Towards a Taxonomy of Bad Smells Detection Approaches

Mouna Hadj-Kacem and Nadia Bouassida
Mir@cl Laboratory, Sfax University, Tunisia

Keywords:

Abstract:

Detection Approaches, Code Smells, Anti-patterns, Design Smells, Taxonomy.

Refactoring is a popular maintenance activity that improves the internal structure of a software system while

maintaining its external behaviour. During the refactoring process, detecting bad smells plays a crucial role
in establishing reliable and accurate results. So far, several approaches have been proposed in the literature to
detect bad smells at different levels. In this paper, we focus on reviewing the state-of-the-art of object-oriented
bad smells detection approaches. For the purpose of comparability, we propose a hierarchical taxonomy by
following a development methodology. Our taxonomy encompasses three main dimensions describing the
detection approach via the used method, analysis and assessment. The resulting taxonomy provides a deeper
understanding of existing approaches. It highlights many key factors that concern the developers when making
a choice of an existing detection approach or when proposing a new one.

1 INTRODUCTION

With the growth of software complexity, maintenance
has become increasingly more arduous and time-
consuming phase. According to many researchers in
the field, the cost required to carry out maintenance
activities accounts for about 90% of the total project
budget (Erlikh, 2000). The main reason behind the
high cost associated with this phase is driven by the
continuous changes that occur throughout the soft-
ware life cycle. These changes, like new environmen-
tal constraints and imposed customer requirements,
may lead to the emergence of several design problems
that negatively impact the software quality.

Presence of bad smells (Fowler et al., 1999) is
one of the most known and serious design problems
that frequently deteriorates the software structure and
hence quality. According to (Fowler et al., 1999), a
bad smell is defined as ’a surface indication that usu-
ally corresponds to a deeper problem in the system’.
In the literature, many studies have investigated empi-
rically the impact of bad smells on the software qua-
lity (Soh et al., 2016; Khombh et al., 2012) and indica-
ted that their presence makes the system more fault-
tolerant and more difficult to maintain and evolve.
Mostly, this kind of problems is introduced unwit-
tingly and unknowingly by developers either due to
inappropriate design decisions or the lack of expe-
rience and practice. So, in order to avoid problems
inherent to bad smells, a set of refactoring operations
should be performed (Fowler et al., 1999).

164

Hadj-Kacem, M. and Bouassida, N.
Towards a Taxonomy of Bad Smells Detection Approaches.
DOI: 10.5220/0006869201640175

In fact, refactoring is recognized as one of the ef-
ficient maintenance activities that aim at improving
the software quality with economical costs (Mens and
Tourwe, 2004). As stated by (Fowler et al., 1999), re-
factoring is a process that applies changes in the in-
ternal software structure without altering its external
behaviour. The starting point in the refactoring pro-
cess performs through the search and identification
of bad smells locations, called detection phase (Mens
and Tourwe, 2004). Then, when accurately detected,
a set of refactoring operations are applied and after-
wards evaluated in order to ensure the preservation of
the software quality. In the refactoring process, the
detection phase plays a fundamental role since its re-
sults have a decisive impact on the other phases.

In this context, a wide range of approaches have
been suggested to detect bad smells at both source
and model levels. Each approach has its own par-
ticular strengths and weaknesses whose understan-
ding can provide for a fair comparison and a deci-
sive choice between them based on the developer’s
needs. Towards this end, we provide in this paper a
survey of the research studies that detect bad smells
in object-oriented software systems. The outcome of
this phase is a classification of the existing approa-
ches into a comprehensive taxonomy that is broadly
represented by three different dimensions depending
upon the used methods, analysis and assessment cri-
teria. The aim of the proposed taxonomy is to give a
thorough overview of different approaches in order to
help developers to understand and compare between

In Proceedings of the 13th International Conference on Software Technologies (ICSOFT 2018), pages 164-175

ISBN: 978-989-758-320-9

Copyright © 2018 by SCITEPRESS — Science and Technology Publications, Lda. All rights reserved

existing detection approaches.

It is important to note that, in the surveyed studies,
bad smells are interpreted under several terms, inclu-
ding but not limited to, code smells, design smells,
anti-patterns (Brown et al., 1998), design flaws (Sa-
lehie et al., 2006), etc. In the detection approaches,
some authors treated them indifferently, while others
consider minor differences among them. To a certain
extent, these terms share the similar basic principle of
bad smells; they refer to poor solutions of recurring
design and implementation problems. Nonetheless,
they differ in other aspects like granularity and the
abstraction level.

The remainder of this paper is organized as fol-
lows. Section 2 describes related work. Section 3 pre-
sents the taxonomy and explains its development met-
hodology. In the following three sections, the main
dimensions of the taxonomy are separately described
in detail. Section 7 concludes with some recommen-
dations for future research directions.

