
Evolving a Model for Software Process Context: An Exploratory Study

Diana Kirk1 and Stephen G. MacDonell2

1Technology Academy, EDENZ Colleges, 85 Airedale Street, Auckland 1010, New Zealand
2Software Engineering Laboratory (SERL), AUT University, Private Bag 92006, Auckland 1142, New Zealand

Keywords: Software Context, Model Building, Exploratory Study.

Abstract: In the domain of software engineering, our efforts as researchers to advise industry on which software practices
might be applied most effectively are limited by our lack of evidence based information about the relationships
between context and practice efficacy. In order to accumulate such evidence, a model for context is required.
We are in the exploratory stage of evolving a model for context for situated software practices. In this paper,
we overview the evolution of our proposed model. Our analysis has exposed a lack of clarity in themeanings
of terms reported in the literature. Our base model dimensions arePeople, Place, Product and Process.
Our contributions are a deepening of our understanding of how to scope contextual factors when considering
software initiatives and the proposal of an initial theoretical construct for context. Study limitations relate to a
possible subjectivity in the analysis and a restricted evaluation base. In the next stage in the research, we will
collaborate with academics and practitioners to formally refine the model.

1 INTRODUCTION

In the domain of software engineering (SE), evi-
dence suggests that practitioners adapt development
methodologies to suit specific contexts (Avison and
Pries-Heje, 2008; MacCormack et al., 2012; Petersen
and Wohlin, 2009a; Turner et al., 2010). Moreover,
research indicates that most organisations adapt prac-
tices drawn from several approaches, often at the level
of the individual project. As an example, as agile ap-
proaches have become more established, limitations
have been exposed, leading to either contextualisa-
tion (Campanelli and Parreiras, 2015) or amalgama-
tion with other paradigms, for example, the ‘lean’
paradigm (Wang et al., 2012). In addition to the is-
sue of tailoring, the emergence of new paradigms, for
example, ‘continuous delivery’ (Dingsøyr and Lasse-
nius, 2016; Stuckenberg and Heinzl, 2010), has cre-
ated a need for extended and modified approaches.

This raises important questions about when and
how adaptation is appropriate. Lengnick-Hall and
Griffith point out that, if the intention is to achieve “a
specific, designated outcome”, as is the case for most
software practices, the knowledge (practice) must be
applied as-is. Applying the knowledge in an intu-
itive or experimental way introduces a lack of fit be-
tween type of knowledge and how it is applied, and
this inevitably leads to reduced effectiveness, at best

(Lengnick-Hall and Griffith, 2011). From this per-
spective, the now-popular approach towards tailoring
within industry might be viewed as a ‘hidden’ issue.

To avoid the potential problems inherent in ad-
hoc adaptation, it is thus crucial that the tailoring is
understood within the context in which it will be ap-
plied. A theoretical model for context is required. In-
deed, lack of a defined construct for context has in
the past created problems for researchers and practi-
tioners. In the first instance, researchers who carry out
formal experiments are unable to confidently interpret
the scope of applicability of their results because the
role of contextual factors is insufficiently understood
(Basili et al., 1999; Carver et al., 2004; Runeson et al.,
2014; Sjøberg et al., 2005). Second, there is inherent
uncertainty in the use of available data repositories for
investigation and estimation (for example, estimation
of project effort) because the environment associated
with the data is at best only partially stated (Bosu and
MacDonell, 2013).

Our goal is to support researchers in the accumu-
lation of context-related evidence to be used as a ba-
sis for evidence-based-software engineering (EBSE).
Our vision is that, as researchers understand the kinds
of information that need to be captured as ‘con-
text’, growing evidence repositories will yield ‘prac-
tice families’ i.e. sets of similar practices that are
indicated (and contra-indicated) for a specific value

296
Kirk, D. and MacDonell, S.
Evolving a Model for Software Process Context: An Exploratory Study.
DOI: 10.5220/0006876302960303
In Proceedings of the 13th International Conference on Software Technologies (ICSOFT 2018), pages 296-303
ISBN: 978-989-758-320-9
Copyright © 2018 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



along one dimension. ‘Best practice’ will then in-
volve choosing from practices that are consistent with
values along all dimensions i.e. either indicated or
not-contra-indicated. Alean process is one in which
choices represent an overall maximal effectiveness.

