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Abstract: A learning-based robot kinematic calibration approach based on the product-of-exponentials (POE) formula
and Adjoint error model is introduced. To ensure high accuracy this approach combines the geometrical and
non-geometrical influences like for e.g. elastic deformations without explicitly defining all physical processes
that contribute to them using a polynomial regression method. By using the POE formula for kinematic
modeling of the manipulator it is ensured that kinematic parameters vary smoothly and used method is robust
and singularity-free. The introduced error parameters are presented in the form of Adjoint transformations
on nominal joint twists. The calibration process then becomes finding a set of polynomial functions using
regression methods that are able to reflect the actual kinematics of the robot. The proposed method is evaluated
on a dataset obtained using a 7-DOF manipulator (KUKA LBR iiwa 7 R800). The experimental results show
that this approach significantly reduces positional errors of the robotic manipulator after calibration.

1 INTRODUCTION

For a robot manipulator that is mainly used in repet-
itive applications (e.g. pick-and-place operations)
where the desired poses (position and orientation) of
the manipulator’s end-effector (EE) can be manually
taught, high repeatability is important to successfully
perform defined tasks. This ability to repeat a known
pose has submilimeter values (e.g. 0.1 mm for KUKA
LBR iiwa 7 R800) for modern manipulators. How-
ever if a task is unique, the robot is mostly given a
target pose defined in some relative or absolute co-
ordinate system. Such situations arise often when
robot’s poses are obtained through a simulation dur-
ing which the layout of the working environment and
a model of the robot are used. This requires special at-
tention to the accuracy of the simulated robot model,
and whether it corresponds to the robots actual kine-
matics.

This process, known as robot calibration, consists
of developing a mathematical model and identifica-
tion of parameters that are able to reflect the actual
behavior of the investigated robot and as a result bet-
ter predict its resulting poses can be build. There are
three categories of calibration presented in the liter-
ature (Elatta et al., 2004). The first is joint calibra-
tion, which is also called first level calibration, where
the difference between the actual joints displacements
and the encoder signals is considered. Level two in-
volves kinematic calibration, where the robots kine-

matic parameters are determined. Level three takes
into account non-kinematic error sources like elastic-
ity of the links or the backlash of the joints.

One of the most important stages of a calibration
procedure is the modeling stage, namely the selection
of an apropriate kinematic model and specification
of its parameters for error identification. Among the
most widely used methods to model robot kinematics
is the Denavit-Hartenberg approach (Denavit, 1955)
that uses 4 parametrs to describe relations between
frames of the manipulator. However, if the robot has
consecutive revolute joints with near parallel axes it
can lead to convergence problems during parameter
identification. Later Hayati and Mirmirani modified
this approach by ading an extra parameter of rota-
tion about an axis orthogonal to the plain in which
these parallel axes lie(Hayati and Mirmirani, 1985).
Other methods that address this problem include for
e.g. a Zero-Reference model (Mooring, 1983) and
CPC model (Zhuang et al., 1992).

The POE model, which uses twist theory to de-
scribe the geometry of each joint and is also a zero
reference position method, has been widely used in
robotics field. Kinematic parameters of the mod-
els based on the POE formula vary smoothly with
changes of joint axes, resulting in a continuous pa-
rameterization and no singularities for any type of
robot. In general methods that use POE models differ
by the type of the error assignment: additive (Chen
et al., 2014) or multiplicative (Li et al., 2016), and
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by the choice of frames where joint twists are related:
global (Okamura and Park, 1996) or local (Chen et al.,
2001).

Non-kinematic errors are often attributed to elastic
deformations, transmission nonlinearities, and ther-
mal expansion. To account for these errors corre-
sponding effects are analytically expressed with gear
or elastic models as in (Klimchik et al., 2015) or
(Marie et al., 2013). However, this approach depends
on having an accurate representation of the different
processes that can potentialy influence the accuracy of
the manipulator and inclution of additional parametrs
to be identified (e.g. moments of inertia of the robot
links, friction parameters). As a result these physical
processes are often simplified, leading to inaccuracies
in the model.

