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Abstract: It is astonishing to see more and more services built on user-oriented data, providing numerous tools to improve
ones daily life. Nowadays, data collected from numerous sources is being used to monitor daily activities, i.e.,
monitoring patients. These innovations allow for more cost-efficient and scalable solutions. Nevertheless,
these types of services can pose a threat to the privacy of individuals due to the possibility of leaking highly
privacy-sensitive data. Therefore, it is essential to design such systems in a privacy-preserving manner. In-
spired by a real-life project in the health-care domain, we propose to secure the data using encryption, while
enabling the involved parties to run queries directly on this encrypted data. A vital component of such a sys-
tem is searching for specific data entries within a large dataset. In this work, we present two cryptographic
protocols that complete such a query by creating an encrypted vector in a simulation secure way. These vectors
consist of a 1 for intended database entry, whereas other items would be represented as a 0. By creating index
tables before the execution of the queries, it has become possible to execute a search query with high perfor-
mance. As we show in our analyses, it takes less than one second to find the matching encrypted data-entry
within a database with 100K records. Our proposal is generic, can be applied to several application domains,
and practically compared to similar works.

1 INTRODUCTION

A real-life problem motivates the work presented in
this paper: A hospital wants to monitor its patients us-
ing off-the-shelf smart devices (Treskes et al., 2017)
that measure, among other things, a patient’s weight,
ECG, blood pressure, and blood sugar level. These
devices connect to the smartphone of a patient, who
needs to be monitored on a daily basis. A mobile ap-
plication then sends the measurements to the central
server of the vendor. Afterward, the hospital can use
a web-based application to check the measurements
for any particular patient. The primary reasons to use
such a system are straight-forward: scalability and
cost reduction (Goldschmidt, 2005).

Unfortunately, the whole system relies on the as-
sumption that the vendor is trust-worthy and it has a
secure method to protect against both internal and ex-
ternal attackers. All recent incidents show that this is
not yet the case (Meingast et al., 2006). Currently, it is
possible for a hacker to break into the data servers and
steal privacy-sensitive medical data, such an attacker
can either be a malicious employee or someone who
makes a genuine mistake (Johnson, 2009). It is es-
sential to propose a system where sensitive data are
protected while enabling medical institutions to mon-

itor their patients remotely.
In order to create a secure system with this lay-

out, we propose to encrypt measurements directly on
the smartphone of the user before sending them to the
vendor. We aim to encrypt the data using a homomor-
phic encryption scheme which enables data process-
ing while encrypted, without revealing the content of
data to the vendor or any third party. More precisely,
what is needed for the above system is to identify a
patient, or a group of patients, with specific condi-
tions, e.g., people with high blood pressure within a
particular time period. Provided that we require se-
mantic security, it is challenging to find all the data for
given conditions, since it requires ‘searching through
the encrypted database.’

Searching in encrypted databases has been a chal-
lenge for researchers for many decades. Proposed so-
lutions vary in the cryptographic tools used for en-
crypting data. Examples include: schemes built on
attribute-based encryption (Bethencourt et al., 2007),
homomorphic encryption (Chung et al., 2010) and
special constructions such as Oblivious RAMS (Os-
trovsky, 1990; Goldreich and Ostrovsky, 1996). The
focus has been on improving efficiency; the current
state-of-the-art is not as practical as searching within
a plaintext database where different techniques can be
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used to speed up the search function (e.g., creating
hash tables). Therefore, there is a need for further re-
search to achieve higher efficiency.

Inspired by the medical application, in this work,
we assume that patients have a smartphone, which
can collect measurements from one or more smart
devices. The data is then sent to the vendor’s stor-
age unit, which can either be a local or cloud-based
database. More interestingly, a patient might utilize
different smart devices from different vendors. The
hospital that wants to monitor a specific patient, or a
group of patients, should be able to retrieve the related
data without leaking information to any of the ven-
dors. This application setting is challenging for three
reasons: 1) we want to enable hospitals to retrieve
data on sophisticated queries, 2) we also assume
multiple devices from different vendors and 3) the
amount of data collected from the patients is signif-
icantly large. To achieve our goal, we need to identify
the data entries, which are all encrypted, that match
the query provided by the hospital. More precisely,
we assume that there is a global (virtual) database
with encrypted entries from all devices. Given that
database, we want to create an encrypted, binary vec-
tor such that a vector element is 1 for corresponding
database entry and 0, for all other tuples. Given such
an encrypted binary vector, it is possible to build nu-
merous services such as i) generating statistics (i.e.,
counting, averaging), ii) data aggregation, and iii) pri-
vate data retrieval.

To obtain such a vector, we present two crypto-
graphic protocols for secure searching, IBSvI and IB-
SvII. In IBSvI, we propose a computation-wise ef-
ficient searching protocol. In IBSvII, the computa-
tion of generating the encrypted binary vector is per-
formed in one party. However, IBSvII introduces
more computational overhead. These protocols rely
on creating index tables and updating them with each
input received from a device. The index tables are
then used later to execute queries and find specific
database entries at significantly lower cost. Our pro-
posal has several advantages over existing works: 1)
our protocols are designed for numerical data, in con-
trast to current work that relies on exact match, 2) our
proposal supports conjunction queries with “AND”,
3) our proposal is simulation secure; it leaks no pri-
vate information including search pattern and access
pattern to the involved entities, and 4) our protocols
enable generating statistics from encrypted data based
on the given conditions.