Our journey will comprise three phases, a) an ex-
ploratory phase to evolve a candidate model, b) a re-
finement stage where we formally refine the model,
and c) an application phase where we generate and
test hypotheses based on the model (Routio, 2007).
In this paper, we describe our approach to, and imple-
mentation of, the exploratory phase i.e. initial model
generation.

In section 2, we overview related work. In sec-
tion 3, we present our research approach. In section 4
we describe the evolution of our model. In section 5,
we discuss some limitations of both the study and the
proposed model and in section 6, we summarise the
paper and discuss future work.

2 RELATED WORK

There are two areas of related work for this paper. The
first includes research aimed at more informal efforts
to categorise context along various dimensions. The
second includes attempts to provide suitable theoreti-
cal constructs for context. Space limitations enable us
to present an overview only.

2.1 Context Models

There have been many efforts to relate SE outcomes
to specific key factors. We overview a selection here.

Avison and Pries-Heje aimed to support selec-
tion of a suitable methodology that is project-specific
(Avison and Pries-Heje, 2008). For a given project,
the authors plotted position along each of eight di-
mensions on a radar graph and inferred an appropri-
ate methodology from the shape of the graph. We see
two limitations. First, the abstraction is based on a
specific organisation, resulting in missing contexts,
for example, temporal distance. Second, it is based
at the level of theproject and so is inapplicable to,
for example, a ‘customer-driven’ environment, where
the on-going relationship between development group
and customer becomes key (Dingsøyr and Lassenius,
2016; Munezero et al., 2017; Stuckenberg and Heinzl,
2010).

Clarke and O’Connor propose a reference frame-
work for situational factors affecting software devel-
opment (Clarke and O’Connor, 2012). The frame-
work includes eight classifications:Personnel, Re-
quirements, Application, Technology, Organisation,

Operation, Management and Business, further di-
vided into 44 factors. Our critique of this approach
is that themeanings assigned to sub-factors do not
represent a consistent set with respect to practice suit-
ability. For example, the factor ‘Cohesion’ includes
“team members who have not worked for you”, “abil-
ity to work with uncertain objectives” and “team geo-
graphically distant”, each of which might indicate dif-
ferent kinds of practice. The framework may indeed
provide a comprehensive list of factors. However, the
approach remains discrete in nature and is unsuitable
for classifying factors in a theoretical way, as the cat-
egories are semantically inconsistent and there are no
clear rules on which to base abstraction.

Petersen and Wohlin provide a checklist for repre-
senting context for the purpose of aggregating studies
in industrial settings (Petersen and Wohlin, 2009b).
The facets of the structure includeProduct, Pro-
cesses, Practices, People, Organisation andMarket.
The facets and context elements are presented as a
given, without justification. While likely useful, there
appear to be missing contexts, for example, relating
to cultural mis-matches between and within teams.

2.2 SE Theory Building

Sjøberg et al. propose a framework that includesSoft-
ware system, which “may be classified along many
dimensions, such as size, complexity, application do-
main, ...” (Sjøberg et al., 2008). The form of possible
classifications for context is not discussed.

Dybå et al. observe that most empirical SE re-
search to date has adopted adiscrete perspective, i.e.
examining “specific contextual variables” and state
the need for a broaderomnibus perspective (Dybå
et al., 2012). The authors suggest that such a perspec-
tive involves a consideration ofWho, Where, What,
When, How andWhy. The meanings of the dimen-
sions are adapted from organisational science. We
agree there is a need for a shift in focus from identify-
ing factors to abstracting the problem space and have
adopted the suggested structure as a starting point for
our investigations (Kirk and MacDonell, 2014b; Kirk
and MacDonell, 2014a).

An endeavour that aims to develop a general the-
ory for software development is the SEMAT initia-
tive (Jacobson et al., 2013). The approach proposes a
set of top-level ideas that support determination of a
project’s health and areRequirements, Software Sys-
tem, Work, Team, Way of Working, Opportunity and
Stakeholders. The approach is potentially useful if ap-
plied to a specific kind of project in which the notion
of ‘health’ is compatible with the measures provided.
However, we believe there are many kinds of project

Evolving a Model for Software Process Context: An Exploratory Study

297



that are unsuitable for this model. In addition, there
appears to be no justification for, or evaluation of, the
factors as a minimal, spanning set for the space of all
contexts.