2 RELATED WORK

Historically, the term of bad smells has been a subject
of interest for many years. A number of books have
been written about them and the way to mitigate their
negative effects. Over time, several designations have
been appeared in the literature referring to the same
problem, with some differences in the granularity le-
vels.

Because of the ambiguity inherent to the similar
definitions, several taxonomies have been proposed to
facilitate their analysis and understanding. (Mantyla
etal., 2003) suggested a taxonomy that categorizes si-
milar bad smells into seven classes (bloaters, object-
orientation abusers, change preventers, dispensables,
encapsulators, couplers, and others). Besides the
taxonomy, the authors recognized the existing corre-
lations between the smells. Later, (Moha et al., 2005;
Moha et al., 2010) performed another categorization
which includes both anti-patterns and code smells.
These two latter defects are classified into intra-class
(related to the inner workings of classes) and inter-
class (related to the relationships among classes). In
another work (Ganesh and Sharma, 2013), the aut-
hors tried to resolve the ambiguity between the diffe-
rent concepts reported in the literature. They presen-
ted their own observation at cataloguing and classi-
fying design smells based on the object-oriented de-
sign principles that are violated.

As mentioned in the introduction, bad smells are
known under a variety of terms in many studies. Even
though the original definitions stated that bad smell

Towards a Taxonomy of Bad Smells Detection Approaches

presents a probably defect and anti-pattern is an actual
defect in the system, they are however frequently trea-
ted as synonymous because of the considerable over-
laps existing between them. For example, the code
smell God Class and the anti-pattern Blob are inter-
preted as similar in the detection approaches. Accor-
dingly, in our taxonomy, we also do not make a dis-
tinction between these terms in order to cover a large
variety of interesting detection approaches.

Several studies have been carried out on the de-
tection of bad smells, but very few researchers have
performed literature reviews related to the study of the
developed approaches. According to the abstraction
level, the previous works can be divided into two
main categories. At code level, (Ghulam and Zees-
han, 2015) have presented a systematic literature re-
view complemented by a snowballing. Some types of
techniques were excluded from the review; they are
manual code smell detection techniques and duplica-
ted code smell detection techniques. In a second part,
the authors conducted an empirical comparison bet-
ween three available tools on four code smells. (Pa-
lomba et al., 2014) have performed a literature review
of 11 anti-patterns defined by (Brown et al., 1998;
Fowler et al., 1999) together with 6 linguistic anti-
patterns defined by (Arnaoudova et al., 2013). The
authors have reviewed only the methods used for the
detection of the 11 anti-patterns. For the linguistic
anti-patterns, the methods for their detection were not
provided. At model level, (Din et al., 2012) examined
11 papers that have appeared between 2009 and 2011.
Mainly, they have discussed the basic functionalities
of each approach. However, they did not provide their
own classification for recognizing them.

Unlike the aforementioned works, the aim of the
present paper is to build a broader taxonomy that co-
vers the life cycle of the approaches performing de-
tection of bad smells at either source or model level.

3 TAXONOMY DEVELOPMENT
METHODOLOGY

In this paper, we present a current state-of-the-art co-
vering researches on bad smells detection approaches
at source as well as at model level. Our aim is to
make an attempt towards a comprehensive taxonomy
encompassing the existing detection approaches. On
the one hand, this taxonomy reflects the evolving tra-
jectory of research in the identification of design pro-
blems. On the other hand, it is intended to help deve-
lopers to make appropriate decisions.

The process we followed for the taxonomy de-
velopment is based on the basic guidelines sugge-

165

ICSOFT 2018 - 13th International Conference on Software Technologies

Bad Smells
Detection Approaches

/7| Code Level

| Abstraction Level -

+1 Manual

Model Level

Automation Level]«\'» Semi-automatic
- ! i
Detection Method \ [Automatic
i
i

‘

Machine Learning

-
o
08,
Q
o
o
&
®
=%

‘{ Techniques

v
'

Rule-based

11 Visualization-based

Search-based

| Structural Properties

- i1 Semantic Properties
,1 Properties Type “\
i -
i i
I
:

Historical Properties

o
b
s
3
<
o
2
Bl
»
3
S
2
E
2

|
|
|
!
!
|
|
|
b
|
|
|
|
!
|
|
|
!
!
|
|
|
!
|
|
|
!
!
|
|
|
L
|
|
|
!
!
|
|
|
!
|
|
|
!
|

:
i
: ST
Detection Analysis < —)
‘L[Analysis Time](7 7[Dynamic]
] I
| < Hybrid
i
i T
‘4 Thresholds -<
‘< Adaptive
,{ Benchmark](:’*[Medium]
i 1
\ A cuamave
Assessment Type -{
SETTT—

Figure 1: Hierarchy of the proposed taxonomy.

sted by (Nickerson et al., 2013). It focuses on
the combination of the empirical-to-deductive and
deductive-to-empirical approaches in order to identify
the main dimensions and their corresponding meta-
characteristics.