Instead, learning approaches are proposed to
model the behaviour of a robot. This allows us to
solve the calibration problem as a function estima-
tion task based on the measured data. The learning
approach requires no a-priori knowledge of the phys-
ical model. Instead, the model can be obtained di-
rectly using measured data. By not attributing errors
to specific physical processes we can distribute kine-
maticic and non-kinematic influences over introduced
error parameters. In general errors of the robot’s EE
may originate from five factors (Liou et al., 1993):
environmental (e.g. temperature or the warm-up pro-
cess), parametric (e.g. Kinematic parameter varia-
tion due to manufacturing and assembly errors, influ-
ence of dynamic parameters, friction and other non-
linearities), measurement (resolution and nonlinearity
of joint position sensors), computational (computer
round-off and steady-state control errors) and appli-
cation (e.g. installation errors). To be able to reflect
different influences in the model, experiments that in-
clude variations of the relevant factors would have to
be conducted. This work considers the influence of
only a limited amount of described factors, mainly
concentrating on the internal parameters of the robot.
However due to the nature of the proposed method,
in case the proper experimental data is available the
model could be easily extended to include other pa-
rameters.

In this paper, a learning based method for robot
calibration using Adjoint error model is presented
along with a comparison of different modeling ap-
proaches. The output of the calibration procedure is
a trained model that based on the input variables (e.g.
robot joint values and nominal Cartesian position of
the EE) would calculate the resulting pose of the ma-
nipulator under the influence of kinematic and non-
kinematic errors. This model can then be applied to
more accurately plan the tasks of the manipulator.

This paper is organised as follows. In Section 2,
the forward kinematics based on POE formula along
with the Adjoint error model are presented. A method
to calculate the values of the introduced error parame-
ters based on measurement data is introduced. We de-
scribe different modeling techniques in Section 3. In
Section 4, the proposed method is applied to the per-
formance evaluation of a KUKA LBR iiwa 7 R800
manipulator and the modeling thechniques are com-
pared. We conclude our paper in Section 5.

2 ROBOT KINEMATIC AND
ERROR MODELING USING
POE FORMULA

In this section, a method applied for calculation of
error parameters is described. First the POE repre-
sentation and Adjoint error model is used to describe
the robotic manipulator. After that the difference be-
tween reference poses of a robots flange measured
by a tracking system and the corresponding nominal
poses of the robot is used to obtain the values of the
introduced error parameters.

2.1 Robot Kinematic Model

According to Brockett (Brockett, 1984), the POE
model needs two coordinate frames attached in an ar-
bitrary position. Typicaly a frame S is attached to the
robot base link and a tool frame T to the EE. The rigid
displacement of T with respect to S can be described
by a 4×4 homogeneous matrix gggst as:

gggst =

(
RRR ppp
000 1

)
(1)

where RRR3×3 ∈ SO(3) is an orthogonal matrix de-
scribing coordinate axes of T in S and ppp3×1 ∈ R3 is
the position vector of the origin of T in S.

Each joint of the manipulator is associated with a
twist ξξξi, i = 1, . . . ,n, of the Lie algebra se(3) of SE(3)
as

ξ̂ξξi =

(
ŵwwi vvvi
000 0

)
(2)

where vvvi = [vi1,vi2,vi3]
T ∈ R3 and ŵwwi ∈ so(3) is a

skew symmetric matrix of wwwi = [wi1,wi2,wi3]
T ∈ R3,

and is given by:

ŵwwi =




0 −wi3 wi2
wi3 0 −wi1
−wi2 wi1 0


 (3)

The twist ξ̂ξξi can also be expresed as a 6×1 vector
ξξξi = (vvvT

i ,www
T
i )

T ∈ R6 . For a revolute joint, wwwi is the
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direction unit vector of the joint axis and vvvi = qqqi×wwwi,
where qqqi is an arbitrary point on the joint axis. For a
prismatic joint, wwwi = 0, and vvvi gives the unit direction
of the joint axis.