Bjarnason et al. identify the various kinds ofDis-
tance encountered in software engineering and pro-
pose a theory that supports selection of suitable prac-
tices for reducing distances (Bjarnason et al., 2015).
We observe that the space of contexts is greater than
that of distances and some distances may be less im-
portant when the objectives for the project are taken
into account.

3 RESEARCH APPROACH

Routio describes three kinds of research as a) there
is no model to use as a starting point (exploratory re-
search), b) an existing model is being expanded or
refined, and c) hypotheses based on an established
model are being tested. Exploratory research is ap-
propriate for a “phenomenological pursuit into deep
understanding” and where there is “distrust on earlier
descriptions”. The researcher begins with a “prelimi-
nary notion” of the object of study. During the study
the “provisional concepts ... gradually gain precision”
until a suitable conceptualisation is achieved. Routio
suggests that the journey may involve some “creative
innovation” (Routio, 2007).

Our objective was to create an initial framework
for software process context. Although there ex-
ist several proposed frameworks for context, we re-
jected these for two reasons. First, none emphasises
the properties that define category membership and
so categorisations are inconsistent from ameaning
perspective (see section 2). Second, we were con-
cerned that the result would not be sufficiently gen-
eral given the fast-changing nature of software de-
velopment. For example, new paradigms such as
software-as-a-service (Stuckenberg and Heinzl, 2010)
and continuous value delivery (Dingsøyr and Lasse-
nius, 2016) have raised the need to rethink software
process. Rather than create a model from the litera-
ture, we believed a more conceptual approach would
result in a more comprehensive model. Our goal is
to evolve an initial model that will in the future be
refined and then applied for hypothesis testing. We
scoped our research as relating to asoftware initia-
tive which we define as “any endeavour that involves
defining, creating, delivering, maintaining or support-
ing software intensive products or services”.

According to Creswell, the first step in any re-
search initiative is to expose philosophical assump-
tions by identifying thephilosophical worldview

adopted by the researcher (Creswell, 2014). Four
popular world views arePostpositivist (which gen-
erally concerns causation and hypothesis-testing),
Constructivist (where the complexity of individuals’
viewpoints is of interest),Transformative (which fo-
cuses on political effects on minority groups), and
Pragmatism (where researchers equate truth with
‘what works’ and use any means available to under-
stand the problem) (Creswell, 2014). For this re-
search, we adopted apragmatic worldview. The prag-
matist considers theories as “the products of a consen-
sual process ... to be judged for their utility” (Easter-
brook et al., 2008). This viewpoint involves a focus
on what works and supports the use of all available
approaches to better understand the problem space.
We applied a mix of approaches, implemented in a
pragmatic way.

4 MODEL EVOLUTION

In table 1, we overview the activities carried out dur-
ing the evolution of our proposed framework.

We based our initial structure for context on ex-
isting ideas (Dybå et al., 2012; Zachman, 2009). The
structure included the dimensionswhy, who, where,
what, when and how with meanings based on the
work of Orlikowski (Orlikowski, 2002). The second
step involved a small pilot where we categorised into
the structure contextual factors named in three soft-
ware engineering literature studies. We wanted to
test that our conceptualisation represented “a starting
point (e.g. a framework) that identifies aspects of a
topic” (Stol and Fitzgerald, 2015). This step resulted
in several findings (Kirk and MacDonell, 2014b; Kirk
and MacDonell, 2014a). First, we found huge issues
with terminology, a problem more recently addressed
by Clarke et al., who suggest that the “proliferation of
language and term usage” warrants the establishment
of an ontological model for software process termi-
nology (Clarke et al., 2016). This is a position we
agree with and have explored in relation to some soft-
ware process constructs (Kirk and MacDonell, 2016).

Second, we realised that named terms related to
different kinds of context i.e. had different mean-
ings. This was a crucial discovery — if we are to pro-
duce a model that can aid understanding of situated
software practices, our starting assumption is that dif-
ferent kinds of contextual factor will play differerent
roles and so we must establish rules for category in-
clusion. For example, named factors related toor-
ganisation level strategies (for example, ‘globalise’),
project objectives (for example, ‘user acceptance’),
aspects of theprocess (for example ‘tool support’)

ICSOFT 2018 - 13th International Conference on Software Technologies

298



Table 1: Steps in model evolution.