2 RELATED WORK

Ostrovsky and Goldreich (Ostrovsky, 1990; Goldre-
ich and Ostrovsky, 1996) introduced ORAM where it
is possible to evaluate any query, while the access pat-
tern is kept hidden. ORAM lets users upload their pri-
vate data to a remote storage in encrypted form, and
still have random access to their data in a secure way.
However, ORAM allows users to access only one en-
try at a time with a logarithmic number of commu-
nication rounds for each read. Moreover, in ORAM,
users should know the location of the data that they
are looking for in the database. Later works (Song
et al., 2000; Goh, 2003; Chang and Mitzenmacher,
2005) proposed more efficient ways of searching by
using weaker security models. Song et al. (Song et al.,
2000) introduced a private key based searching that is
communication-wise more efficient than ORAM. The
secure searching in (Song et al., 2000) is based on
generating and storing a two-layer ciphertext in the
remote storage unit. Although the introduced encryp-
tion scheme by Song et al. is proven to be secure, the
searching procedure reveals the access pattern. Simi-
larly, Stefanov et al. (Stefanov et al., 2014) combined
a secure search and ORAM, where the keywords are
kept confidential, but the search protocol still reveals
the access pattern to the remote storage. To improve
the searching performance, as one of the limitations of
Song et al. (Song et al., 2000), Goh (Goh, 2003), and
Chang and Mitzenmacher (Chang and Mitzenmacher,
2005) proposed two new secure searching protocols
with indexing. They constructed an index table along-
side each set of data in the remote storage. The remote
storage uses the index tables to find the matching data
instead of checking every single encrypted data. Al-
though (Goh, 2003; Chang and Mitzenmacher, 2005)
are efficient, their proposals leak access pattern to the
untrusted parties.

Curtmola et al. (Curtmola et al., 2011) also pre-
sented a semantically secure search by using asym-
metric data encryption, which is capable of finding
desired data in sub-linear search time. In (Curtmola
et al., 2011), each user constructs an index, which in-
cludes every possible data that can appear in a query,
then the index table is deterministically encrypted
and outsourced to the remote storage. To perform a
search, a user constructs a query that contains a to-
ken that is a deterministic function of the search data
and sends the token to the remote storage. Then, the
remote storage unit searches for the specific data in
each set. Although the proposed searching technique
is fast, it has two limitations: 1) users cannot update
the index table of their data unless they generate the
index table again, and 2) the searching technique still
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reveals the access pattern. To overcome the challenge
of updating index table in (Curtmola et al., 2011), Ka-
mara et al. (Kamara et al., 2012) introduced an im-
provement, which enables updating the index table.
However, the problem of revealing the access pattern
is not addressed in that work. (Ding et al., 2017)
proposes an efficient and secure search that supports
top-k similarity search over encrypted data by using a
random traversal algorithm. However, in (Ding et al.,
2017), users cannot evaluate their queries, but only
the data owner. (Miyoshi et al., 2017) presents an ef-
ficient search technique over encrypted data that uses
Bloom filter as the indexing technique. Although us-
ing Bloom filter introduces false-positive results, it
makes the size of the indices very small and indepen-
dent from the security parameter at the cost of leaking
number of matches.

Boneh et al. introduced the first Public-key En-
cryption with Keyword Search (PEKS) (Boneh et al.,
2004), which was shown later that it leaks user’s ac-
cess pattern. Furthermore, (Boneh et al., 2004) is in-
secure against offline keyword guessing attack (Byun
et al., 2006). Boneh et al. proposed another PEKS
(Boneh et al., 2007), which is based on PIR (Chor
et al., 1995) and Bloom filters, where the aim is to
hide the access pattern. Although (Boneh et al., 2007)
is secure, PIR-based schemes are computationally ex-
pensive. Moreover, in (Boneh et al., 2007) the num-
ber of matches that can be found in the remote stor-
age is fixed beforehand to not leak the number of
matches. To reduce the search overhead, Bellare et al.
(Bellare et al., 2007) introduced an efficient public-
key searchable encryption (ESE), which achieved an
optimal search time. In contrast to PEKS, ESE al-
lows other users to generate tokens and search for data
in the remote storage unit only by having the public
key. However, ESE encryption scheme is determinis-
tic and vulnerable to brute-force attacks.

Sahai and Waters (Sahai and Waters, 2005) in-
troduced a new encryption scheme called Attribute-
Based Encryption (ABE), which is capable of using
an arbitrary string as the public key. In ABE, a cipher-
text is not generated for a particular receiver, but for
whom possess the desired attributes. In later works,
Goyal et al. (Goyal et al., 2006) and Bethencourt et al.
(Bethencourt et al., 2007) revised the ABE and intro-
duced Key-Policy Attribute-Based Encryption (KP-
ABE) and Ciphertext-Policy Attribute-Based Encryp-
tion (CP-ABE). Then, Han et al. (Han et al., 2014)
proposed a new encryption scheme, Attribute-Based
Encryption with Keyword Search (ABEKS), which
enables a multi-user access control based on KP-
ABE. In ABEKS, a token is generated by using user’s
private key, and it consists of the desired data to be