According to (Nickerson et al., 2013), the process
of the taxonomy development starts with the defini-
tion of meta-characteristics in order to define later the
corresponding dimensions. Then, the ending conditi-
ons are drawn to portray the expected structure. After
that, a number of iterations are performed through two
different approaches that are empirical-to-deductive
and deductive-to-empirical. In the first one, a sub-
set of the collected data is categorized according to
the common meta-characteristics and dimensions. In
the second one, the meta-characteristics and dimensi-

conditions are met, the iterations stopped and the pro-
cess of the taxonomy development ends.

Our proposed taxonomy encompasses three di-
mensions: detection method, detection analysis and
detection assessment. For more details, our three-
dimensional taxonomy is graphically depicted in Fi-
gure 1. The dimensions are examined in turn in the
next sections.

166

4 DETECTION METHOD

The first dimension in our taxonomy focuses on pre-
senting the approach in a general way to put it in
context. It deals with the abstraction level (where),
the automation level (how) and the used techniques
(what). Each one of them is explained in more details
in the following.

4.1 Abstraction Level

Since the focus of this paper is on object-oriented de-
tection approaches, two major abstraction levels are
considered. They are mainly code level (called code
smells) and model level (called design smells). As
shown in Table 1, we found that at least two-thirds of
detection approaches are applied at code level.

Code Level. The majority of approaches performed
at code level because of its richness with extra infor-
mation useful for the detection of bad smells, e.g.,
number of lines, number of parameters, etc. Howe-
ver, despite the helpful information coming from the
source code, the detection at this level is considered
too late. As stated by (Akiyama et al., 2011), it is sig-
nificantly practical to identify and fix bad smells as
early as possible at the model level in order to gain
effort in later steps of development.

Model Level. The detection at the model level is
more challenging than at the code level. The chal-
lenge is due to the different modelling notations and
diagrams upon which the model can be based. For
example, the detection approach of (Travassos et al.,
1999) is based on three UML diagrams: state dia-
gram, class diagram and sequence diagram. As the
two latter diagrams are the most popular diagrams in
object modelling, detection approaches at model level
are generally based on one or both of them. In (Fou-
rati et al., 2011), the authors have used and extracted
the needed information of detection through these two
diagrams to identify five anti-patterns.

Recently, a study (Karasneh et al., 2016) has
empirically investigated the translation of four anti-
patterns occurrences from the models to the source
code. The authors have shown that around 37% of the
affected classes in the models persist at the code le-
vel under the same type of anti-pattern. So, as the
anti-patterns appear early in the design phase, it is
strongly recommended to identify them before the co-
ding phase. However, despite the importance of de-
tecting early the anti-patterns at the model level, this
task is challengeable and less covered in the literature
(see Table 1). On the one hand, the lack of semantic

traceability among the various diagrams hinders the
detection. On the other hand, as argued by (Ghannem
et al., 2016), the main issue at this level is that there
are many metrics applied during the detection at the
code level cannot be mapped to the model level. Con-
sequently, an extra effort is needed to tackle this hard
task.

4.2 Automation Level

The detection approaches can be classified based on
their automation level into three categories: manual,
semi-automatic and automatic.

Manual. The manual approaches offer basically hu-
man processes. They are conducted by experts who
spent too much time and effort to identify inconsisten-
cies by inspecting the design parts that correspond to
the definition of bad smells. Detecting manually bad
smells is regarded as a costly, time-consuming and
error-prone procedure. When analysing large-scale
systems, the identification becomes more tedious and
complicated. In addition, it is subjective because it
depends on the expert’s personal perception.

In his book, (Fowler et al., 1999) listed 22 code
smells together with guidance rules to locate them.
For each code smell, they proposed a set of refacto-
ring operations to limit their negative impact. Also,
the approach led by (Travassos et al., 1999) was one
of the first manual detection approaches. The authors
define a set of inspection rules referred to as reading
techniques that help to detect defects in UML arti-
facts. Each inspection rule is a guideline assisting the
designer to identify inconsistencies in class, sequence
and state diagrams.

Semi-automatic. In order to avoid the aforementi-
oned limitations of manual detection, semi-automatic
approaches have emerged as a partial solution. They
are a good compromise between fully automatic de-
tection techniques that can be efficient but loose track
of context, and pure human inspection that is slow and
inaccurate (Langelier et al., 2005). In this type of de-
tection, the decision making about whether an ano-
maly candidate is an actual defect or not, is asserted
by an expert. According to (Dhambri et al., 2008),
when facing a complicated situation, a human inter-
vention is mandatory to provide its own perception.

Although they are less tedious than manual de-
tection, the semi-automatic detection approaches are
still time-consuming and subjective as they necessi-
tate a human intervention.