Then, the forward kinematic model of a serial
robot maping joint variables ΘΘΘ = [θ1, . . . ,θn]

T to the
tool frame displacement gggst based on the POE for-
mula can be expressed as (Murray et al., 1994):

gggst = eξ̂ξξ111θ1 · · ·eξ̂ξξnnnθngggst0 , (4)

where the matrix exponential eξ̂ξξiiiθi is the motion
generated by joint i with joint variable θi , and gggst0
denotes the initial tool frame displacement when all
joint angles are set to zero.

2.2 Adjoint Error Model

Based on the observed discrepancies between the
nominal kinematic model of the robot and measured
data, the current robot model has to be extended with
error parameters, that can reflect the differences in the
pose of the EE.

Li et al. proposed a multiplicative Adjoint trans-
formation error of the twist coordinates, referred to
as Adjoint error. According to this model the rela-
tionship between an actual joint twist and a nominal
joint twist, as shown in Figure 1, is given by (Li et al.,
2016):

ξξξa
= Adegggξξξn

= Adeη̂ηηξξξn (5)

for error parameters ηηη = (vvvT
η ,www

T
η)

T ∈ se(3). Ad-
joint transformation of the twist ξξξ with ggg = (RRR, ppp) is
given by (Murray et al., 1994):

Adgggξξξ =

(
RRR p̂ppRRR
000 RRR

)
ξξξ (6)

And the error of the initial tool frame offset gggst0
can be expressed by:

ggga
st0 = eη̂ηηst gggn

st0 (7)

Figure 1: Adjoint error model for joint twists and offset of
the tool frame.

2.3 Error Parameters Calculation

After defining an appropriate error model the intro-
duced error parameters should be estimated based on
the experimental data. The measured reference pose
of a point i, ggga

sti , can be written in general form as:

ggga
sti = fff H(HHH), (8)

where fff H is a non-linear function of HHH =
[ηηη1, . . . ,ηηηn,ηηηst ], a vector containing introduced error
parameters for each joint and initial tool frame offset.
Since these errors are small, this function can be lin-
earized at point HHH = 000. This is equivalent to having
all error parameters equal to 0:

ggga
sti = fff H(000)+JHHH|000(HHH−000), (9)

where JHHH|000 is a Jacobian function of fff H with re-
spect to the elements of error vector HHH, evaluated at 000
(denoted as JH in the following).

Because fff H(000) corresponds to the pose calculated
with the nominal parameters gggn

sti , given by Equation 4,
the difference between nominal and measured pose,
∆gggsti , is:

∆gggsti = JHiHHH (10)

If there are l measurements available, we can
present Equation 10 in matrix form as:

∆gggst =




∆gggst1
...

∆gggstl


=




JH1
...

JHl


HHH = JHHHH (11)

Under assumption that introduced error parame-
ters are constant, the above equation can be solved
with a least squares technique using a left pseudo-
inverse matrix of JH . But considering the need to
include the non-geometric influences (which are con-
figuration dependent and as result can not be constant)
into developed model, this approach can no longer be
used. If, on the other hand, each measurement is con-
sidered individually we can find a solution to Equa-
tion 10 with a minimum norm using right inverse of
JH :

HHH i = JT
Hi
(JHiJ

T
Hi
)−1∆gggsti (12)

Solving this equation for every measured-nominal
point pair will result in values of the error parameters
calculated for every measurement.

It should be notted that the expression for ∆gggst de-
pends on the type of the measurement:
Full Pose Measurements. If the orientation of the EE
is measured along with its position, ∆gggst = [∆ppp,∆RRR]T ,
where positional deviation is ∆ppp = pppa− pppn, and ori-
entational changes are presented with:

∆RRR = log(RRR−1
a RRRn)

∨ (13)
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log(RRR) =
θ(RRR)

2sin(θ(RRR))
(RRR−RRRT ) (14)

where

θ(RRR) = arccos
(

trace(RRR)−1
2

)
(15)

Position Only Measurements. In this case, not only
∆gggst consists of positional deviation only, but also
we cannot identify rotational errors in the initial tool
frame orientation from position measurements only.