searched in the remote storage unit. However, in (Han
et al., 2014) search is realized through decryption of
ciphertexts in the database, which introduces a signif-
icant computational overhead. Moreover, this tech-
nique requires generating a trapdoor, which necessi-
tates collaboration with data owner. (Zhang et al.,
2016) proposes a privacy-preserving ranked multi-
keyword search in a multi-owner model. This ap-
proach allows each data owner to use his private key
for the encryption. However, this proposal suffers
from the high computational cost of searching. Guo
et al. (Guo et al., 2017) proposed a secure search
that supports multiple data owners setting. (Guo
et al., 2017) also enables rank search based on the
relevance of documents and keyword, and quality of
documents. They also propose an efficient indexing
structure, group keyword balanced binary tree (GBB
tree), to achieve higher efficiency in searching. How-
ever, in (Guo et al., 2017), a trusted third proxy is
used to facilitate data outsourcing and query evalua-
tion. Moreover, the improvement over BB-tree leaks
private information regarding access pattern. As it is
stated in (Guo et al., 2017), the GBB-tree may not ac-
cess one or multiple subtrees to reduce computation
overhead, which can reveal access pattern.

Chung et al. (Chung et al., 2010) introduced a se-
cure outsourcing protocol based on Gentry’s fully ho-
momorphic encryption scheme (Gentry, 2009). Al-
though in (Gentry, 2009) confidentiality of data is
preserved, while data processing remains possible, its
computational overhead is still a challenge. Li et al.
(Li et al., 2012) proposed a method to apply homo-
morphic encryption with an overhead linear in the
number of the records. Xiong et al. (Xiong et al.,
2013) introduced a ciphertext-policy-ABE (CP-ABE)
searchable encryption by using homomorphic encryp-
tion, where its search time is proportional to the size
of the dataset. Bösch et al. (Bösch et al., 2012)
proposed a scheme, BTH+, which is a combination
of somewhat homomorphic encryption, and indexing
technique of Chang and Mitzenmacher (Chang and
Mitzenmacher, 2005). In Bösch’s work (Bösch et al.,
2012), only the data owner can perform a search over
the data, since generating trapdoor requires the pos-
session of the private key.

Gentry et al. (Gentry et al., 2015) proposed a se-
cure searching based on ORAM and Somewhat Ho-
momorphic Encryption (SHE) scheme. Although us-
ing ORAM in (Gentry et al., 2015) prevent informa-
tion leakage in searching, it is communication-wise
expensive. Popa et al. (Popa et al., 2012) introduced
one of the most well-known solutions, CryptDB, for
searching over encrypted data. CryptDB uses dif-
ferent encryption schemes depending on the type of
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the given query to be evaluated over encrypted data.
However, CryptDB leaks the number of matches to
the untrusted server. Moreover, in (Akin and Sunar,
2015), the authors show that CryptDB is insecure
because it does not provide integrity for the query.
Krell et al (Krell et al., 2017) introduce another se-
cure searching using ORAM, SHE, and Bloom fil-
ter that is significantly more efficient. However, they
achieve such efficiency at the cost of leaking access
pattern. Moreover, the work in (Krell et al., 2017)
suffers from high storage complexity, where 100K of
records each having four searchable keywords results
in an encrypted index that using 75GB of RAM. An-
other drawback of (Krell et al., 2017) is that it requires
the data owner to be online for searching. Table 1
summarizes the performance and security of the state-
of-the-art searching techniques and our secure search-
ing protocols. In Table 1, we denote multi-reader and
multi-writer setting as M-M, n is the total number of
records, na

v is the number of records having the at-
tribute a equal to v, d is the number of data own-
ers, λ is a security parameter, and k stands for top-k
documents as described in (Guo et al., 2017). Note
that, in contrast to the existing works, our proposal
only addresses the problem of finding the matching
records, not retrieving them. Thus, the current works
and ours are not comparable concerning performance,
communication/computation-wise.

3 SECURE SEARCHING
PROTOCOLS

In this work, there are five parties: 1) users, 2) data
storage units, 3) query issuer, 4) remote computation
system, and 5) key manager:

i) Key Manager (KM): KM generates a pair of pub-
lic and private keys and shares the public key
with the other parties. KM also collaborates with
RCS to perform two-party computations such as
secure decryption.

ii) Users: They are the owners of private data (pa-
tients) that are stored in remote data storage in
encrypted form. The users send their measure-
ments to the corresponding vendors. The data
is consisting of several attributes, denoted by pi.
Therefore, the users’ data structure is a tuple
T (idu, pi, idpi ,v), where idu is the user identity,
pi is an attribute (e.g., date, time, age, device id,
etc), idpi is an unique identity for pi, and v is the
measurement. The users send their encrypted tu-
ples to their data storage units.

iii) Data Storage Unit (DSU): Each data storage unit
collects data from one or multiple users and
sends the data to a remote computation system,
cloud, on a regular basis. In our scenario, DSUs
are the vendors, who are offering smart devices
to people.

iv) Query Issuer (QI): QI is interested in processing
users’ data (i.e., hospital or medical research in-
stitutes). In our work, QI can ask for generating
statistics like counting, averaging, and data ag-
gregating. QI constructs a query that includes
one or multiple attributes as q : {QT , ṕi, ´idpi}
based on the type of result that QI is interested
in. QT defines the type of the query like count-
ing, each ṕi represents the value of an attribute.
To prevent private data leakage, QI encrypts pi
values. idpi are meta-data that describe ṕi refer-
ring to what type of attribute (i.e., blood pressure
or heart beating rate).

v) Remote Computation System (RCS): RCS is a
considered to be a cloud storage and processing
unit that has sufficient computational and storage
capacity. RCS receives and stores the encrypted
data from all DSUs. RCS also receives encrypted
queries from QI. Henceforward, we denote the
jth tuple in RCS as Tj.

