
Deep Classifier Structures with Autoencoder for Higher-level Feature
Extraction

Maysa I. A. Almulla Khalaf1,2 and John Q. Gan1
1School of Computer Science and Electronic Engineering, University of Essex,

Wivenhoe Park, CO4 3SQ, Colchester, Essex, U.K.
2Department of Computer Science, Baghdad University, Baghdad, Iraq

Keywords: Stacked Autoencoder, Deep Learning, Feature Learning, Effective Weight Initialisation.

Abstract: This paper investigates deep classifier structures with stacked autoencoder (SAE) for higher-level feature
extraction, aiming to overcome difficulties in training deep neural networks with limited training data in high-
dimensional feature space, such as overfitting and vanishing/exploding gradients. A three-stage learning
algorithm is proposed in this paper for training deep multilayer perceptron (DMLP) as the classifier. At the
first stage, unsupervised learning is adopted using SAE to obtain the initial weights of the feature extraction
layers of the DMLP. At the second stage, error back-propagation is used to train the DMLP by fixing the
weights obtained at the first stage for its feature extraction layers. At the third stage, all the weights of the
DMLP obtained at the second stage are refined by error back-propagation. Cross-validation is adopted to
determine the network structures and the values of the learning parameters, and test datasets unseen in the
cross-validation are used to evaluate the performance of the DMLP trained using the three-stage learning
algorithm, in comparison with support vector machines (SVM) combined with SAE. Experimental results
have demonstrated the advantages and effectiveness of the proposed method.

1 INTRODUCTION

In recent years, deep learning for feature extraction
has attracted much attention in different areas such as
speech recognition, computer vision, fraud detection,
social media analysis, and medical informatics
(LeCun et al., 2015; Hinton and Salakhutdinov,
2006; Najafabadi et al., 2015; Chen and Lin, 2014;
Hinton et al., 2012; Krizhevsky et al., 2012; Ravì et
al., 2017). One of the main advantages of deep
learning due to the use of deep neural network
structures is that it can learn feature representation,
without separate feature extraction process that is a
very significant processing step in pattern recognition
(Bengio et al., 2013; Bengio, 2013).

Unsupervised learning is usually required for
feature learning such as feature learning using
restricted Boltzmann machine (RBM) (Salakhutdinov
and Hinton, 2009), sparse autoencoder (Lee, 2010;
Abdulhussain and Gan, 2015), stacked autoencoder
(SAE) (Gehring et al., 2013, Zhou et al., 2015),
denoising autoencoder (Vincent et al., 2008, Vincent
et al., 2010), and contractive autoencoder (Rifai et al.,
2011).

For classification tasks, supervised learning is
more desirable using support vector machines
(Vapnik, 2013) or feedforward neural networks as
classifiers. How to effectively combine supervised
learning with unsupervised learning is a critical issue
to the success of deep learning for pattern
classification (Glorot and Bengio, 2010).

Other major issues in deep learning include the
overfitting problem and vanishing/exploding
gradients during error back-propagation due to
adopting deep neural network structures such as deep
multilayer perceptron (DMLP) (Glorot and Bengio,
2010; Geman et al., 1992).

Many techniques have been proposed to solve the
problems in training deep neural networks. Hinton et
al. (2006) introduced the idea of greedy layer-wise
pre-training. Bengio et al. (2007) proposed to train the
layers of a deep neural network in a sequence using
an auxiliary objective and then “fine-tune” the entire
network with standard optimization methods such as
stochastic gradient descent. Martens (2010) showed
that truncated-Newton method has the ability to train
deep neural networks from certain random
initialisation without pre-training; however, it is still

Khalaf, M. and Gan, J.
Deep Classifier Structures with Autoencoder for Higher-level Feature Extraction.
DOI: 10.5220/0006883000310038
In Proceedings of the 10th International Joint Conference on Computational Intelligence (IJCCI 2018), pages 31-38
ISBN: 978-989-758-327-8
Copyright © 2018 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

31

inadequate to resolve the training challenges. It is
known that most deep learning models are incapable
with random initialisation (Martens, 2010, Mohamed
et al., 2012, Glorot and Bengio, 2010b, Chapelle and
Erhan, 2011).
 Effective weight initialisation or pre-training has
been widely explored for avoiding
vanishing/exploding gradients (Yam and Chow,
2000, Sutskever et al., 2013, Fernandez-Redondo and
Hernandez-Espinosa, 2001, DeSousa, 2016, Sodhi et
al., 2014). Using a huge amount of training data can
overcome overfitting to some extent (Geman et al.,
1992). However, in many applications there is no
large amount of training data available or there is
insufficient computer power to handle a huge amount
of training data, and thus regularisation techniques
such as sparse structure and dropout technique are
widely used for combatting overfitting (Zhang et al.,
2015, Shu and Fyshe, 2013, Srivastava et al., 2014).