Towards a Taxonomy of Bad Smells Detection Approaches

Automatic. Several approaches have appeared ai-
ming at the automation of the whole detection pro-
cess to overcome the above problems of manual and
semi-automatic ones. They reflect the extent to which
the tool could examine the system by itself without
requiring a human intervention. Many methods have
been exploited to reduce the time of the detection in
particularly large-scale systems. However, despite the
significant progresses with the automatic approaches,
there is still a need for an additional effort to standar-
dize and calibrate bad smells definitions in a formal
way to optimize the detection results (De Mello et al.,
2017).

4.3 Techniques

Surveyed detection techniques consist of five broad
categories: machine learning, logic-based, rule-
based, visualization-based and search-based.

Machine Learning. Machine learning techniques
are an effective way to detect the existence of bad
smells. They are based on a training set of informa-
tion collected and evaluated by experts. A classifier
learns using the training set of information, and it is
then used for testing systems to detect bad smells.

Different learning algorithms have been used in
the detection approaches, including Support Vec-
tor Machines (Maiga et al., 2012a; Maiga et al.,
2012b), Bayesian Belief Networks (Khomh et al.,
2009; Khomh et al., 2011), Association Rule Mining
(Palomba et al., 2015; Fu and Shen, 2015), etc.

Recently, (Arcelli Fontana et al., 2016) have ex-
perimented with 16 supervised machine learning al-
gorithms on four code smells that are Data Class,
Large Class, Feature Envy and Long Method. The se-
lected algorithms are J48 (with pruned, unpruned and
reduced error pruning), JRip, Random Forest, Naive
Bayes, SMO (with Radial Basis Function and Polyno-
mial kernels) and LibSVM (with the two algorithms
C-SVC and v-SVC in combination with Linear, Poly-
nomial, RBF and Sigmoid kernels).

Logic-based. Logical reasoning represents another
interesting alternative for detecting bad smells. Gene-
rally, it relies on a mathematical basis and it is able
to provide faster results. (Tourwe and Mens, 2003)
have demonstrated a logic-based approach that uses a
logic meta-programming for detecting bad smells and
for providing the appropriate set of refactoring ope-
rations. The logic programming language used for
the implementation is called SOUL, known as a vari-
ant of Prolog with some minor differences. Similarly,

167

ICSOFT 2018 - 13th International Conference on Software Technologies

(Stoianov and Sora, 2010), proposed a logic-based de-
tection approach using Prolog predicates. According
to the authors, the approach is characterized by its
simplicity since it is able to detect 5 design-patterns
and 6 anti-patterns by means of their structural and
behavioural aspects. The achieved results show that
no false positives were found among the automatic
detected anti-patterns. These results are proven by a
manual inspection of the code.

Rule-based. Most of existing bad smells detection
approaches are based on rules that are established at
one of the mentioned automation levels. Generally,
the rules tend to closely describe the characteristics
of bad smells via a particular combination of known
and/or newly defined metrics. For each bad smell, its
related rules are implemented through combining a
metric with its appropriate threshold. However, de-
fining the right threshold value of a given metric for a
given bad smell is not obvious and necessitates a sig-
nificant analysis effort because there is no consensus
for their calibration. Therefore, several interpretati-
ons exist to translate the detection of the same bad
smell definition into a rule. This non-compromise
may conduct to the decrease of accuracy results re-
ported by this type of approaches.

A detection strategy suggested by (Marinescu,
2004) formulates metrics-based rules that capture de-
viations from good design principles and heuristics.
The strategy is based on two mechanisms of filtering
and composition. The filtering aims to detect design
fragments with specific properties captured by a me-
tric. However, the composition is based on a set of
operators which are used to associate the metrics in
an articulated rule. Likewise, (Munro, 2005) pro-
posed precise definitions of bad smells based on the
informal descriptions provided originally by (Fowler
et al., 1999) in order to prevent the diversity of inter-
pretations varying between developers. The proposed
specifications are in form of template that consists of
three parts: the bad smell name, main descriptions of
its characteristics and design heuristics for its identi-
fication. The rules are constructed using if-then-else
conditional statements combining the metric with its
threshold.

(Moha et al., 2010) proposed a method called DE-
TEX (DETection EXpert). The DETEX is an instance
of DECOR (DEtection & CORrection) that represents
all the steps necessary for the specification and de-
tection of bad smells. Using a domain-specific lan-
guage, DETEX automatically generates the detection
algorithms. These algorithms are obtained from the
models of rule cards which describe the properties of
a class having been considered as a smell. Besides the

168

detection, this approach enables the correction of the
defects. (Hozano et al., 2015) exploited the develo-
pers’ feedback of specific projects in order to produce
personalized rules. Four code smells are recognized
as relevant according to the collected feedback.