For our constructions, we use an additively homo-
morphic and semantically secure encryption scheme,
namely Paillier (Paillier, 1999), and a fully homo-
morphic scheme, Fan-Vercanteren (FV) (Fan and Ver-
cauteren, 2012). Our system is designed under the as-
sumption of semi-honest security model (Goldreich,
2004). In our setting, the aim is to protect private
data of users and QI from both KM and RCS, which
are semi-trusted, during the evaluation of the query q
provided by QI. The results of queries are kept hidden
from KM and RCS.

3.1 IBSvI

Searching in IBSvI consists of two phases: First, we
generate indices, which is done before the execution
of the protocol (off-line phase) and second, we in-
voke the searching protocol upon receiving the query
q from QI (on-line phase).

3.1.1 Generating Indices

Indices are constructed in four steps:
1. Users change the measurements of each attribute

pz, z ∈ {0, · · · ,α−1} to binary form (pz)i, where
i ∈ {0, · · · ,e ≤ `− 1} and e is the bit-length of
pz. Then, they assign zero to the rest of bits from
(pz)e to (pz)`−1.
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Table 1: Summary of schemes. Communication round is denoted as CR, data transmission as DT, and statistical query as SQ.

Scheme Search CR DT Leakage SQ “AND” M-M
(Goldreich and Ostrovsky, 1996) O(n log2 n) O(logn) O(log2 n) no leakage no no no
(Krell et al., 2017) O(logn) O(log2 n) O(log3 n) access pattern no yes no
(Gentry et al., 2015) O(logn) O(logn) O(n log2 n) no leakage no yes no
(Guo et al., 2017) O(n) O(d) O(k) access pattern no yes yes
(Miyoshi et al., 2017) O(log2m +nv) O(1) O(nv) access pattern no no no
(Kamara et al., 2012) O(nv) O(1) O(λ) access pattern no no no
IBSvI O(mn) O(1) O(n) no leakage yes yes yes
IBSvII O(mn) O(1) O(n) no leakage yes yes yes

Table 2: List of symbols.

Symbol Description Symbol Description
pk/sk public/secret key n encryption modulus
Epk encryption Dsk decryption
κ security parameter r,rz,θ random number in Zn
T tuple of multiple attributes p attribute
α number of attributes in a query bl(p) bit length of p
` maximum bit-length of attributes ϕ false positive rate control
Ans result of query evaluation ρ́ package capacity in Paillier
QT query type idpi meta data for pi
UnPerm inverse of Perm [x] Epk(x)
ρ̂ number of item can be packed in FV indexpi index tables for pi
indexpi

i, j ith column and jth row in indexpi d(a,b) Hamming distance of a and b
T pi

j value of pi in jth record (T pi
j )i ith least significant bit of T pi

j
(pi) j jth least significant bit of pi ω total number of records
Perm permutation function Maxα total number of attributes

2. Users multiply each (pz)i by 2i, i ∈ {0, · · · ,e},
encrypts the results as a tuple T pz :<
idpz , [idu], [(pz)i] > and send them to their
DSUs, who send the encryptions to RCS later.

3. RCS creates an index for each possible attribute
(there are Maxα attributes in total), where each
index has ω rows that is the total number of tuples
collected from DSUs and ` columns.

4. RCS locates each encrypted tuple [(T pz)i, j] (ith bit
of the jth tuple received from DSUs) in the corre-
sponding generated index, index[pz]

i, j ← [(T pz)i, j],
i ∈ {0, · · · , `−1}.

We present values in the binary form to check whether
each encrypted data stored by RCS matches a particu-
lar encrypted data in q without invoking any two-party
protocol. Each value is multiplied by powers of 2
to eliminate false positive results in our construction.
Protocol 1 shows the steps that RCS takes to generate
indices. It indicates that Maxα indices are created,
one for each attribute. According to Protocol 1, it
is explicit generating indices in RCS is computation-
free and storage-demanding.

Protocol 1: RCS:GenIndex.
Require: [T pz

j ]
Ensure: indices for each pz

1: for z = 0 to Maxα−1 do
2: Create indexpz

3: for i = 0 to `−1 do
4: for j = 0 to ω−1 do
5: index[pz]

i, j ← [(T pz)i, j]
6: end for
7: end for
8: end for

3.1.2 Secure Searching

Protocol 2 shows the process of evaluating an en-
crypted query [q] over the encrypted databases using
the generated indices.