This paper investigates deep classifier structures
with stacked autoencoder, aiming to overcome
difficulties in training deep neural networks with
limited training data in high-dimensional feature
space. Experiments were conducted on three datasets,
with the performance of the proposed method
evaluated by comparison with existing methods. This
paper is organized as follows: Section 2 describes the
basic principles of the stacked sparse autoencoder,
deep multilayer perceptron and the proposed
approach. Section 3 presents the experimental results
and discussion. Conclusion is drawn in Section 4.

2 STACKED SPARSE
AUTOENCODER, DEEP
MULTILAYER PERCEPTRON,
AND THE PROPOSED
APPROACH

2.1 Stacked Sparse Autoencoder

An autoencoder is an unsupervised neural network
trained by using stochastic gradient descent
algorithms, which learns a non-linear approximation
of an identity function (Abdulhussain and Gan, 2016,
Zhou et al., 2015, Zhang et al., 2015, Shu and Fyshe,
2013). Figure 1 illustrates a non-linear multilayer
autoencoder network, which can be implemented by
stacking two autoencoders, each with one hidden
layer.

Figure 1: Multilayer autoencoder.

A stacked autoencoder may have three or more
hidden layers, but for simplicity an autoencoder with
just a single hidden layer is described in detail as
follows. The connection weights and bias parameters
can be denoted as

] ; ; ;[2121 bbWvectorisedWvectorisedw = ,

where NKRW ×∈1
 is the encoding weight matrix,

KNRW ×∈2
 is the decoding weight matrix, KRb ∈1 is the encoding bias vector, and NRb ∈2 is the

decoding bias vector.
For a training dataset, let the output matrix of the

autoencoder be],...,,[21 moooO = , which is

supposed to be the reconstruction of the input matrix

],...,,[21 mxxxX = , where Ni Ro ∈ and Ni Rx ∈

are the output vector and input vector of the auto-
encoder respectively, and m is the number of samples.
Correspondingly, let the hidden output matrix be

],..., ,[21 mhhhH = , where Ki Rh ∈ is the hidden

output vector of the autoencoder to be used as feature
vector in feature learning tasks.

For the ith sample, the hidden output vector is
defined as

()11 bxWgh ii += (1)

and the output is defined by

 ()22 bhWgo ii += (2)

where g(x) is the sigmoid logistic function (1 .ଵି((ݔ−) ݌ݔ݁+
For training an autoencoder with sparse

representation, the learning objective function is
defined as follows:

()
2

2

1 1

1 ˆ||
2 2

()
m K

j
i j

i i
KL p p

m
J Wsparse x o Wλ β

= =

= + +− 

(3)

where p is the sparsity parameter, jp̂ is the average

output of the jth hidden node, averaged over all the

IJCCI 2018 - 10th International Joint Conference on Computational Intelligence

32

samples, i.e.,

 
=

=
m

i

i
jj hmp

1

1ˆ (4)

and ߣ is the coefficient for L2 regularisation (weight
decay), and ߚ is the coefficient for sparsity control
that is defined by the Kullback-Leibler divergence:

() ()
jj

j p
ppp

ppppKL ˆ1
1log1ˆlogˆ|| −

−−+= (5)

The learning rule for updating the weight vector
w (containing W1, W2, b1, and b2) is error back-
propagation based on gradient descent, i.e.,

WgradW ⋅−=Δ η . The error gradients with respect to

W1, W2, b1, and b2 are derived as follows respectively
(Abdulhussain and Gan, 2016, Zhang et al., 2015):

1

21

/)(*.

)ˆ1
1

ˆ)((

WmXHg

Ip
p

p
pXOWgradW

T

T

jj

T

λ

β

+′









−
−+−+−= (6)

mIHg

Ip
p

p
pXOWgradb T

jj

T

/)(*.