Activity Source
Initial concept Prior work
Pilot categorisation Literature studies
Extend framework Results of pilot
Literature categorisation Literature studies
Small evaluation Industry projects

and local operational context (for example, ‘devel-
oper experience’). We also understood that that our
dimensional structure refers tolocal operational con-
text i.e. we are always interested in local effect. A
factor such as ‘globalise’ certainly may have an im-
pact on development, but in anindirect way, for ex-
ample, by causing teams to be set up remotely. These
then become the local context for the project.

A third issue exposed was that some named fac-
tors are not sufficiently defined for practice tailor-
ing. For example, ‘user participation’ may mean
the user helped in requirements definition, is avail-
able throughout the project or carried out beta testing.
‘Non-colocated team’ may mean testers are in a dif-
ferent country or the team is split between two rooms
in the same building. ‘Company size’ may involve
all of constraints on local process choices, staff satis-
faction levels and locational organisation. We intro-
duced the termsSecondary for factors that are multi-
dimensional andAmbiguous for ill-defined factors.

The key ideas that had emerged after this second
step were that a) we need to be clear whether a fac-
tor relates to strategy, objectives, process or local op-
erations, and b) many factors found in the literature
are insufficiently defined for immediate use. We ex-
tended our model to include nodes with the new kinds
of contextual meaning.

4.1 Categorising Literature Studies

The next step in the evolution of our model was to ex-
tend the literature categorisation with the aim of more
extensively testing the expanded model. We sourced
titles and abstracts from each of:

• Elsevier’s Scopus for IS technical and social sci-
ences literature

• Academic Search Premier (EBSCO) for business
focused material

Our search spanned 2014-2015. The numbers for
candidate documents are shown in table 2. The origi-
nal plan was to process all candidate documents. We
took a ‘coverage’ approach, in that we early on se-
lected sources that appeared to vary in topic and date.
However, once we had processed 30 or so documents
from Scopus, it seemed that no new kinds of factor
were appearing. We moved to EBSCO documents in

Table 2: Numbers of included documents.

Scopus EBSCO
Found 3,150 471

Candidates 332 25
Included 40 10

case these provided some variation, but this was not
the case. According to Routio, the indication that a
study has reached a point of data saturation is that the
“study no longer reveals new interesting information”
(Routio, 2007). We felt that the gains in completing
all documents would probably not be significant, and
made a pragmatic decision to alter our approach. Our
justification was that we were using the literature to
test a model (as opposed to creating a model from the
literature) and the research was exploratory i.e. more
formal refinement would follow. We processed 50
documents, as described below, from the Scopus and
EBSCO sources. This resulted in a modification to
the base dimensions of our model. We then tested the
resulting modified model by processing a further 12
documents from Google Scholar, applying the same
search string.

For each source, a second pass involved reading
the text of a candidate document in sufficient depth
to ascertain whether the document was relevant. This
was carried out by the first author, with the second au-
thor performing ‘random’ checks on decisions made.
The numbers of documents included in the study are
shown in theIncluded rows in table 2.

From each of the included documents, we ex-
tracted into a dedicated document words or terms that
could be viewed as stating or describing a contextual
factor. As in the pilot, our strategy was to be as com-
prehensive as possible in our identification of contex-
tual factors. This meant that we wanted to expose
factors that may not be typically considered as con-
text. For example, in Section 1, we noted that the
software-as-a-service paradigm has revealed the need
for different kinds of practice, but this is not normally
viewed as a contextual factor. We thus chose to in-
clude studies that contain any thoughts or description
about what might affect practice efficacy. We did not
evaluate the studies in which the elements were men-
tioned for quality. We also did not ‘tidy up’ the found
elements by making value judgements about whether
two elements had the same meaning. We felt that such
evaluations would effectively remove some of the nu-
ances of identification and would thus compromise
our efforts. The underlying issue here is one of a lack
of common, agreed vocabulary for software projects.

We then accumulated terms into a spreadsheet,
with one page for each of the base model dimen-
sions, and one for each of the ‘other’ classifications to
be examined i.e. ‘Secondary’, ‘Ambiguous’, ‘Strat-

Evolving a Model for Software Process Context: An Exploratory Study

299



egy’, ‘Objectives’ and ‘Process’. During this stage,
an attempt was made to remain true to the meaning
of terms used. However, some interpretation was un-
avoidable as we attempted to categorise termswithin
dimensions. We applied thematic analysis to cate-
gorisewithin dimensions.