1. QII
f1 : Once RCS generates the indices, QI con-

structs a query q including e ≤ α attributes ṕz,
z∈ {0, · · · ,e−1}, which QI is interested in. Simi-
lar to the process of index generation, QI converts
the values of its attributes to binary form. Then it
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Protocol 2: IBSvI.

computes (ṕz)i← (ṕz)i ∗ (−2i), i ∈ {0, · · · ,e−1}
and assigns zero to {(ṕz)e, · · · ,(ṕz)`−1}.

2. RCSI
f1 : RCS tosses a random coin r for each

pair of (indexpz
i, j,(ṕz)i) to compute (indexpz

i, j⊕ (r ∗
2i),(ṕz)i ⊕ (−r ∗ 2i)). Note that the values of
indexpz

i, j is in encrypted form. Thus, to compute
indexpz

i, j ⊕ (r ∗ 2i), RCS checks whether r = 0,

index[pz]
i, j ← (r = 0)?(index[pz]

i, j ) : ([2i]− index[pz]
i, j ).

Similarly, to compute (ṕz)i⊕ (−r ∗ 2i), RCS per-
forms [(ṕz)i]← (r = 0)?[(ṕz)i] : (−([2i]+ [ṕz)i]).
Afterwards, RCS computes [dpz

i, j ], which is clearly
zero if |indexpz

i, j|= |(ṕz)i| that means the ith bit of
indexpz

j matches the ith bit of ṕz in q.

3. RCSI
f2 : To check if ṕz equals pz of the jth tuple in

the database, RCS checks whether the Hamming
distance d between them is zero, d(indexpz

j , ṕz) =

0. To obtain d, RCS computes Rpz
j ← ∑`−1

i=0 [d
pz
i, j ].

4. RCSI
f3 : In case of there are multiple ṕz in query

q, RCS checks if the all the ṕz matches the cor-
responding [pz] in each tuple. To do so, RCS can
simply compute [y j]←∑α−1

z=0 [R
pz
j ], if [y j = 0] then

it means the jth tuple in RCS matches [q]. How-
ever, there is a possibility of obtaining false pos-
itive result. Thus, RCS chooses α uniformly dis-
tributed random number rz, z∈ {0, · · · ,α−1} and
another random number θ. rz values are used in
the protocol to decrease the false positive rate and
θ is used for the security reasons.

5. RCSI
f4 : In this step RCS choose ω uniformly ran-

dom numbers ý j ∈ {0, · · · ,2`−1} and another ran-
dom number ŕ. In this step, RCS inserts ω random
numbers, which has ŕ zeros, to [y]. This step pre-
vent the KM to learn about the number of matches
and other statistical information from y j values.

6. RCSI
f5

: RCS permutes [y j] to not let the KM learn
about the locations of tuples that matched q.

7. KMI
f1 : The KM decrypts given [y j], j ∈

{0, · · · ,2ω − 2}, and checks whether y j = 0.
Then, it creates an array I j, filled with binary val-
ues such that I j← (y j = 0)?1 : 0.

8. RCSI
f6

: RCS reverse permutes [I j] and removes
the dummy encryptions added to [y j] in RCS f4 .

Finally, RCS has an encrypted binary array, which
represents the location of matching tuples in the
database. To optimize IBSvI regarding computa-
tion and communication, we also apply data pack-
ing (Erkin et al., 2012; Troncoso-Pastoriza et al.,
2007) on our protocol. Note that we cannot apply
data packing on [I j] because it prevents performing re-
verse permutation and removing dummy encryptions
in RCSI

f6
. However, we can skip RCSI

f6
, and per-

form RCSI
f4 and RCSI

f5
on the database itself, where

j́ = ŕ = 0, for evaluation of QT . This modification
allows to pack [I j] and reduces both communication
and computation cost.

3.2 IBSvII

In IBSvII, we achieve a communication cost-free
searching algorithm. Similar to IBSvI, there are two
phases in IBSvII, indexing and searching. The index
tables generation phase is identical to IBSvI except
we do not multiply (pz)i by 2i.

Protocol 3 shows how IBSvII works. There are
four steps in IBSvII, QIII

f1 , RCSII
f1 , RCSII

f2 , and RCSII
f3 .

1. QIII
f1 : Similar to QII

f1 , QI generates the query
with e ≤ α attributes pz, z ∈ {0, · · ·e− 1}. Then,
QI represents the the values of the attributes
to binary form, encrypts them, and send {[1−
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Protocol 3: IBSvII.

(pz)0], · · · , [1− (pz)`−1]} to RCS. Afterward, QI
sends QT plus necessary meta-data to RCS.

2. RCSII
f1 : This step computes [dpz

i, j ] like in RCSI
f1 ,

however, [dpz
i, j ] are binary values. The challenge

in computing [dpz
i, j ] in RCSI

f1 was that it could be
a combination of positive and negative numbers
such that their addition Rpz

j becomes zero, which
is considered as a false positive result. In RCSII

f1 ,
each [dpz

i, j ] is squared, which solves the problem of
negative numbers. Recall that (indexpz

i, j +(ṕz)i) ∈
{−1,0,1}, thus dpz

i, j ∈ {0,1} in RCSII
f1 .

3. RCSII
f2 : After computation of [dpz

i, j ], we compute
Rpz

j ← Rpz
j ×dpz

i, j . Rpz
j remains one if the ṕz in the

query q matches pz of jth record in the database.