3 MODELING OF THE ERROR
PARAMETERS

After calculating the values of the error parameters
for every point pair, we can construct such a model
that would reflect the behavior of the real robot as pre-
cisely as possible and at the same time remain general
enough to be able to be applied to the new data. For
this purpose the defined error parameters are modeled
and trained using a fraction of the experimental data.

3.1 Data Preprocessing

For every introduced error parameter regression anal-
ysis is used to predict its value depending on input
variables. These variables also called independent
variables are denoted by XXX . In order to model non-
linear relationships, input variables can be extended
by XXX = [x1,x2

1 . . .x
p
1 . . .x

p
n ], where p is the degree of

polynomial.
If a feature has a variance that is orders of mag-

nitude larger than others, it might dominate the ob-
jective function and skew the estimator preventing it
from learning from other features correctly. It also
influences the convergence of steepest descent algo-
rithms, which do not possess the property of scale in-
variance.

To prevent such behaviour, centering and scaling
should be applied independently to each input vari-
able by computing the relevant statistics on the sam-
ples in the training set:

x′i =
xi− x̄i

σ
, (16)

where x̄i =
1
s ∑xi is the mean value of a dataset of

size s. Mean and standard deviation of the training set
are then used to transform the values of the training
set.

3.2 Regression Analysis

One of the basic forms of regression analysis is linear
regression. It uses a Least Square Method to find a
model that fits the observed data by minimizing the
sum of the squared deviations between the observa-
tion and an estimator (Rawlings et al., 2001):

min||XXXωωω− y||22, (17)

where y represents the target variable, and ω re-
gression coefficients.

By introducing a higher degree polynomial we can
potentially better fit the fluctuations in the observed
data. On the other hand it can lead to over-fitting and
as a result poor performance on new data. Therefore
additional measures should be made to ensure better
performance.

3.2.1 Ridge Regression

Ridge regression (Hoerl and Kennard, 1970) is a tech-
nique that uses regularization by minimizing a penal-
ized residual sum of squares (Equation 18). This ap-
proach is effective in case of highly correlated input
variables.

min||XXXωωω− y||22 +λR||ωωω||22, (18)

where λR ≥ 0 is the shrinkage parameter that con-
trols the amount of regularization. Larger values of λR
would relult in lower regression coefficients, and min-
imize the impact of irrelevant input variables on the
trained model to avoid overfitting in case of collinear-
ity.

3.2.2 LASSO

LASSO (Least Absolute Shrinkage and Selection
Operator) is a regularization and variable selection
method that adds a factor of sum of absolute value of
coefficients in the optimization objective (Tibshirani,
1996):

||XXXωωω− y||22
s

+λL||ωωω||1, (19)

where a tuning parameter, λL ≥ 0, controls the
strength of the penalty. When λL = 0 no parameters
are eliminated and the estimate is equivalent to linear
regression. With the increase of this parameter, more
input variables have coefficient equal to zero and are
excluded from the model.

Lasso’s characteristic to push its weights to zero
is its advantage over Ridge regression, because it can
perform regression and variable selection at the same
time.
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3.2.3 Elastic Net

If there are input variables that are higly correlated
between each other, LASSO selects one variable from
each group and ignores the others. Elastic Net (Zou
and Hastie, 2005) is an extension of LASSO that over-
comes its limitations with a combination of LASSO
and Ridge regression methods. This method mini-
mizes the following objective function:

||XXXωωω− y||22
s

+λE2||ωωω||22 +λE1||ωωω||1, (20)

where λE1 ≥ 0 and λE2 ≥ 0 are two regulariza-
tion parameters. By adding a quadratic part to the
penalty, Elastic Net stabilizes the selection from cor-
related variables. This allows not only to have reg-
ularization properties of Ridge, but also result in a
sparse model with few non-zero weights like LASSO
regression.