The outcome of this step was the discovery of fac-
tors that initiated a change to the base structure to in-
clude the four dimensions (see figure 1):

People. Cultural characteristics affecting peoples’
ability to perform

Place. Peoples’ availability affecting logistics and
communications

Product. Characteristics of the product that is being
developed

Process. Processes external to the initiative (as com-
pared with practices within the initiative).

An example is the term ‘legal’. To illustrate, a
practice which appears to have good fit with the model
may be disallowed because it requires sharing of in-
tellectual property and there is no appropriate agree-
ment in place. This example represents a restriction
resulting from processes external to the software de-
velopment group. On further thought, we realised
that such restrictions might come also from, for ex-
ample, process-related expectations of the parent or-
ganisation. We required a general idea of constraints
on practice that result from processes external to the
initiative. We extended thehow dimension to refer to
any constraints on practice implementation resulting
from processes external to the initiative.

In the earlier model, one of the categories within
the how dimension was ‘Client Demographic’. The
original viewpoint was that demographic would affect
specification and delivery mechanisms i.e. ‘how’ the
product was defined and delivered. We realised the
demographic might also affect logistics (for example,
‘global market’) and culture (for example, ‘govern-
ment agency’) and we reclassified asSecondary. Dur-
ing this re-evaluation, we understood that thewhen
dimension i.e. relating to the lifecycle stage of the sit-
uated product, is a product-related constraint and as
such can be merged withwhat. The model was now
as shown in figure 1 and table 3.

4.2 Industry Evaluation

In this section, we overview our efforts to represent
local operational context for two small industry ini-
tiatives.We wanted to determine if the model was us-
able in practice. Our approach was to interview senior
members of these organisations, applying a question-
naire based on our context-model-under-test.

Figure 1: Software context elements.

Table 3: Local operational context factors.

People Entity Capability
Motivation
Empowerment
Cultural cohesion

Interface Cultural cohesion
Place Entity Physical distance

Temporal distance
Availability

Interface Physical distance
Temporal distance
Availability

Product Product type e.g. embedded
Lifecycle stage e.g. new, mature
Standards e.g. safety
Requirements e.g. emergent, complete
Implementations e.g. modularity

Process Client
Parent org
Legal
Financial

4.2.1 Organisation A

Organisation A has been producing custom EDI
(Electronic Document Interchange) software for a
global marketplace since 1984. Client systems are
customised, based on a core, and are manned by ad-
ministrators. This means that technical representa-
tives are no longer available at the client end. The
project studied was an internal project to migrate one
version of a core system to a new upgraded version.
The aims were a) to increase productivity for clients
by improving efficiency, b) to effect risk mitigation
by moving from an outdated technology to one that
is more scaleable and less limited, and c) to take the
opportunity to establish standards to support future
projects. Clients were largely unaware the migration
was taking place. Midway through the project, it be-
came clear that progress was slow due to a lack of
urgency andcompletion time was included as an ob-
jective.

Project members included a manager,

ICSOFT 2018 - 13th International Conference on Software Technologies

300



Table 4: Org A - Contextual values for Product.

Type Migration
Lifecycle stage Mature
Standards None applicable
Specification Well-understood
As Implemented Modular code base

Table 5: Org A - Contextual values for People.

PM-capability High
PM-motivation High
PM-empowerment Is owner and fully empowered
Team-capability Mixed
Team-motivation Low (background project)
Team-empowermt High (own decisions)
Team-cohesion High (common understanding)
Client-capability Low (no longer available)
Client-motivation N/A - unaware of migration
Client-empowermt N/A - unaware of migration
Team-client-cohes N/A - unaware of migration.

owner/analyst, lead developer and 2-4 further
developers. The manager was highly motivated to
empower the team to ‘own’ decisions and to ‘future
proof’ the product against future inexperienced
developers. The developers varied in experience
levels and lacked application area knowledge. We
interviewed the manager and the owner/analyst in a
single interview of 45 minutes. Context values for
Product andPeople are shown in tables 4 and 5. For
thePlace dimension, project members are located on
the same floor in the same building — effectively in
the same room. Sometimes developers worked from
home, but were available. There were no external
constraints onProcess — the senior team member
was the owner and, as an internal process, client
processes had no bearing.