4. RCSII
f3 : This step apply the “AND” connections

among multiple Rpz
j by computing ∏α−1

z=0 Rpz
j to

obtain Ans j.

In IBSvII, we can use batching to reduce the com-
putational overhead. Batching enables not only the
addition of two packed ciphertexts but also supports
multiplication. Thus, all the operations stated in Pro-
tocol 3 can be performed over packed ciphertexts
without collaboration with KM.

4 SECURITY ANALYSES

We consider the semi-honest security model (Goldre-
ich, 2004), where parties are assumed to be honest in

following the protocol description, while they are cu-
rious to obtain more information than they are entitled
to. Given that the only RCS gets is the encrypted out-
put from the protocol, KM should not be able to dis-
tinguish if RCS has a different input and RCS should
not learn more information than the output of the pro-
tocol. We also assume that parties do not collude with
each other.

4.1 Security of IBSvI

Let RCSI
f = (RCSI

f1 , · · · ,RCSI
f6
), KMI

f = (KMI
f1), and

f = (RCSI
f ,KMI

f ) to be the PPT functionality for IB-
SvI. The view of the ith party (i∈{RCS,KM}) during
the execution of IBSvI on (indexpz ,φ) and security
parameter n is denoted by viewIBSvI

i (indexpz ,φ,n) =
(w,ri;mi

1, · · · ,mi
t), where w ∈ {indexpz ,φ} based on

the values of i, ri are the ith party internal random
numbers, and mi

j represents the jth message that
is received by ith party. Note that KM does not
have any initial input, thus its input is denoted as
φ. out putIBSvI

i (indexpz ,φ,n) represents the output of
each party during the execution of IBSvI. To repre-
sent the joint output of both parties, we denote

out putIBSvI = (out putIBSvI
1 (indexpz ,φ,n),

out putIBSvI
2 (indexpz ,φ,n)).

(1)

Definition 4.1. It can be proven that IBSvI securely
computes f = (RCSI

f ,KMI
f ) in the semi-honest secu-

rity setting if there exits PPT algorithms SimRCS and
SimKM such that:

{(SimRCS(1n, indexpz ,RCSI
f , f ))} c≡ {(view f

RCS

(indexpz ,φ,n),out put f (indexpz ,φ,n))}
(2)

and

{(SimKM(1n,φ,KMI
f , f ))} c≡ {(view f

KM

(indexpz ,φ,n),out put f (indexpz ,φ,n))}
(3)

Theorem 1. The protocol IBSvI is simulation secure
and securely computes the functionality f , when the
party RCS is corrupted by adversary ARCS in the pres-
ence of semi-honest adversaries.

Proof. We need to show that RCS cannot computa-
tionally distinguish between generated messages and
outputs from S2 and S3, and randomly generated data.
RCS receives an output from S2, [ ˆAns j], and a mes-
sage from S3, [(p̂z)i]. Protocol 6 shows the simulators
for KM and QI that are S2 and S3, respectively. Note
that because of the space limitation, only the mes-
sage from S3 to RCS, [p̂z)i], is presented in Protocol
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6. Given indexpz and 1n (security parameters), RCS
works as follow:

1. RCS chooses three uniformly random tapes r, rz,
and ŕ for RCS f .

2. S3 randomly generates u p̂z ∈ N, where u ≤ α,
u random meta data, and a random Q̂T . Then,
S2 forms [q] ← {Q̂T , [(p̂z)i]||M̂Di}, where i ∈
{0, · · · ,u≤ α−1}, ans send [q] to RCS.

3. RCS executes RCSI
fi , i ∈ {1, · · · ,5}, and it outputs

[ŷ j] to S2.
4. S2 tosses j coins Î j and sends [Î j] to RCS.
5. RCS performs UnPerm[Î j], and outputs

[ ˆAns j]←Half([Î j])

The output of the simulation can be writ-
ten as: SimRCS(1n, indexpz ,RCSI

f , f ) =

(indexpz ,r,rz, ŕ; [Î j], [(p̂z)i];([ ˆAns j],φ)]).
The real view of RCS can be pre-
sented as view f

RCS(indexpz , [(ṕz)i,n]) =
(indexpz ,r,rz, ŕ; [I j], [(ṕz)i]). And the output of the
real view is out put f (indexpz , [(ṕz])i) = ([Ans j],φ).
It can be observed that the encryption pairs
([Î j], [(p̂z)i])) and ([I j], [(ṕz)i]) are indistinguish-
able, since the crypto-scheme used in IBSvI is
semantically secure. For the same reason ARCS can-
not distinguish between [Ans j] and [ ˆAns j]. Recalling
that RCS is also given meta-data that describes the
query type and attributes in q, RCS cannot see if
the provided meta-data are corresponding to the
attributes p̂z in q. Therefore, we can claim that

SimRCS(1n, indexpz ,RCSI
f , f )

c≡ {view f
RCS

(indexpz , [(ṕz)i],n),out put f (indexpz , [(ṕz)i]).
(4)

Theorem 2. The protocol IBSvI is simulation secure
and securely computes the functionality f , when the
party KM is corrupted by AKM in the presence of
semi-honest adversaries.