3.3 Model Training

To evaluate the performance of the models the avail-
able data set is split into training and testing sets: the
training set is used to determine the regression coeffi-
cients of the models and for tuning model parameters
λ, and the performance evaluation is done on the test
set that was not used during modeling.

To determine the regularization parameters k-fold
cross-validation (CV), during which the training set
is split into k smaller sets, is used. Then for each of
these k sets a model is trained using k− 1 of the re-
maining sets, and the resulting model is validated on
the remaining part of the set. The resulting perfor-
mance measure of the k-fold CV is calculated as the
average of the values computed in the loop. Because
there are two tuning parameters in the Elastic Net (λE1
and λE2), the CV is done on a two-dimensional sur-
face. Those parameters that result in the smallest CV
error are chosen for model training.

To evaluate the performance of regression models,
R2 metric (the coefficient of determination) is used. It
provides a measure of how well test data are likely to
be predicted by the model. If ŷi is the predicted value,
then:

R2(y, ŷ) = 1− ∑(yi− ŷi)
2

∑(yi− ȳ)2 (21)

According to the presented calibration approach
the identification of error parameters for every point
in the training dataset and subsequent learning of the
regression models is required. The needed computa-
tional time is therefore bigger compared to the con-
ventional calibration methods, but considering that it
is conducted off-line, the computational time is not so
critical.

4 EXPERIMENT EVALUATION

In order to verify accuracy and effectiveness of the
presented error modeling approach, the proposed
method is evaluated on an example of a 7-DOF
KUKA LBR iiwa 7 R800 robot. The used data set
was provided by Siemens Healthcare GmbH.

4.1 Experimental Setup

We calibrate a KUKA LBR iiwa 7 R800 robot using
a FARO laser tracking system to measure the posi-
tion of a SMR target, rigidly mounted on the robot
flange. The accuracy of the laser tracker is up to
0.015 mm. The measured dataset includes position
data from 875 points in 170× 520× 520 mm mea-
suring volume. The data from the tracker was trans-
formed into the coordinate system of the robot using a
least mean square and Singular Value Decomposition
approach (Lorusso et al., 1995). The nominal joint
twists of KUKA LBR iiwa 7 R800 used to get nomi-
nal values of the EE are listed in Table 1.

Table 1: KUKA LBR iiwa 7 R800 nominal parameters
(mm).

ξξξn
1 (0, 0, 0, 0, 0, 1)

ξξξn
2 (-340, 0, 0, 0, 1, 0)

ξξξn
3 (0, 0, 0, 0, 0, 1)

ξξξn
4 (740, 0, 0, 0, -1, 0)

ξξξn
5 (0, 0, 0, 0, 0, 1)

ξξξn
6 (-1140, 0, 0, 0, 1, 0)

ξξξn
7 (0, 0, 0, 0, 0, 1)

gggn
st0




1 0 0 0
0 1 0 0
0 0 1 1266
0 0 0 1




4.2 Model Comparisson

For the process of model building the given dataset
was split into training (60 points) and testing (815
points) sets. Using Equation 12 we find values of
the introduced error parameters for every data point
in training set. As input parameters for the regression
models take the nominal Cartesian position of the EE
(X ,Y,Z) and the robot joint angles (θ1, . . . ,θ7). These
parameters are considered as basic inputs that do not
depend on the particular robot structure and can be
easily obtained without access to the robot controller.
In order to choose the hyperparameters for the regres-
sion models 5-fold CV was performed on the training
set. In the final step of the calibration, after error pa-
rameter models are trained, the resulting estimators
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can then be used to estimate the values of the identi-
fied error parameters for the testing set.

Figure 2: Frequency histogram of the distance error (mm)
for Ridge regression.

To illustrate the results of the modeling, error pa-
rameters were estimated by the trained models for the
test set and the corrected positions of the EE were cal-
culated. The frequency plot of the resulting positional
errors, measured as the distance between the nomi-
nal and measured position alongside with the distance
from modeled to measured position, for Ridge (Fig-
ure 2), LASSO (Figure 3), and Elastic Net regression
(Figure 4) shows significant shift of error distribution
towards zero.