4.2.2 Organisation B

Organisation B is owned and managed by an experi-
enced civil engineer, who recognised a need for soft-
ware for roof design, for example, to support optimi-
sation of materials required and to produce detailed
invoices. A project to explore this idea was set up. As
the manager was unfamiliar with roof design, a de-
cision was made to work with an experienced roofer
and to deliver an initial version of the system to him.
However, the intention to later expand to other kinds
of roof and to an international market was present
throughout. and the aim was to spend time in the short
term to achieve productivity savings later. The team
comprised the owner/manager and two highly experi-
enced, contracted developers who worked in the same
room. The client was available for specification and
feedback. We interviewed the owner-manager in a 50
minute session.

Table 6: Org B - Contextual values for Product.

Type Stand-alone
Lifecycle stage New Product Development (NPD)
Standards NZ standards for roofing design
Specification Uncertain as new innovation
As Implemented N/A as this is a new product

Table 7: Org B - Contextual values for People.

Team-capability All experienced in technologies
Low application area knowledge

Team-empowermt High
Team-motivation High (well-paid team)
Team-sharing High (same room)
Client-capability Expert in application area
Client-empowermt High (owns company)
Client-motivation High (wants purpose built app)
Team-client-cohes Low (no mutual understanding)

The project was strongly driven by the
owner/manager who had responsibility for long-
term planning, short-term scoping and delivering
to the roofing expert. His vision of ‘implementing
within the bigger picture’ and experiences as an
engineer also impacted on how implementation was
carried out. The interview tended to be free-flowing
with prompts to ensure focus.

The main objectives identified for the project were
client satisfaction and extendible code base. Contexts
are presented in tables 6 and 7. The team was small
and worked full-time from the project office. No ex-
ternal constraints from external processes were iden-
tified.

4.2.3 Industry Practices

The interviewees in both organisations were asked
about the practices they felt had been most helpful or
unhelpful in meeting objectives. We will present and
discuss those findings in a later work. However, to il-
lustrate how a picture of a situated practice might be
built up, we show in table 8 the results for the practice
‘create coding standards’.

The practice is indicated for objectives ‘Quality’
and ‘Create extendible code base’, if the people in-
volved are capable and not if the initiative is time con-
strained. We have the beginnings of an evidence base
for the practice of creating coding standards.

Table 8: Practice - create coding standards.

Indicated Objectives quality (A)
extendible code base (B)

People: capable (B)
Contra Process: time constraints (A)

Evolving a Model for Software Process Context: An Exploratory Study

301



5 DISCUSSION AND
LIMITATIONS

One of the main findings during this research was that
many terms are used without a clear definition of what
theymean. For example, during analysis of one of the
test documents (Wallace and Keil, 2004), we observed
that the risk framework applied resulted in identifica-
tion of several ‘risks’ which we would classify asam-
biguous. If a risk in not clearly articulated, it seems
clear that any mitigation attempts are likely to be less
than effective.

An assumption of the model is that the characteris-
tics of individuals are subsumed by team characteris-
tics and this needs to be tested. For example, can we
characterise a team as of ‘Medium capability’ when
a) some members are capable and others are of low
capability, and b) all are of medium capability. This
is an open research question. We have also assumed
that team size on its own is not relevant, but is charac-
terised by ‘shared understanding’ and ‘capability’ (a
well-run large team may be more capable that a dis-
functional small team). This is another assumption to
be tested.

The primary limitation for this study is the risk of
subjectivity. For reasons of limited resourcing, most
of the work has been carried out by the primary au-
thor, with ad-hoc checks by the second author. As-
pects of this risk include the following:

• There is clearly a tendency to view each identified
factor from the perspective of the proposed model
and this may mean that other, possibly more use-
ful, perspectives are missed. For example, a study
about ‘Adaptive software’ — was accepted as rel-
evant only because we had aproduct dimension
in the model and recognised the product type as
relating to that dimension. We do not see any way
to avoid this, as the selection of dimensionsis the
model we are exploring.

• Meanings may have been lost or mis-interpreted
as terms were transported from the dedicated sum-
mary to the analysis spreadsheet. In mitigation,
we have all data available.