)ˆ1
1

ˆ)(((21

′









−
−+−+−= β (7)

22 /))((WmHXOgradW T λ+−= (8)

 mIXOgradb /)(2 −= (9)

where ݃ᇱ(ܪ) = ∗.(ܪ)݃ [1 − is the derivative [(ܪ)݃
of the sigmoid logistic function, TI]1,...,1,1[= is a

one vector of size m and .* represents element-wise
multiplication.

2.2 Deep Multilayer Perceptron (DMLP)

A deep multilayer perceptron is a supervised
feedforward neural network with multiple hidden
layers (Glorot and Bengio, 2010). For simplicity,
Figure 2 illustrates a DMLP with 2 hidden layers only
(There are usually more than 2 hidden layers).

Figure 2: Deep multilayer perceptron (DMLP).

2.3 Proposed Approach

Training deep neural networks usually needs a huge
amount of training data, especially in high-
dimensional input space. Otherwise, overfitting
would be a serious problem due to the high
complexity of the neural network model. However, in
many applications the required huge amount of
training data may be unavailable or the computer
power available is insufficient to handle a huge
amount of training data. With deep neural network
training, there may also be local minimum and
vanishing/exploding gradient problems without
proper weight initialisation. Deep classifier structures
with stacked autoencoder are investigated in this
paper to overcome these problems, whose training
process consists of the following three stages:

1) At the first stage, unsupervised learning is
adopted to train a stacked autoencoder with
random initial weights to obtain the initial
weights of the feature extraction layers of the
DMLP. The autoencoder consists of N input
units, an encoder with two layers of K1 and K2
neurons in each hidden layer respectively, a
symmetric decoder, and N output units. Figure
3 illustrates its structure.

2) At the second stage, error back-propagation is
employed to pre-train the DMLP by fixing the
weights obtained at the first stage for its feature
extraction layers (W1 and W2). The weights of
higher hidden layers and output layer for feature
classification (W3, W4, and W5) are trained
with random initial weights. Figure 4 illustrates
how it works.

3) At the third stage, all the weights of the DMLP
obtained at the second stage are refined by error
back-propagation, without random weight
initialisation. Figure 5 illustrates how it works.

In our experiment, three methods are compared.
The first method, M1, is SVM (Vapnik, 2013) with
the output of the SAE encoder as input, the second
method, M2, is the pre-trained DMLP as shown in
Figure 4, and the third method, M3, is the DMLP after
refined-training as shown in Figure 5. Their
classification performances are evaluated on several
datasets.

Deep Classifier Structures with Autoencoder for Higher-level Feature Extraction

33

Figure 3: Training stacked
autoencoder (SAE).

Figure 4: Pre-training DMLP with
fixed W1 and W2 from SAE.

Figure 5: Refined-training of the
DMLP with initial weights from the
pre-trained DMLP.

3 EXPERIMENTAL RESULTS
AND DISCUSSION

3.1 Data Sets

Three document datasets were used in the experiments.
First, a phishing email dataset (http://snap.stanford.
edu/data/) has 6000 samples from two classes (3000
ham/non-spam and 3000 phishing), collected from
different resources such as Cornel University and
Enron Company. Second, the Musk dataset
(http://archive.ics.uci.edu/ml/ datasets.html) has 6598
samples from two classes (musk and non-musk). Third,
a phishing technical feature dataset (http://khonji.
org/phishing_studies) has 4230 samples from two
classes (2115 phishing and 2115 non-phishing).

The documents in these datasets were pre-
processed by tokenization, removing stop words such
as ‘the’, numbers and symbols, which helps to
produce a bag of words (BOW) as original features
(George and Joseph, 2014).

Term presence (TP) as weighting scheme was
then applied to the words in the BOW to obtain
numerical feature values (George and Joseph, 2014).
The total numbers of features for phishing emails,
Musk, and phishing technical feature datasets are 750,
166, and 47 respectively.

3.2 Experiment Procedure

Each dataset was partitioned into a training set and
a testing set. The training set was further partitioned
into estimation set and validation set for k-fold cross-
validation to determine the optimal or appropriate

network structure and hyper-parameter values (λ, β, p).
The proposed method was evaluated with

different number of hidden layers and different
number of hidden neurons during cross-validation,
and each testing set was only used once to evaluate
the performance of the proposed method with the
network structure trained using the hyper-parameter
values chosen by the k-fold cross-validation.