Figure 3: Frequency histogram of the distance error (mm)
for LASSO regression.

Figure 4: Frequency histogram of the distance error (mm)
for Elastic Net regression.

Table 2: Distance error (mm) before and after modeling.

Error Measured Modeled
Ridge LASSO Elastic Net

mean 0.48 0.11 0.11 0.03
std 0.25 0.10 0.09 0.01

max 1.17 0.68 0.54 0.06

To better compare the results of the error model-
ing, Table 2 combines the statistical information for
the modeled error parameters. A substantial decrease
in standard deviation values for all models in compar-
ison to the nominal robot values can be observed. It
can also be seen that Elastic Net regression showed
best results in comparisson to other models.

4.3 Size of the Training Set

To investigate how the size of the training set influ-
ences the performance of the modeling approaches,
error models were trained using [25,35, . . . ,95] points
from the available dataset. To ensure that each point
was used for training and testing at least once 5-fold
CV was used. To account for the variance in the algo-
rithm itself the CV procedure was run 25 times, giv-
ing an estimate of the performance of the algorithm
on the dataset and an estimation of how robust its per-
formance is.

Figure 5: Distance error for the test set for different number
of training points for Ridge regression.

The box plots of the resulting positional errors
for Ridge (Figure 5), LASSO (Figure 6), and Elastic
Net regression (Figure 7) show that the mean value
stays almost the same and only the maximum values
change. From the Table 3, that presents the statis-
tical information of the regression models comparis-
son, we can see that Elastic Net shows the best results.

5 CONCLUSIONS

A learning based approach using the Adjoint error
model and POE formula was presented and evalu-
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Table 3: Distance error (mm) comparisson for different sizes of training sets based on 25 repetitions.

Size of the training set Ridge LASSO Elastic Net
mean std max mean std max mean std max

35 0.12 0.12 3.65 0.10 0.09 2.87 0.03 0.03 0.72
45 0.11 0.10 2.99 0.10 0.08 1.39 0.02 0.02 0.37
55 0.11 0.09 2.22 0.10 0.08 0.99 0.02 0.01 0.33
65 0.11 0.07 1.95 0.10 0.08 0.89 0.02 0.01 0.06
75 0.11 0.08 1.25 0.10 0.08 0.85 0.01 0.01 0.06
85 0.11 0.08 1.28 0.10 0.07 0.64 0.01 0.01 0.05
95 0.10 0.08 1.07 0.10 0.07 0.61 0.01 0.01 0.05

Figure 6: Distance error for the test set for different number
of training points for LASSO regression.

Figure 7: Distance error for the test set for different number
of training points for Elastic Net regression.

ated on example of KUKA LBR iiwa 7 R800. Kine-
matic and non-kinematic influences were included in
the calibration model without explicitly using phys-
ical models, by distributing their influence over in-
troduced error parameters. Regression analysis was
then used to predict their values for new data. Three
regression methods were compared on the number
of training points and resulting distance error us-
ing a dataset containing positional measurements of
the robot flange. As a result of this evaluation, all
three models showed decrease in distance errors at
the EE having low mean values over different num-
ber of training points. The Elastic Net model showed
best results by significantly improving the absolute
accuracy of the manipulators tool position using a

model depending on nominal Cartesian position of
the EE and joint configurations of the robot. An
example model trained with 60 points reduced the
mean value of the positional errors from 0.4808 mm to
0.0337 mm and the maximum value from 1.1513 mm
to 0.0601 mm.

As any learning based approach the proposed
method highly depends on the training data. As part
of the future work influences of different input param-
eters will be evaluated by designing different experi-
ments. Another important goal is to find some optimal
distribution and minimal number of points necessary
for training to reach needed accuracy. The dynamic
robot calibration, in which the impact of the motion
is considered, can also be applied using the proposed
method, if apropriate input parameters are used for
building the error model.
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