Both teams in the industry trial were small and this
is clearly a serious limitation.

6 SUMMARY AND FUTURE
WORK

In this paper, we have described the evolution of a
model for software process context to support evi-
dence accumulation for situated software practices.

The study represents the first (exploratory) stage in
a three stage process to conceptualise, refine and ap-
ply a model for context (Routio, 2007). We justified
our approach of starting from a conceptual structure
rather than from the existing literature by observing
that a) existing literature-based models tend to be un-
clear as to categoryproperties, b) the possibly infi-
nite number of contextual factors means that we can
never be certain that all have been found, and c) we
do not know what paradigms will appear in the fu-
ture. Model evolution involved testing by categoris-
ing studies from the literature and a small industry
trial involving two organisations, where we captured
key contexts for two projects.

Our research philosophy is one ofpragmatism
(Creswell, 2014). The pragmatist considers theories
as “the products of a consensual process ... to be
judged for their utility” (Easterbrook et al., 2008).
We have created “a starting point (e.g. a framework)
that identifies aspects of a topic” (Stol and Fitzgerald,
2015).

Key findings thus far are that contextual factors
as named in the literature have different kinds of
meaning and many are too vague to be of use for
process tailoring. We have identified the kinds of
meaning as relating to organisational strategy, project
objectives, practice implementation and local opera-
tional context. Local context dimensions arePeople,
Place, Product andProcess. We explored the internal
structures of these dimensions, understanding that, if
overly complex, the proposed model will be unwork-
able in practice.

We accept that the research quality of this paper is
reduced as a result of the risk of subjectivity and the
limited nature of the study.

Our contributions are a deeper understanding of
the different kinds ofmeaning represented by ‘con-
text’ factors as stated in the literature and a model that
is sufficiently complete for use as a basis for future re-
finement. We will next formally refine the model in
conjunction with others. We are currently developing
a taxonomy based on the model to support discussion
with researchers and practitioners.

REFERENCES

Avison, D. and Pries-Heje, J. (2008). Flexible informa-
tion systems development: Designing an appropriate
methodology for different situations. InEnterprise
information systems : ICEIS 2007, pages 212–224.
Springer.

Basili, V. R., Shull, F., and Lanubile, F. (1999). Building
Knowledge through Families of Experiments.IEEE
Trans. on SW Engineering, 25(4):456–473.

ICSOFT 2018 - 13th International Conference on Software Technologies

302



Bjarnason, E., Smolander, K., Engstrom, E., and Runeson,
P. (2015). A theory of distances in software engineer-
ing. Inf. and SW Technology, 70(C):204–219.

Bosu, M. F. and MacDonell, S. G. (2013). A Taxonomy of
Data Quality Challenges in Empirical Software Engi-
neering. InProc. ASWEC 2013, pages 97–106.

Campanelli, A. S. and Parreiras, F. S. (2015). Agile methods
tailoring - A systematic literature review.Journal of
Systems and Software, 110:85–100.

Carver, J., Voorhis, J. V., and Basili, V. (2004). Understand-
ing the Impact of Assumptions on Experimental Va-
lidity. In Proc. ISESE’04, pages 251–260. IEEE.

Clarke, P., Mesquida, A.-L., Ekert, D., Ekstrom, J., Gornos-
taja, T., Jovanovic, M., Johansen, J., Mas, A., Mess-
narz, R., Villar, B. N., O’Connor, A., O’Connor, R. V.,
Reiner, M., Sauberer, G., Schmitz, K.-D., and Yilmaz,
M. (2016). An Investigation of Software Development
Process Terminology. InSPICE 2016), volume 609 of
CCIS, pages 351–361. Springer.

Clarke, P. and O’Connor, R. V. (2012). The situational fac-
tors that affect the software development process: To-
wards a comprehensive reference framework.Inf. and
SW Technology, 54:433–447.

Creswell, J. W. (2014).The Selection of a Research Ap-
proach, pages 31–55. Sage Publications Inc.

Dingsøyr, T. and Lassenius, C. (2016). Emerging themes in
agile software development: Introduction to the spe-
cial section on continuous value delivery.Information
and Software Technology, 77:56–60.

Dybå, T., Sjøberg, D. I., and Cruzes, D. S. (2012). What
Works for Whom, Where, When and Why? On the
Role of Context in Empirical Software Engineering.
In Proc. ESEM 2012, pages 19–28.