Proof. The simulation for the case when KM is cor-
rupted is presented in Protocol 7. After receiving 1n,
KM works as follows:

1. S1 chooses a uniformly random number r̂ ∈
{0, · · · ,2ω−2}.

2. S1 chooses 2ω uniformly random numbers ŷ j ∈
{−v, · · · ,v}, where v=Maxα(2`−1)(2φ−1), that
contains r̂ zeros.

3. S1 encrypts ŷ j and sends the permuted encryptions
[ŷ j] to KM.

4. KM calls the KM f1 functionality to obtain encryp-
tions [I j] and send them to S1.

5. S1 performs UnPerm[I j], and outputs
[Ans j]←Half([I j]).

The simulation and the real view can be written as:

SimKM(1n,φ,KM f , f ) = (φ; [ŷ j]; [Ans j]]). (5)

The view and output of KM are
view f

KM(indexpz ,φ,n) = (φ, [y j]) and
out put f (indexpz , [(ṕz)i]) = (φ, [Ans j]). Since
AKM has the decryption key, we need to show that
AKM cannot distinguish between y j and ŷ j. We need
to consider following points to prove the security
theorem:

1. The values of (indexpz)i and (pz)i: as it is pre-
sented in Protocol 2, both indices (indexpz)i and
(pz)i are XORed with uniformly distributed ran-
dom r in RCSI

f1 .

2. The bit-lengths of (indexpz)i and (pz)i: to hide the
bit-lengths of (indexpz)i and (pz)i, a fix bit-length
solution is suggested, where (indexpz)i and (pz)i
are ` bits for every entry.

3. Number of attributes α in q: the value of al pha
has a direct effect on the upper and lower bounds
of y j. To prevent AKM to learn about the α, as
it is shown in RCSI

f3 , RCS multiplies [y] j by the
difference between α and the maximum number
of attributes that QI can put in q, Maxα.

4. Number of zeros in y j: by learning number of ze-
ros from multiple y j, AKM might be able to distin-
guish between real y j and ŷ j. RCSI

f4 randomizes
the number of zeros by inserting a random number
of zeros to y j.

Randomizing the stated four properties guarantees
that AKM cannot distinguish between y j and ŷ j, thus:

SimKM(1n,φ,KM f , f ) = {view f
KM

(indexpz ,φ,n),out put f (indexpz , [(ṕz)i])}.
(6)

4.2 Security of IBSvII

In IBSvII, computation of Ans j does not require col-
laboration of RCS and KM; thus, RCS can compute
the final binary vector Ans j without any communica-
tion. To prove the security of Protocol 3, we need to
show that RCS cannot learn anything from data.

Theorem 3. The protocol IBSvII is simulation secure
and securely computes the functionality f , when the
party RCS is corrupted by adversary ARCS in the pres-
ence of semi-honest adversaries.
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Table 3: Computational complexity of the searching protocols.

Protocols Addition Exponentiation Multiplication Encryption Decryption

IBSvI

(3αω`+αω)/ρ́ (αω)log(θrz)/ρ́ 0 3ω 2ω/ρ́

O(αω`/ρ́) — O(ω) O(ω/ρ́)

IBSvII

(αω`)/ρ̂ 0 (2αω`+αω)/ρ̂ 0 0

O(αω`/ρ̂) O(αω`/ρ̂) — —

Proof. We need to show that RCS is unable to com-
putationally distinguish between the truly generated
messages given from S3, the simulator of QI, and ran-
domly generated data. Given indexpz and 1n (security
parameters), RCS in IBSvII works as follows:

1. S3 randomly generates u p̂z ∈ N, where u ≤ α,
u random meta data, and a random Q̂T . Then,
S2 forms [q] ← {Q̂T , [(p̂z)i]||M̂Di}, where i ∈
{0, · · · ,u≤ α−1}, ans send [q] to RCS.

2. RCS executes RCSI
fi , i ∈ {1, · · · ,3}, and then out-

puts [Ans j].

The output of the simulation can be pre-
sented as: SimRCS(1n, indexpz ,RCSII

f , f ) =

(indexpz , [(p̂z)i]; [ ˆAns j],φ). The real view of RCS is
view f

RCS(indexpz , [(ṕz)i]) = (indexpz , [(ṕz)i]) and the
real view of the output is out put f (indexpz , [(ṕz)i]) =
([Ans j],φ). Clearly, the encryptions [(p̂z)i] and
[(ṕz)i]), and [Ans j] and [ ˆAns j] are indistinguishable
because of using semantically secure crypto-scheme.
Meta-data in q also does not reveal any information
about the attributes. Therefor, we can claim that

SimRCS(1n, indexpz ,RCSI
f , f )

c≡ {view f
RCS

(indexpz , [(ṕz)i]),out put f (indexpz , [(ṕz)i]).
(7)

5 PERFORMANCE ANALYSES

5.1 Complexity Analysis

Table 3 shows the computational complexity of our
protocols for searching with multiple attributes (IB-
SvI and IBSvII). In Table 3, we present x number of
exponentiations with y-bit exponents as (x)y. As it
is illustrated in Table 3, the complexity of IBSvI in
terms of the number of additions is linear to the num-
ber of attributes in q, bit-length of attributes, and the
number of records in the database. Moreover, Table 3

shows how applying data packing reduces the num-
ber of homomorphic additions and decryptions. Ta-
ble 3 also shows IBSvII does not require any encryp-
tion and decryption; however, it requires performing
(2αω`+αω)/ρ̂ homomorphic multiplications, where
ρ̂ is the number of messages that can be packed by de-
ploying batching.