For a typical DMLP with 4 hidden layers, the
numbers of hidden neurons in the first stage are K1
and K2 respectively, and the numbers of hidden
neurons in the second or third stage are K1, K2, K3,
and K4 respectively. For training the SAE, 8 sets of
hyper-parameters (λ, β, p) were validated, as shown
in Table 1, which are around the suggested default
values.

3.3 Results

1) Classification Accuracy: Tables 2-4 show the
cross-validation classification accuracies of the three
methods (M1, M2, and M3) with different hyper-
parameter values and different number of hidden
neurons, on the three datasets respectively. Tables 5-
7 show the corresponding training and testing
accuracies of the three methods with the appropriate
network structure trained using the hyper-parameter
values chosen by the cross-validation. Figure 6
compares the three methods in terms of average
training and testing accuracy. It can be seen from
Figure 6 that the proposed three-stage learning
algorithm for training deep classifier structures with
SAE, i.e., the M3 method, achieved the highest
accuracy, which have been proved to be statistically
significantly better than other methods evaluated in the

IJCCI 2018 - 10th International Joint Conference on Computational Intelligence

34

experiment. From Figure 6 it can be seen that the
proposed method (M3) has much smaller difference
between testing accuracy and training accuracy than
methods M1 and M2, which can be regarded as
evidence of less serious overfitting in the proposed

method. It can be concluded that DMLP with effective
weight initialisation can achieve significantly better
performance than the standard MLP, and it is evident
that the deep classifier structures with stacked
autoencoder can reduce overfitting.

Table 1: Hyper-parameters for training the SAE.

Hyper-
Parameters HP1 HP2 HP3 HP4 HP5 HP6 HP7 HP8

L2W (λ) 0.001 0.001 0.001 0.001 0.001 0.01 0.1 0.5

Sp. Re. (β) 0 0 0 0 0 0 0 0

Sp. Pr. (p) 0.0005 0.005 0.05 0.5 1 1 1 1

Table 2: Cross validation accuracy on the phishing emails dataset.

 Hyper-Parameters

Methods\
Network Structure

HP 1 HP 2 HP 3 HP 4 HP 5 HP 6 HP7 HP8 Ave
Acc.

Max
Acc.

SVM, 20 features M1 54.2 53.7 56.6 48.6 86.7 52.8 58.7 53.1 58.0 86.7
750-25-20-10-5-2
750-25-20-10-5-2

M2 88.7 88.9 86.8 89.8 87.9 88.9 87.1 88.4 88.3 89.8
M3 88.5 89.9 89.3 90.1 89.7 90.2 88.9 88.5 89.5 90.3

SVM, 25 features M1 51.6 76.3 89.2 62.2 47.4 77.7 54.3 49.1 63.4 89.2
750-50-25-15-10-2
750-50-25-15-10-2

M2 89.4 88.1 89.2 88.3 89.7 91.6 84.1 89.6 88.7 91.6
M3 91.7 90.6 89.3 91.1 90.5 90.5 90.9 92.4 90.7 92.4

SVM, 35 features M1 70.1 53.2 55.8 83.3 67.4 54.6 52.5 65.6 62.8 83.3
750-75-35-30-20-2
750-75-35-30-20-2

M2 88.1 88.2 88.8 88.9 88.5 88.4 88.9 89.2 88.6 89.2
M3 89.2 90.1 89.2 89.1 88.9 89.3 90.2 90.2 89.5 90.2

Table 3: Cross validation accuracy on the musk dataset.

 Hyper-Parameters

Methods\
Network Structure

HP 1 HP 2 HP 3 HP 4 HP 5 HP 6 HP7 HP8 Ave
Acc.

Max
Acc.