Easterbrook, S., Singer, J., Storey, M., and Damian, D.
(2008). Selecting empirical methods for software en-
gineering research. InGuide to Advanced Empirical
Software Engineering, pages 285–311. Springer.

Jacobson, I., Meyer, B., and Soley, R. (2013). Software En-
gineering Method and Theory. http://www.semat.org.

Kirk, D. and MacDonell, S. G. (2014a). Categorising soft-
ware contexts. InProc AMCIS 2014.

Kirk, D. and MacDonell, S. G. (2014b). Investigating a
conceptual construct for software context. InProc.
EASE 2014, number 27.

Kirk, D. and MacDonell, S. G. (2016). An Ontological
Analysis of a Proposed Theory for Software Devel-
opment. InSoftware Technologies - ICSOFT 2015,
volume 586 ofCCIS, pages 1–17. Springer.

Lengnick-Hall, C. A. and Griffith, R. J. (2011). Evidence-
based versus tinkerable knowledge as strategic assets:
A new perspective on the interplay between innova-
tion and application. Journal of Engineering and
Technology Management, 28:147–167.

MacCormack, A., Crandall, W., Henderson, P., and
Toft, P. (2012). Do you need a new product-
development strategy? Research Technology Man-
agement, 55(1):34–43.

Munezero, M., Yaman, S., Fagerholm, F., Kettunen, P.,
Mäenpää, H., Mäkinen, S., Tiihonene, J., Riungu-
Kalliosaari, L., Tuovinen, A.-P., Oivo, M., Münch, J.,

and Männistö, T. (2017).Continuous Experimentation
Cookbook. DIMECC Oy, Helsinki, Finland.

Orlikowski, W. (2002). Knowing in Practice: Enabling a
Collective Capability in Distributed Organizing.Or-
ganization Science, 13(3):249–273.

Petersen, K. and Wohlin, C. (2009a). A comparison of is-
sues and advantages in agile and incremental develop-
ment between state of the art and an industrial case.
Journal of Systems and Software, 82:1479–1490.

Petersen, K. and Wohlin, C. (2009b). Context in Industrial
Software Engineering Research. InProc. ESEM 2009,
pages 401–404. IEEE.

Routio, P. (2007). Models in the Research Process.
http://www2.uiah.fi/projects/metodi/177.htm.

Runeson, P., Stefic, A., and Andrews, A. (2014). Variation
factors in the design and analysis of replicated con-
trolled experiments.Empirical Software Engineering,
19:1781–1808.

Sjøberg, D. I., Dybå, T., Anda, B. C., and Hannay, J. E.
(2008). Building Theories in Software Engineering. In
et al., F. S., editor,Guide to Advanced Empirical Soft-
ware Engineering, pages 312–336. Springer-Verlag.

Sjøberg, D. I., Hannay, J. E., Hansen, O., Kampenes, V. B.,
Karahasanovic, A., Liborg, N.-K., and Rekdal, A. C.
(2005). A Survey of Controlled Experiments in Soft-
ware Engineering. IEEE Transactions on Software
Engineering, 31(9):733–753.

Stol, K.-J. and Fitzgerald, B. (2015). Theory-oriented soft-
ware engineering. Science of Computer Program-
ming, 101:79–98.

Stuckenberg, S. and Heinzl, A. (2010). The Impact of
the Software-as-a-Service concept on the Underlying
Software and Service Development Processes. InProc
PACIS 2010, pages 1297–1308.

Turner, R., Ledwith, A., and Kelly, J. (2010). Project
management in small to medium-sized enterprises:
Matching processes to the nature of the firm.Interna-
tional Journal of Project Management, 28:744–755.

Wallace, L. and Keil, M. (2004). Software Project Risks and
their Effects on Outcomes.Comm. ACM, 47(4):68–
73.

Wang, X., Conboy, K., and Cawley, O. (2012). Leagile
software development: An experience report analy-
sis of the application of lean approaches in agile soft-
ware development.Journal of Systems and Software,
85:1287–1299.

Zachman, J. A. (2009). Engineering the Enterprise: The
Zachman Framework for Enterprise Architecture.
http://www.zachmaninternational.com/index.php/the-
zachman-framework.

Evolving a Model for Software Process Context: An Exploratory Study

303


