 2013). 

Unsupervised learning is usually required for 
feature learning such as feature learning using 
restricted Boltzmann machine (RBM) (Salakhutdinov 
and Hinton, 2009), sparse autoencoder (Lee, 2010; 
Abdulhussain and Gan, 2015), stacked autoencoder 
(SAE) (Gehring et al., 2013, Zhou et al., 2015), 
denoising autoencoder (Vincent et al., 2008, Vincent 
et al., 2010), and contractive autoencoder (Rifai et al., 
2011). 

For classification tasks, supervised learning is 
more desirable using support vector machines 
(Vapnik, 2013) or feedforward neural networks as 
classifiers. How to effectively combine supervised 
learning with unsupervised learning is a critical issue 
to the success of deep learning for pattern 
classification (Glorot and Bengio, 2010). 

Other major issues in deep learning include the 
overfitting problem and vanishing/exploding 
gradients during error back-propagation due to 
adopting deep neural network structures such as deep 
multilayer perceptron (DMLP) (Glorot and Bengio, 
2010; Geman et al., 1992).  

Many techniques have been proposed to solve the 
problems in training deep neural networks. Hinton et 
al. (2006) introduced the idea of greedy layer-wise 
pre-training. Bengio et al. (2007) proposed to train the 
layers of a deep neural network in a sequence using 
an auxiliary objective and then “fine-tune” the entire 
network with standard optimization methods such as 
stochastic gradient descent. Martens (2010) showed 
that truncated-Newton method has the ability to train 
deep neural networks from certain random 
initialisation without pre-training; however, it is still 
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inadequate to resolve the training challenges. It is 
known that most deep learning models are incapable 
with random initialisation (Martens, 2010, Mohamed 
et al., 2012, Glorot and Bengio, 2010b, Chapelle and 
Erhan, 2011). 
     Effective weight initialisation or pre-training has 
been widely explored for avoiding 
vanishing/exploding gradients (Yam and Chow, 
2000, Sutskever et al., 2013, Fernandez-Redondo and 
Hernandez-Espinosa, 2001, DeSousa, 2016, Sodhi et 
al., 2014). Using a huge amount of training data can 
overcome overfitting to some extent (Geman et al., 
1992). However, in many applications there is no 
large amount of training data available or there is 
insufficient computer power to handle a huge amount 
of training data, and thus regularisation techniques 
such as sparse structure and dropout technique are 
widely used for combatting overfitting (Zhang et al., 
2015, Shu and Fyshe, 2013, Srivastava et al., 2014). 

This paper investigates deep classifier structures 
with stacked autoencoder, aiming to overcome 
difficulties in training deep neural networks with 
limited training data in high-dimensional feature 
space. Experiments were conducted on three datasets, 
with the performance of the proposed method 
evaluated by comparison with existing methods. This 
paper is organized as follows: Section 2 describes the 
basic principles of the stacked sparse autoencoder, 
deep multilayer perceptron and the proposed 
approach. Section 3 presents the experimental results 
and discussion. Conclusion is drawn in Section 4. 

2 STACKED SPARSE 
AUTOENCODER, DEEP 
MULTILAYER PERCEPTRON, 
AND THE PROPOSED 
APPROACH 

2.1 Stacked Sparse Autoencoder  

An autoencoder is an unsupervised neural network 
trained by using stochastic gradient descent 
algorithms, which learns a non-linear approximation 
of an identity function (Abdulhussain and Gan, 2016, 
Zhou et al., 2015, Zhang et al., 2015, Shu and Fyshe, 
2013). Figure 1 illustrates a non-linear multilayer 
autoencoder network, which can be implemented by 
stacking two autoencoders, each with one hidden 
layer.  

 

 

Figure 1: Multilayer autoencoder. 