SVM, 6 features M1 66.4 74.6 75.7 72.6 74.4 75.1 74.4 73.2 73.3 75.3
166-8-6-4-3-2
166-8-6-4-3-2

M2 77.0 78.8 78.8 90.8 83.2 86.1 96.1 77.1 83.5 96.0
M3 65.9 82.4 67.0 93.4 97.9 66.1 82.9 81.1 79.6 97.9

SVM, 7 features M1 75.4 74.7 58.7 74.0 74.1 74.9 74.2 61.7 70.7 75.4
166-10-7-5-3-2
166-10-7-5-3-2

M2 75.1 80.8 78.9 93.7 94.1 77.5 93.8 79.9 84.2 94.1
M3 83.0 86.0 79.5 90.1 83.2 76.7 98.9 79.7 84.9 98.9

SVM, 10 features M1 75.4 59.0 72.0 72.6 74.7 74.4 63.0 74.1 70.6 75.4
166-15-10-8-6-2
166-15-10-8-6-2

M2 77.7 81.3 79.8 95.2 93.8 77.8 92.1 80.8 84.8 95.2
M3 77.1 80.9 78.3 93.0 94.8 76.4 82.9 81.5 83.1 94.8

Table 4: Cross validation accuracy on the phishing technical feature dataset.

 Hyper-Parameters

Methods\
Network Structure

HP 1 HP 2 HP 3 HP 4 HP 5 HP 6 HP 7 HP 8 Ave
Acc.

Max
Acc.

SVM, 6 features M1 54.2 54.2 57.7 54.2 59.6 60.4 60.5 55.7 56.3 60.4
47-8-6-4-3 M2 64.0 65.9 68.6 62.0 64.1 50.3 62.9 62.7 62.7 68.6
47-8-6-4-3 M3 97.0 96.3 89.0 90.8 97.7 96.7 96.8 96.8 95.1 97.7
SVM, 8 features M1 57.7 60.2 62.1 58.9 78.8 61.2 61.3 60.9 62.6 78.8
47-15-8-7-5-2 M2 66.0 66.9 64.5 63.1 64.0 59.9 90.5 62.8 67.2 90.5
47-15-8-7-5-2 M3 99.1 99.5 99.8 99.5 99.4 99.4 99.6 99.0 99.3 99.8
SVM, 15 features M1 57.2 58.6 58.6 51.1 58.8 58.6 58.5 57.7 57.3 57.7
47-30-15-10-6-2 M2 68.9 62.1 69.5 58.5 90.5 83.5 51.5 60.8 60.8 68.1
47-30-15-10-6-2 M3 99.4 99.3 99.3 99.1 51.1 84.3 99.3 99.1 91.1 99.4

Deep Classifier Structures with Autoencoder for Higher-level Feature Extraction

35

Table 5: Performance comparison on the phishing emails dataset.

Methods

Network Structure/
Hyper-Parameters

Training Acc. Testing
Acc.

M1 SVM, 25 features 85.2% 75.1%
M2 750-50-25-10-5-2/HP 6 90.7% 84.2%
M3 750-50-25-10-5-2/HP 8 92.6% 88.4%

Table 6: Performance comparison on the musk dataset.

Methods

Network Structure/
Hyper-Parameters

Training Acc. Testing
Acc.

M1 SVM, 7 features 87.3% 75.5%
M2 166-10-7-5-3-2/HP 5 95.2% 81.6%
M3 166-10-7-5-3-2/HP 7 98.1% 89.6%

Table 7: Performance comparison on the phishing technical feature dataset.

Methods

Network Structure/
Hyper-Parameters

Training Acc. Testing
Acc.

M1 SVM, 8 features 84.3% 61.8%
M2 47-15-8-7-5-2/ HP 7 83.1% 67.9%
M3 47-15-8-7-5-2/ HP 3 99.8% 91.8%

Figure 6: Comparison of the three methods in terms of average training and testing accuracy.

2) Statistical Significance Test: In order to assess
whether the performance differences among the
methods are statistically significant, we applied T-
test, a parametric statistical hypothesis test, and the
Wilcoxon’s rank-sum test, a non-parametric
method, to determine whether two sets of accuracy
data are significantly different from each other. The
statistical tests were conducted on three paired
methods (M3 vs M1, M3 vs M2, and M2 vs M1) in
terms of testing classification accuracy. Tables 8
and 9 show the p-values from these tests, which
demonstrate that, in terms of classification
performance, M3 significantly outperformed M1
and M2, and M2 significantly outperformed M1.

Table 8: Statistical test results (T-test).

Methods for comparison p-value

M3 vs. M1 6.9591e-05

M3 vs. M2 0.0013

M2 vs. M1 8.1148e-06

Table 9: Statistical test results (Rank-sum).