Visualization-based. (van Emden and Moonen,
2002) presented a code smell browser called
JCOSMO which detects and visualizes code smells in
java code. After having parsed the source code, the
tool shows a graphical overview containing the parts
affected by bad smells besides the relations between
them. In another work, (Langelier et al., 2005) pro-
posed a visualization framework that exploits percep-
tion capabilities of the human visual system in order
to support quality analysis in software systems. Based
on the main features of the latter approach, (Dhambri
et al., 2008) propose a detection approach combining
automatic pre-processing with visual representation
and analysis of data. The authors develop a tool cal-
led VERSO. For a given system, the tool generates 3D
representations of anti-pattern locations that necessi-
tate the intervention of a human analyst to provide his
judgement.

Unlike the other visualization tools which are li-
mited to represent modular structures based on a sin-
gle view, a multiple-view approach enriched with
concern properties is proposed by (Carneiro et al.,
2010). The authors develop SourceMiner, an Eclipse
plug-in that integrates different sets of view and is
able to detect three code smells: Feature Envy, God
Class and Divergent Change. Another Eclipse plug-
in called Stench Blossom for detecting code smells
is suggested by (Murphy-Hill and Black, 2010). The
plug-in provides the programmer with three different
views: ambient, active and explanation views. These
views are designed to give developers progressively
more informations on the bad smells in the code being
visualized.

Search-based. Search-based techniques have been
more recently considered in bad smells detection ap-
proaches. They are used in SBSE (Search-Based Soft-
ware Engineering) to solve optimization problems in
many domains. When a software engineering is-
sue is structured as a search problem, different meta-
heuristic search techniques like genetic programming,
simulated annealing and chemical reaction optimiza-
tion can solve it. For example, the genetic program-
ming is used by (Ouni et al., 2013) in their appro-
ach to automatically generate detection rules. For
the approach proposed in (Ghannem et al., 2016), the
authors used a meta-heuristic search based on gene-
tic algorithms. By exploiting an existing corpus of

known design defects, the approach detects three anti-
patterns in UML class diagrams. Also, (Kessentini
et al., 2011) have used and compared between three
search algorithms that are Harmony Search, Particle
Swarm Optimization, and Simulated Annealing. The
proposed approach is based on a dataset of examples
containing only the instances of the detected defects.
The dataset of examples consists of detected design
defects that are collected from previously inspected
projects.

(Sahin et al., 2014) were the first to propose a met-
hod for generating code smells detection rules as a Bi-
Level Optimization Problems (BLOPs). The appro-
ach is composed of two levels of optimization tasks:
lower-level and upper-level. In their adaptation, the
upper-level optimization generates a set of detection
rules in order to cover a base of code smell exam-
ples and populate the lower-level with artificial code
smells. The lower-level optimization will generate a
maximum number of artificial code smells that cannot
be identified by the rules produced by the upper-level.

S DETECTION ANALYSIS

The second taxonomy’s dimension describes the main
features of the approach during the analysis.

5.1 Properties Type

There are four categories of properties used in the
analysis: structural, semantic, historical and behavi-
oural properties.

Structural Properties. As depicted in Table 1, the
majority of approaches exploit structural properties
in the detection. This type of properties relates to
the structure of the system constituents ranging from
fine-grained elements to coarse-grained elements (e.g.
class, interface, method, field, parameter, etc.) (Moha
et al., 2010). For instance, LOC (Lines of Code), CY-
CLO (Cyclomatic Complexity) and ATFD (Access To
Foreign Data) are some examples of metrics that re-
spectively characterize the size, complexity and cou-
pling that are related to the software quality (Lanza
and Marinescu, 2007). Based on the structural infor-
mation, the metric values needed for the detection are
calculated.

In addition to the standard metrics in the litera-
ture, it is possible to develop complementary metrics
to deal with specific requirements. In (Fourati et al.,
2011), four new metrics are created at the model level
that describe both the complexity and coupling of the

Towards a Taxonomy of Bad Smells Detection Approaches

system. In the same way, (Nongpong, 2015) propo-
sed a new metric called FEF (Feature Envy Factor) to
detect the smell of Feature Envy.

Semantic Properties. The semantic properties rely
on linguistic information provided by the main cha-
racteristics of bad smells classes. According to
(Dhambri et al., 2008), semantic properties are not
represented in the source code in an explicit manner
as they refer to the application domain knowledge. In
their approach, these properties are required by the
analyst to ensure that the inspected fragment plays the
targeted roles. In (Fourati et al., 2011), the determi-
nation of the semantic properties of anti-patterns is
handled through lexical dictionaries like the WordNet
dictionary. The proposed approach detects five anti-
patterns in UML diagrams. It relies on a set of ex-
isting and other design metrics newly defined by the
authors. In this approach, three types of model pro-
perties were considered: structural and semantic in-
formations extracted from the class diagram, as well
as behavioural informations extracted from the se-
quence diagram.