A stacked autoencoder may have three or more 
hidden layers, but for simplicity an autoencoder with 
just a single hidden layer is described in detail as 
follows. The connection weights and bias parameters 
can be denoted as 

] ; ; ;[ 2121 bbWvectorisedWvectorisedw = , 

where NKRW ×∈1
 is the encoding weight matrix, 

KNRW ×∈2
 is the decoding weight matrix, KRb ∈1  is the encoding bias vector, and NRb ∈2  is the 

decoding bias vector. 
For a training dataset, let the output matrix of the 

autoencoder be ],...,,[ 21 moooO = , which is 

supposed to be the reconstruction of the input matrix 

],...,,[ 21 mxxxX = , where Ni Ro ∈  and Ni Rx ∈  

are the output vector and input vector of the auto-
encoder respectively, and m is the number of samples. 
Correspondingly, let the hidden output matrix be 

],..., ,[ 21 mhhhH = , where Ki Rh ∈  is the hidden 

output vector of the autoencoder to be used as feature 
vector in feature learning tasks.  

For the ith sample, the hidden output vector is 
defined as 

( )11 bxWgh ii +=                         (1) 

and the output is defined by 

                          ( )22 bhWgo ii +=                          (2) 

where g(x) is the sigmoid logistic function (1  .ଵି((ݔ−) ݌ݔ݁+
For training an autoencoder with sparse 

representation, the learning objective function is 
defined as follows: 
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where p is the sparsity parameter, jp̂  is the average 

output of the jth  hidden  node,  averaged  over  all  the  
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samples, i.e., 
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and ߣ is the coefficient for L2 regularisation (weight 
decay), and ߚ is the coefficient for sparsity control 
that is defined by the Kullback-Leibler divergence:  
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The learning rule for updating the weight vector 
w  (containing W1, W2, b1, and b2) is error back-
propagation based on gradient descent, i.e., 

WgradW ⋅−=Δ η . The error gradients with respect to 

W1, W2, b1, and b2 are derived as follows respectively 
(Abdulhussain and Gan, 2016, Zhang et al., 2015): 
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where  ݃ᇱ(ܪ) = ∗.(ܪ)݃ [1 −  is the derivative [(ܪ)݃
of the sigmoid logistic function, TI ]1,...,1,1[=  is a 

one vector of size m and .* represents element-wise 
multiplication. 

2.2 Deep Multilayer Perceptron (DMLP) 

A deep multilayer perceptron is a supervised 
feedforward neural network with multiple hidden 
layers (Glorot and Bengio, 2010). For simplicity, 
Figure 2 illustrates a DMLP with 2 hidden layers only 
(There are usually more than 2 hidden layers). 

 

Figure 2: Deep multilayer perceptron (DMLP). 

2.3 Proposed Approach 

Training deep neural networks usually needs a huge 
amount of training data, especially in high-
dimensional input space. Otherwise, overfitting 
would be a serious problem due to the high 
complexity of the neural network model. However, in 
many applications the required huge amount of 
training data may be unavailable or the computer 
power available is insufficient to handle a huge 
amount of training data. With deep neural network 
training, there may also be local minimum and 
vanishing/exploding gradient problems without 
proper weight initialisation. Deep classifier structures 
with stacked autoencoder are investigated in this 
paper to overcome these problems, whose training 
process consists of the following three stages: 

1) At the first stage, unsupervised learning is 
adopted to train a stacked autoencoder with 
random initial weights to obtain the initial 
weights of the feature extraction layers of the 
DMLP. The autoencoder consists of N input 
units, an encoder with two layers of K1 and K2 
neurons in each hidden layer respectively, a 
symmetric decoder, and N output units. Figure 
3 illustrates its structure. 

2) At the second stage, error back-propagation is 
employed to pre-train the DMLP by fixing the 
weights obtained at the first stage for its feature 
extraction layers (W1 and W2). The weights of 
higher hidden layers and output layer for feature 
classification (W3, W4, and W5) are trained 
with random initial weights. Figure 4 illustrates 
how it works. 

3) At the third stage, all the weights of the DMLP 
obtained at the second stage are refined by error 
back-propagation, without random weight 
initialisation. Figure 5 illustrates how it works. 