Methods for comparison p-value

M3 vs. M1 0.0345

M3 vs. M2 0.0576

M2 vs. M1 0.03241

0

20

40

60

80

100

M1 M2 M3

Training Testing

IJCCI 2018 - 10th International Joint Conference on Computational Intelligence

36

4 CONCLUSIONS

This paper investigates deep classifier structures
with stacked autoencoder for higher-level feature
extraction. The proposed approach can overcome
possible overfitting and vanishing/exploding
gradient problems in deep learning with limited
training data. It is evident from the experimental
results that the deep multilayer perceptron trained
using the proposed three-stage learning algorithm
significantly outperformed the pre-trained stacked
autoencoder with support vector machine classifier.
Also, it can be seen that the proposed method (M3)
has much smaller difference between testing
accuracy and training accuracy than methods M1
and M2, which can be regarded as evidence of less
serious overfitting in the proposed method.
Preliminary experimental results have demonstrated
the advantages of the proposed method. Further
tests on this algorithm would be applied to deep
neural networks with more layers and hopefully
would beef up the performance of these networks.
Also, tests with other applications would be
conducted in future investigations.

REFERENCES

Abdulhussain M.I. and Gan J.Q., 2016. Class specific pre-
trained sparse autoencoders for learning effective
features for document classification. Proceedings of
the 8th Computer Science and Electronic Engineering
Conference (CEEC), Colchester, UK, pp. 36-41.

Bengio Y., 2013. Deep learning of representations:
looking forward. Proceedings of International
Conference on Statistical Language and Speech
Processing, Spain. Lecture Notes in Computer
Science (LNCS), vol. 7978, pp. 1-37.

Bengio Y., Courville A., and Vincent P., 2013.
Representation learning: A review and new
perspectives. IEEE transactions on pattern analysis
and machine intelligence, 35, 1798-1828.

Bengio Y., Lamblin P., Popovici D., and Larochelle H.,
2007. Greedy layer-wise training of deep networks.
Proceedings of Advances in Neural Information
Processing Systems. MIT press, pp. 153-160.

Chapelle O. and Erhan D., 2011. Improved preconditioner
for hessian free optimization. Proceedings of the
NIPS Workshop on Deep Learning and Unsupervised
Feature Learning, pp. 1-8.

Chen X.W. and Lin X., 2014. Big data deep learning
challenges and perspectives. IEEE Access, vol. 2, pp.
514-525.

DeSousa C.A., 2016. An overview on weight
initialization methods for feedforward neural

networks. Neural Networks (IJCNN), International
Joint Conference , IEEE, 52-59.

Fernandez-Redondo M. and Hernandez-Espinosa C.,
2001. Weight initialization methods for multilayer
feedforward. Proceedings of European Symposium
on Artificial Neural Networks (ESANN), Bruges
Belgium, pp. 119-124.

Gehring J., Miao Y., Metze F., and Waibel A., 2013.
Extracting deep bottleneck features using stacked
auto-encoders. Proceedings of IEEE International
Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 3377-3381.

George, K. and Joseph, S., 2014. Text classification by
augmenting bag of words (bow) representation with
co-occurrence feature. Journal of Computer
Engineering (IOSR-JCE), vol. 16, pp. 34-38.

Geman S., Bienenstock E., and Doursat R., 1992.Neural
networks and the bias/variance dilemma. Neural
Computation, vol. 4, pp. 1-58.

Glorot X. and Bengio Y., 2010. Understanding the
difficulty of training deep feedforward neural
networks. Proceedings of the 13th International
Conference on Artificial Intelligence and Statistics
(AISTATS), Sardinia, Italy, vol. 9, pp. 249-256.

Hinton G.E., et al., 2012. Deep neural networks for
acoustic modeling in speech recognition. IEEE Signal
Processing Magazine, vol. 29, pp. 82–97.

Hinton G.E., Osindero S., and Teh Y.W., 2006. A fast
learning algorithm for deep belief nets. Neural
Computation, vol. 18, pp. 1527-1554.

Hinton G.E. and Salakhutdinov R.R., 2006. Reducing the
dimensionality of data with neural networks. Science,
vol. 313, no. 5786, pp. 504-507.

Krizhevsky A., Sutskever I., and Hinton G.E., 2012.
ImageNet classification with deep convolutional
neural networks. Proceedings of Advances in Neural
Information Processing Systems, vol. 25, pp. 1090–
1098.