Historical Properties. (Ratiu et al., 2004) extended
the original concept of detection strategy (Marinescu,
2004) by extracting historical information from the
suspected defect structure. The authors define his-
tory measurements that describe the evolution of the
bad smells and then combine the results with the ori-
ginal detection strategies. The proposed approach is
evaluated on God Class and Data Class, and provi-
des more accurate detection results. (Palomba et al.,
2013; Palomba et al., 2015) proposed an approach
named HIST (Historical Information for Smell de-
Tection) to detect five types of bad smells. In this
work, only historical information extracted from ver-
sion control systems was used. Likewise, (Fu and
Shen, 2015) proposed a detection approach by mining
the evolutionary history of projects extracted from re-
vision control system. Three code smells are chosen
to be detected from 5 projects, whose the duration of
the evolutionary history vary from 5 to 13 years.

Behavioural Properties. In (Fourati et al., 2011),
the extraction of behavioural properties is based on
the transformation of the sequence diagram into an
XML document and metric calculation such as met-
hod calling, the sender, the receiver, etc. Also, (Stoia-
nov and Sora, 2010) used the Prolog predicates to des-
cribe behavioural properties of both design patterns
and anti-patterns.

169

ICSOFT 2018 - 13th International Conference on Software Technologies

5.2 Analysis Time

Analysis time identifies the moment when bad smells
are detected. Three types of analysis time are defined:
static, dynamic and hybrid.

Static. As summarized in Table 1, static analysis
is the most commonly used way to analyse a system
code. It takes into account the examination of either
the source code form or the meta-model form that is
the abstract representation of the code. Static analysis
is still the most adopted choice because of its simpli-
city and rapidity comparing to the dynamic analysis
which is costly as it necessitates more time and other
resources for the running of the program. However,
in such a scenario, this type of analysis can indefini-
tely make hypothesis about the running behaviour of
a system. Consequently, many detected bad smells
could be rarely or never executed, which leads to the
problem of false positives. For this reason, few stu-
dies recently opted for combining static with dynamic
analysis (Ligu et al., 2013).

Dynamic. Dynamic analysis is performed during
the execution of the system under evaluation. In other
words, it is the inspection of a running system, such as
a unit test. (Kumar and Chhabra, 2014) proposed an
approach based on dynamic analysis to detect Feature
Envy smell. Their approach consists of two levels. At
the first level, the methods that may suffer from the
bad smell Feature Envy are obtained dynamically. At
the second level, the non-suspect methods are elimi-
nated and thus the detection becomes more efficient as
the overhead is reduced. According to the authors, the
dynamic analysis is more accurate in object-oriented
environment.

Hybrid. Hybrid analysis is the combination of sta-
tic and dynamic analysis. In (Ligu et al., 2013), the
authors proposed an approach that is implemented
as an extension of the detecting JDeodorant Eclipse
plug-in (Fokaefs et al., 2007). Based on an hybrid
analysis, the approach is able to detect the code smell
Refused Bequest more accurately than using only sta-
tic analysis. The static analysis of the source code
is employed to identify suspicious hierarchies. Ho-
wever, the dynamic analysis serves to determine the
subclass that actually exhibits the smell.

5.3 Thresholds

The detection results are heavily affected by the diver-
sity and the estimation methods of threshold values.

170

Because of the lack of a standard method for measu-
ring suitable thresholds, the detection approaches cal-
culate these values in different ways (Fontana et al.,
2016). While some rely on defining fixed thresholds
based on expert knowledge, others propose adaptive
threshold values. In the literature, several alternatives
exist to overcome this problem (Alves et al., 2010;
Oliveira et al., 2014; Fontana et al., 2015; Liu et al.,
2016), but there is not yet an optimal solution that ful-
fils all the requirements to equally perform an accu-
rate detection.

Fixed. A fixed threshold is a pre-defined value that
pertains to the expert knowledge and opinion. This
type of threshold may be interpreted incorrectly as
it is inflexible. In fact, the estimation of appropri-
ate thresholds depends on many factors, such as the
size of the system, its application domain, the organi-
zation best practices, the perception of the developer
who defines these values (Fontana et al., 2012). Ho-
wever, a fixed threshold value cannot deal with the
variation and the acceleration information of the sy-
stem during its evolution in the way that the adaptive
threshold does.

Adaptive. Unlike the fixed threshold, the adaptive
threshold is more flexible as it is based on one or a
set of the system features upon which its value is for-
mulated in different ways. In many research studies,
the calibration of threshold values is inferred by a tu-
ning machine (Mihancea and Marinescu, 2005). By
creating a dataset of bad smell instances, the tuning
machine selects the thresholds values. The larger the
dataset is, the more accurate the threshold will be.

6 DETECTION ASSESSMENT

This dimension refers to the assessment of the per-
formance and efficiency of the approach in terms of
the used benchmark and the assessment type. For the
benchmark, we follow the classification suggested in
(Radjenovi et al., 2013) that categorizes the systems
into small, medium and large according to the size
(number of lines of code and/or number of classes).
Then, when finally detected, a quantitative and/or a
qualitative assessment is carried out to provide the
accuracy of the approach.