In our experiment, three methods are compared. 
The first method, M1, is SVM (Vapnik, 2013) with 
the output of the SAE encoder as input, the second 
method, M2, is the pre-trained DMLP as shown in 
Figure 4, and the third method, M3, is the DMLP after 
refined-training as shown in Figure 5. Their 
classification performances are evaluated on several 
datasets. 
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Figure 3: Training stacked 
autoencoder (SAE). 

Figure 4: Pre-training DMLP with 
fixed W1 and W2 from SAE. 

Figure 5: Refined-training of the 
DMLP with initial weights from the 
pre-trained DMLP. 

 

3 EXPERIMENTAL RESULTS 
AND DISCUSSION 

3.1 Data Sets 

Three document datasets were used in the experiments. 
First, a phishing email dataset (http://snap.stanford. 
edu/data/) has 6000 samples from two classes (3000 
ham/non-spam and 3000 phishing), collected from 
different resources such as Cornel University and 
Enron Company. Second, the Musk dataset 
(http://archive.ics.uci.edu/ml/ datasets.html) has 6598 
samples from two classes (musk and non-musk). Third, 
a phishing technical feature dataset (http://khonji. 
org/phishing_studies) has 4230 samples from two 
classes (2115 phishing and 2115 non-phishing). 

The documents in these datasets were pre-
processed by tokenization, removing stop words such 
as ‘the’, numbers and symbols, which helps to 
produce a bag of words (BOW) as original features 
(George and Joseph, 2014). 

Term presence (TP) as weighting scheme was 
then applied to the words in the BOW to obtain 
numerical feature values (George and Joseph, 2014). 
The total numbers of features for phishing emails, 
Musk, and phishing technical feature datasets are 750, 
166, and 47 respectively.  

3.2 Experiment Procedure 

Each dataset was partitioned into a training set and         
a testing set. The training set was further partitioned 
into estimation set and validation set for k-fold cross-
validation  to   determine   the  optimal  or   appropriate  

network structure and hyper-parameter values (λ, β, p).  
The proposed method was evaluated with 

different number of hidden layers and different 
number of hidden neurons during cross-validation, 
and each testing set was only used once to evaluate 
the performance of the proposed method with the 
network structure trained using the hyper-parameter 
values chosen by the k-fold cross-validation.  

For a typical DMLP with 4 hidden layers, the 
numbers of hidden neurons in the first stage are K1 
and K2 respectively, and the numbers of hidden 
neurons in the second or third stage are K1, K2, K3, 
and K4 respectively. For training the SAE, 8 sets of 
hyper-parameters (λ, β, p) were validated, as shown 
in Table 1, which are around the suggested default 
values. 

3.3 Results 

1) Classification Accuracy: Tables 2-4 show the 
cross-validation classification accuracies of the three 
methods (M1, M2, and M3) with different hyper-
parameter values and different number of hidden 
neurons, on the three datasets respectively. Tables 5-
7 show the corresponding training and testing 
accuracies of the three methods with the appropriate 
network structure trained using the hyper-parameter 
values chosen by the cross-validation. Figure 6 
compares the three methods in terms of average 
training and testing accuracy. It can be seen from 
Figure 6 that the proposed three-stage learning 
algorithm for training deep classifier structures with 
SAE, i.e., the M3 method, achieved the highest 
accuracy, which have been proved to be statistically 
significantly better than other methods evaluated in the 
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experiment. From Figure 6 it can be seen that the 
proposed method (M3) has much smaller difference 
between testing accuracy and training accuracy than 
methods M1 and M2, which can be regarded as 
evidence of less serious overfitting in the proposed 

method. It can be concluded that DMLP with effective 
weight initialisation can achieve significantly better 
performance than the standard MLP, and it is evident 
that the deep classifier structures with stacked 
autoencoder can reduce overfitting. 

Table 1: Hyper-parameters for training the SAE. 