LeCun Y., Bengio Y., and Hinton G., 2015. Deep
learning. Nature, vol. 521, pp. 436-444

Lee H., Ng A.H., Koller D., and Shenoy K.V., 2010.
Unsupervised feature learning via sparse hierarchical
representations. Ph.D. Thesis, Dept. of Comp. Sci.,
Stanford University.

Martens J., 2010. Deep learning via Hessian-free
optimization. Proceedings of the 27th International
Conference on Machine Learning (ICML-10), pp.
735-742.

Martens J. and Sutskever I., 2012. Training deep and
recurrent networks with Hessian-free optimization. In
Neural Networks: Tricks of the Trade, Springer,
LNCS, pp. 479-535.

Mohamed A., Dahl G.E., and Hinton G.E., 2012.
Acoustic modeling using deep belief networks. IEEE
Transactions on Audio, Speech, and Language
Processing, vol. 20, pp. 14-22.

Najafabadi M.M., Villanustre F., Khoshgoftaar T.M.,
Seliya N., Wald R., and Muharemagic E., 2015. Deep
learning applications and challenges in big data
analytics. Journal of Big Data, vol. 2, no. 1, pp. 1-21.

Deep Classifier Structures with Autoencoder for Higher-level Feature Extraction

37

Ravì D., et al., 2017. Deep learning for health informatics.
IEEE Journal of Biomedical and Health Informatics,
vol. 21, pp. 4-21.

Rifai S., Vincent P., Muller X., Glorot X., and Bengio Y.,
2011, Contractive auto-encoders: Explicit invariance
during feature extraction. Proceedings of the 28th
International Conference on Machine Learning, pp.
833-840.

 Salakhutdinov R. and Hinton G.E., 2009. Deep
Boltzmann machines. Proceedings of the 12th
International Conference on Artificial Intelligence
and Statistics, Florida, USA, pp. 448-455.

Shu M. and Fyshe A., 2013, Sparse autoencoders for
word decoding from magnetoencephalography.
Proceedings of the 3rd NIPS Workshop on Machine
Learning and Interpretation in NeuroImaging
(MLINI), Lake Tahoe, USA, pp. 20-27.

Sodhi S.S., Chandra P., and Tanwar S., 2014, A new
weight initialization method for sigmoidal
feedforward artificial neural networks. Proceedings
of International Joint Conference on Neural
Networks (IJCNN), Beijing, China, pp. 291-298.

Srivastava N., Hinton G., Krizhevsky A., Sutskever I.,
and Salakhatdinov R., 2014. Dropout: A simple way
to prevent neural networks from overfitting. Journal
of Machine Learning Research, vol. 16, pp. 1929-
1958.

 Sutskever I., Martens J., Dahl G., and Hinton G.H., 2013.
On the importance of initialisation and momentum in
deep learning. Proceedings of the 30th International
Conference on Machine Learning, Atlanta, USA, pp.
1139-1147.

Vapnik, V. (2013). The nature of statistical learning
theory.Springer Science & Business Media.

Vincent P., Larochelle H., Bengio Y., and Manzagol P.A.,
2008. Extracting and composing robust features with
denoising autoencoders. Proceedings of the 25th
International Conference on Machine Learning, pp.
1096-1103.

Vincent P., Larochelle H., Lajoie I., Bengio Y., and
Manzagol P.A., 2010. Stacked denoising
autoencoders: Learning useful representations in a
deep network with a local denoising criterion. Journal
of Machine Learning Research, vol. 11, pp. 3371-
3408.

Yam J.Y.F. and Chow T.W., 2000. A weight initialization
method for improving training speed in feedforward
neural network. Neurocomputing, vol. 30, no. 4, pp.
219-232.

Zhang F., Du B., and Zhang L., 2015. Saliency-guided
unsupervised feature learning for scene classification,
IEEE Transactions on Geoscience and Remote
Sensing, vol. 53, no. 2, pp. 2175-2184.

Zhou X., Guo J., and Wang S., 2015. Motion recognition
by using a stacked autoencoder-based deep learning
algorithm with smart phones. Proceedings of
International Conference on Wireless Algorithms,
Systems, and Applications, pp. 778-787.

IJCCI 2018 - 10th International Joint Conference on Computational Intelligence

38