6.1 Benchmark

A benchmark is a standard for evaluating the perfor-
mance of approaches. It is a set of known systems

upon which the experiments are conducted. Anot-
her purpose of using a benchmark is to enable com-
parative analysis between studies. Actually, the ben-
chmarks vary in their features, such as programming
language (e.g. java, C++), availability (open source,
commercial project, constructed project, student pro-
ject), size (small, medium, large), etc. In our taxo-
nomy, the benchmark categorization depends on the
size. Our focus on the benchmark size is justified by
its important aspect for determining the external vali-
dity of the approach (Radjenovi et al., 2013). In fact,
when using only small benchmark, it is highly possi-
ble that the approach’s accuracy may be affected, and
accordingly, the reported results will be subjectively
interpreted. Therefore, in order to maximize objecti-
vity, evaluations on different sizes are strongly recom-
mended and particularly on the larger ones. Indeed,
this is crucial to ensure the generalization and the va-
lidation of the approach’s findings.

In order to distinguish between small, medium
and large benchmarks, we follow the guidelines pre-
sented in (Radjenovi et al., 2013). Based on the statis-
tics information provided by the surveyed studies, the
system is classified into one of the three groups. Over-
all, the statistics information are performed through
the lines of code (LOC) and/or the number of classes.
For a small benchmark, the lines of code or the num-
ber of classes are, respectively, less than 50 KLOC
(thousands of LOC) or 200 classes. In a medium ben-
chmark, the number of lines is restricted between 50
KLOC and 250 KLOC, or the number of classes is
restricted between 200 classes and 1000 classes. Fi-
nally, a benchmark is classified as large if the lines
of code or the number of classes are, respectively,
more than 250 KLOC or 1000 classes. When a study

Towards a Taxonomy of Bad Smells Detection Approaches

provides the values of both lines of code and num-
ber of classes, the system is classified in the higher
category (Radjenovi et al., 2013). For example, if a
system contains 100 KLOC and 150 classes, the sy-
stem is classified as medium according to the lines of
code, and as small according to the number of clas-
ses. Thus, the system is affected to the higher cate-
gory which is medium. However, when the needed
information is not stated, the assigned category is by
default small. The more the benchmark is large and
varied, the more the approach proves its efficiency.

When performing a comparison between tools, it
is recommended to conduct experiments on known
and commonly used benchmark. Thus, the results of
each approach can be measured and accordingly they
can be compared equally against others. To this end,
we extract a list of the benchmark exploited in the sur-
veyed studies. This list includes only open source sy-
stems because they are the most frequently used ben-
chmark in the evaluations. Because of lack of space,
we will not show the tabulated list but rather illustrate
the final result in Figure 2. To improve comparability,
this histogram illustrates the systems that are used at
least in two studies. Xerces was found the most fre-
quently used system in the evaluation of approaches,
followed by GanttProject and Log4J.

6.2 Assessment Type

Once the bad smells are detected, we conclude with
the accuracy that is an important factor for determi-
ning the whole performance of the approach. In most
studies, the accuracy is assessed quantitatively in or-
der to ensure the objectivity of the approach. Nonet-
heless, there are other studies that are based only on

16

14

12

10

0
e & P & s
q}(’ «o\e \/0% 0\3 Q,v. @(4 % (}@
T8 & & & &
& v N & N

Figure 2: Distribution of the commonly used benchmark in the studies.

171

ICSOFT 2018 - 13th International Conference on Software Technologies

qualitative assessment which may decrease their ob-
jectivity.

Quantitative. In order to provide an objective as-
sessment, it is necessary to follow a standard method
to calculate the accuracy of an approach. Broadly, two
metrics are used to assess the accuracy, namely preci-
sion and recall. They are well-known metrics in infor-
mation retrieval (Baeza-Yates et al., 1999). The pre-
cision metric indicates the correctness of the appro-
ach, it gives the rate of correctly identified bad smells
by the number of detected bad smell candidates. Ho-
wever, the recall metric measures the completeness
of the approach, it is the rate of correctly identified
bad smells by the totally number of actual bad smells.
These two metrics are calculated as follows:

[{Existing Bad Smells} N{Detected Bad Smells}|
|{Detected Bad Smells}| (1)
True Positive

Precision =

" True Positive + FalsePositive

[{Existing Bad Smells} N{Detected Bad Smells}|

Recall =
eca |{Existing Bad Smells}|)

True Positive

= True Positive + False Negative

A third metric, called F-measure (Baeza-Yates
et al., 1999), is the harmonic mean of precision and
recall. Overall, it reflects the whole detection accu-
racy in one value. It is defined as follows:

Precsion x Recall
F —Measure =2 X ————
sur Precsion+ Recall (3)

Qualitative. The qualitative assessment is purely
based on the judgement of either the authors of the
approach or external analysts. This type of evaluation
depends on the knowledge and the work-experience
of the evaluators. Their own perceptions to the dom-
ain may be different and may guide to conflicting re-
sults. Therefore, the qualitative assessment is mainly
known by its subjectivity because the evaluators may
exaggerate or underestimate the actual performance
of the approach. For this reason, in the studies using
only qualitative assessment, there is a greater possibi-
lity that their findings are limited and cannot be gene-
ralized. This fact makes impossible to establish a fair
comparison with other approaches.