Hyper-
Parameters HP1 HP2 HP3 HP4 HP5 HP6 HP7 HP8 

L2W (λ) 0.001 0.001 0.001 0.001 0.001 0.01 0.1 0.5 

Sp. Re.  (β) 0 0 0 0 0 0 0 0 

Sp. Pr.   (p) 0.0005 0.005 0.05 0.5 1 1 1 1 

Table 2: Cross validation accuracy on the phishing emails dataset. 

             Hyper-Parameters 

Methods\ 
Network Structure 

HP 1 HP 2 HP 3 HP 4 HP 5 HP 6 HP7 HP8 Ave 
Acc. 

Max 
Acc. 

SVM, 20 features M1 54.2 53.7 56.6 48.6 86.7 52.8 58.7 53.1 58.0 86.7 
750-25-20-10-5-2 
750-25-20-10-5-2 

M2 88.7 88.9 86.8 89.8 87.9 88.9 87.1 88.4 88.3 89.8 
M3 88.5 89.9 89.3 90.1 89.7 90.2 88.9 88.5 89.5 90.3 

SVM, 25 features M1 51.6 76.3 89.2 62.2 47.4 77.7 54.3 49.1 63.4 89.2 
750-50-25-15-10-2 
750-50-25-15-10-2 

M2 89.4 88.1 89.2 88.3 89.7 91.6 84.1 89.6 88.7 91.6 
M3 91.7 90.6 89.3 91.1 90.5 90.5 90.9 92.4 90.7 92.4 

SVM, 35 features M1 70.1 53.2 55.8 83.3 67.4 54.6 52.5 65.6 62.8 83.3 
750-75-35-30-20-2 
750-75-35-30-20-2 

M2 88.1 88.2 88.8 88.9 88.5 88.4 88.9 89.2 88.6 89.2 
M3 89.2 90.1 89.2 89.1 88.9 89.3 90.2 90.2 89.5 90.2 

Table 3: Cross validation accuracy on the musk dataset. 

           Hyper-Parameters 

Methods\ 
Network Structure 

HP 1 HP 2 HP 3 HP 4 HP 5 HP 6 HP7 HP8 Ave 
Acc. 

Max 
Acc. 

SVM, 6 features M1 66.4 74.6 75.7 72.6 74.4 75.1 74.4 73.2 73.3 75.3 
166-8-6-4-3-2 
166-8-6-4-3-2 

M2 77.0 78.8 78.8 90.8 83.2 86.1 96.1 77.1 83.5 96.0 
M3 65.9 82.4 67.0 93.4 97.9 66.1 82.9 81.1 79.6 97.9 

SVM, 7 features M1 75.4 74.7 58.7 74.0 74.1 74.9 74.2 61.7 70.7 75.4 
166-10-7-5-3-2 
166-10-7-5-3-2 

M2 75.1 80.8 78.9 93.7 94.1 77.5 93.8 79.9 84.2 94.1 
M3 83.0 86.0 79.5 90.1 83.2 76.7 98.9 79.7 84.9 98.9 

SVM, 10 features M1 75.4 59.0 72.0 72.6 74.7 74.4 63.0 74.1 70.6 75.4 
166-15-10-8-6-2 
166-15-10-8-6-2 

M2 77.7 81.3 79.8 95.2 93.8 77.8 92.1 80.8 84.8 95.2 
M3 77.1 80.9 78.3 93.0 94.8 76.4 82.9 81.5 83.1 94.8 

Table 4: Cross validation accuracy on the phishing technical feature dataset. 

          Hyper-Parameters 

Methods\ 
Network Structure 

HP 1 HP 2 HP 3 HP 4 HP 5 HP 6 HP 7 HP 8 Ave 
Acc. 

Max 
Acc. 