Table 4 summarizes the communicational com-
plexity of the searching protocols in terms of data
transmission, communication round, and storage
complexity. According to Table 4, communication
round for IBSvI is constant, and it is independent of
the bit-length of inputs and the number of attributes
in q. Moreover, Table 4 shows that RCS in IBSvII
computes Ans j without any communication with KM.
Furthermore, data transmission needed is independent
of the number of AND conjunctions used in the query.

Table 4 shows the data transmission needed for the
secure searching protocols per party, RCS, and KM,
where the complexity of IBSvI is O(ω) and indepen-
dent of the number of attributes. Recall that there is
no communication between RCS and KM in IBSvII,
and clearly, no data is transmitted between these two
parties. The batching technique significantly reduces
computational costs. Table 4 shows the size of each
protocol’s index table. The value of ρ́ depends of bit-
length of `, where smaller ` results in larger ρ́.

Table 4: Communicational and space complexity of the
searching protocols. Data transmission complexity is de-
noted as Data.Trans, communication round as Com.Rond,
and index size as IS.

Protocols Data.Trans Com.Rond IS

IBSvI 4ω/ρ́ 1 ω`α/ρ́
IBSvII 0 0 ω`α

5.2 Experimental Results

In this section, we present the experimental results
of implementing IBSvI and IBSvII. First, we show
the run-times of the introduced searching protocols
for different α and ϕ values. Then, we compare
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Table 6: Run-times and communication costs of the IBSvI and IBSvII. For (Gentry et al., 2015), we use NA to show that the
work does not report the corresponding value.

Protocols Run-time (second) Data transmission index size communication
RCS KM (megabyte) (megabyte) (round)

IBSvIPaillier 0.525 5.06 2.19 8.2 1
IBSvIFV 0.44 0.45 49.45 92.8 1
IBSvIIFV 5.54 0 0 92.8 0
(Krell et al., 2017) 4.0 26 75K NA

their run-times in RCS and KM for different α val-
ues. To obtain the run-times of the protocols, we
use C++ and external libraries: MPIR, Boost, the Se-
cure Computation Library (SeComLib), and SEAL on
a single Linux machine running Ubuntu 14.04 LTS,
with a 64-bit microprocessor and 8 GB of RAM.
We applied a simple parallelization technique in our
implementation (4 threads). The cryptographic key
length of the Paillier is chosen according to NIST
standards (Barker et al., 2007), which are valid un-
til 2030. Table 5 lists the parameters and their values
in our implementation.

Table 6 compares the run-times of the IBSvI, IB-
SvII, and existing works in RCS and KM. To show
the trade-off between computational and communica-
tional costs when using different encryption schemes,
we also provide the run-time of IBSvI when FV is
used, denoted as IBSvIFV. Note that Paillier can-
not be used in IBSvII because it does not support
the ciphertext multiplications. Table 6 points out
both IBSvIPaillier and IBSvIFV demand significantly
low computational resources from RCS. These results
show that Paillier equipped with data packing and FV
with enabled batching have the same performance in
performing homomorphic addition. However, there
is a noticeable difference between the run-times of
IBSvIPaillier and IBSvIFV in RCS, which means the
decryption function in FV is more efficient than Pail-
lier because of being able to pack more messages into
a single ciphertext, ρ̂ > ρ́. Table 6 presents the run-
time of IBSvII that is roughly similar to the total run-
time of IBSvIPaillier. Considering these results, we can
conclude that, contrary to popular belief, using fully
homomorphic crypto-schemes is more efficient than
partially homomorphic ones in certain cases.

Table 6 shows the run-time of secure searching in
(Krell et al., 2017), where only the cost of finding the
matching records in that work is considered. Accord-
ing to Table 6, the work in (Krell et al., 2017) is also
efficient in finding the desired records at the costs of
leaking access pattern with an index table size of 75
Gigabytes. Note that the network cost of searching is
not provided separately in (Krell et al., 2017); there-
fore, we put the total network cost (searching and re-
trieving) in Table 6.

Table 5: Parameters and their values.

Parameter Symbol Value
Bit-size of inputs ` 15 bits
Number of records in RCS ω 105

Security parameter κ 112 bits
Number of queries to obtain FPR 107

Capacity of a package (IBSvI) ρ́ 89
Capacity of a package (IBSvII) ρ̂ 2048

6 CONCLUSION

Searching in encrypted databases is a challenging task
due to the complexity introduced by encryption. In
this work, we focus on a medical setting where insti-
tutions would like to use the data collected by smart
wearables from several vendors to analyze them for
the well-being of the patients. In order to make the
system usable in practice, we propose a two-step pro-
cedure: 1) creation of index tables at the time of up-
loading data from vendors to the cloud storage unit,
and 2) executing queries using these tables. Our com-
plexity analysis and experimental results on a large
dataset clearly show the contribution of our work: the
performance of the system is outstanding. It is also
worth mentioning that our idea of creating index ta-
bles can be generalized to other application settings,
introducing a scalable and efficient search mechanism
for encrypted databases where data will later be pro-
cessed under encryption.
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