SVM, 6 features M1 54.2 54.2 57.7 54.2 59.6 60.4 60.5 55.7 56.3 60.4 
47-8-6-4-3 M2 64.0 65.9 68.6 62.0 64.1 50.3 62.9 62.7 62.7 68.6 
47-8-6-4-3 M3 97.0 96.3 89.0 90.8 97.7 96.7 96.8 96.8 95.1 97.7 
SVM, 8 features M1  57.7 60.2 62.1 58.9 78.8 61.2 61.3 60.9 62.6 78.8 
47-15-8-7-5-2 M2 66.0 66.9 64.5 63.1 64.0 59.9 90.5 62.8 67.2 90.5 
47-15-8-7-5-2 M3 99.1 99.5 99.8 99.5 99.4 99.4 99.6 99.0 99.3 99.8  
SVM, 15 features M1 57.2 58.6 58.6 51.1 58.8 58.6 58.5 57.7 57.3 57.7 
47-30-15-10-6-2 M2 68.9 62.1 69.5 58.5 90.5 83.5 51.5 60.8 60.8 68.1 
47-30-15-10-6-2 M3 99.4 99.3 99.3 99.1 51.1 84.3 99.3 99.1 91.1 99.4 
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Table 5: Performance comparison on the phishing emails dataset. 

                
Methods 

Network Structure/ 
Hyper-Parameters 

Training Acc. Testing 
Acc. 

M1  SVM, 25 features 85.2% 75.1% 
M2 750-50-25-10-5-2/HP 6 90.7% 84.2% 
M3 750-50-25-10-5-2/HP 8 92.6% 88.4% 

Table 6: Performance comparison on the musk dataset. 

                    
Methods 

Network Structure/ 
Hyper-Parameters 

Training Acc. Testing 
Acc. 

M1 SVM, 7 features 87.3% 75.5% 
M2 166-10-7-5-3-2/HP 5 95.2% 81.6% 
M3 166-10-7-5-3-2/HP 7 98.1% 89.6% 

Table 7: Performance comparison on the phishing technical feature dataset. 

                   
Methods 

Network Structure/ 
Hyper-Parameters 

Training Acc. Testing 
Acc. 

M1 SVM, 8 features 84.3% 61.8% 
M2 47-15-8-7-5-2/ HP 7 83.1% 67.9% 
M3 47-15-8-7-5-2/ HP 3 99.8% 91.8% 

 

Figure 6: Comparison of the three methods in terms of average training and testing accuracy. 

2) Statistical Significance Test: In order to assess 
whether the performance differences among the 
methods are statistically significant, we applied T-
test, a parametric statistical hypothesis test, and the 
Wilcoxon’s rank-sum test, a non-parametric 
method, to determine whether two sets of accuracy 
data are significantly different from each other. The 
statistical tests were conducted on three paired 
methods (M3 vs M1, M3 vs M2, and M2 vs M1) in 
terms of testing classification accuracy. Tables 8 
and 9 show the p-values from these tests, which 
demonstrate that, in terms of classification 
performance, M3 significantly outperformed M1 
and M2, and M2 significantly outperformed M1. 
 
 

Table 8: Statistical test results (T-test). 

Methods for comparison p-value 

M3  vs. M1  6.9591e-05 

M3  vs. M2 0.0013 

M2  vs. M1 8.1148e-06 

Table 9: Statistical test results (Rank-sum). 

Methods for comparison p-value 

M3   vs.  M1 0.0345 

M3   vs.  M2 0.0576 

M2   vs.  M1 0.03241 
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4 CONCLUSIONS 

This paper investigates deep classifier structures 
with stacked autoencoder for higher-level feature 
extraction. The proposed approach can overcome 
possible overfitting and vanishing/exploding 
gradient problems in deep learning with limited 
training data. It is evident from the experimental 
results that the deep multilayer perceptron trained 
using the proposed three-stage learning algorithm 
significantly outperformed the pre-trained stacked 
autoencoder with support vector machine classifier. 
Also, it can be seen that the proposed method (M3) 
has much smaller difference between testing 
accuracy and training accuracy than methods M1 
and M2, which can be regarded as evidence of less 
serious overfitting in the proposed method. 
Preliminary experimental results have demonstrated 
the advantages of the proposed method. Further 
tests on this algorithm would be applied to deep 
neural networks with more layers and hopefully 
would beef up the performance of these networks. 
Also, tests with other applications would be 
conducted in future investigations. 
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