Notwithstanding the aforementioned limitations,
it would be interesting to complement this type of as-
sessment with the determination of the precision and
recall metrics. Consequently, a high validity is esta-
blished.

172

7 CONCLUSION

Throughout the refactoring process, the more accurate
are the detection results, the more effective and cor-
rect are the later phases. Bad smells detection phase
has a decisive influence on the whole refactoring pro-
cess, and accordingly on the results of the mainte-
nance. Over the last decade and half, this subject has
attracted substantial interest from both academia and
industry. Numerous approaches have been, and still
are, appearing to deal with this challenging problem.

In this paper, we provide a comprehensive taxo-
nomy to classify and characterize detection approa-
ches. This taxonomy is derived from a survey of
the research studies that detect bad smells in object-
oriented software systems. Three dimensions are pro-
posed to describe the whole detection approach star-
ting from the choice of the used techniques, the ana-
lysis characteristics to the assessment criteria. In ad-
dition to its knowledgeable value, this taxonomy is
addressed to researchers as a basis for classifying and
evaluating different works. Also, it can be used by
developers who may suggest promising opportunities
for creating new approaches or combining between
existing techniques.

Owing to its important role in the maintenance,
the field of bad smells detection gets more and more
attention. Despite the variety of existing detection ap-
proaches and the remarkable advances reached up to
now, a number of research issues remain open and re-
quire further investigation in future works. Among
the most common problems encountered during de-
tection process is the ambiguity of bad smells defini-
tions that should be carefully resolved by providing
a standard upon which the next detection approaches
are based on. Also, there is the issue of threshold that
could be alleviated if the first problem is resolved. In
fact, a wrong threshold calculation may lead to false
or missing detections. Another issue is the impact of
the chosen benchmark on the integrity of the obtained
results. This may lead to biased comparisons between
approaches.

To summarize, it would be fruitful to develop
a framework encompassing all the necessary ingre-
dients for the detection process, i.e. formal definitions
of bad smells, unified benchmark for the evaluation.
Also, it is strongly recommended to broaden the ap-
plicability of the detection approaches to commercial
systems.

Towards a Taxonomy of Bad Smells Detection Approaches

Table 1: Detection approaches according to the proposed taxonomy.

Detection Method Detection Analysis Detection Assessment
Approaches
Abstraction Automation Techniques Properties Analysis Thresholds A Benchmark
Level Level Type Time
(Arcelli Fontana et al., Code Automatic ~ Machine learning Structural Static Adaptive Quantitative 74 systems
2016) S:19-M:38-L: 17
(Fu and Shen, 2015) Code Automatic ~ Machine learning Historical Static Adaptive Quantitative 5 systems
Structural S:5-M:0-L:0
(Kumar and Chhabra, 2014) Code Automatic Search-based Structural Dynamic Adaptive Quantitative 2 systems (selected parts)
Behavioural S:2-M:0-L:0
(Munro, 2005) Code Semi- Rule-based Structural Static Fixed Qualitative 2 case studies
automatic S:2-M:0-L:0
(Ghannem et al., 2016) Model Automatic Search-based Structural Static Adaptive Quantitative 4 systems
S:0-M:3-L: 1
(Hozano et al., 2015) Code Automatic Rule-based Structural Static NM Quantitative 2 systems
S:2-M:0-L:0
(Nongpong, 2015) Code Automatic Rule-based Structural Static NM Qualitative Student Projects
S:2-M:0-L:0
(Carneiro et al., 2010) Code Semi- Visualization Structural Static NM Quantitative An academic project (5 ver-
automatic sions)
S:1-M:0-L:0
(Hassaine et al., 2010) Code Automatic ~ Machine learning Structural Static Adaptive Quantitative 2 systems
S:1-M:1-L:0
(Moha et al., 2010) Code Automatic Rule-based Structural Static Adaptive Quantitative 10 systems
Semantic S:5-M:3-L:2
(Murphy-Hill and Black, Code Semi- Visualization Structural Static Fixed Qualitative 2 systems (selected parts)
2010) automatic S:2-M:0-L:0
(Stoianov and Sora, 2010) Code Automatic Logic-based Structural Static NM Qualitative 6 systems
Behavioural S:6-M:0-L:0
(Sahin et al., 2014) Code Automatic Search-based Structural Static Adaptive Quantitative 9 systems
S:2-M:5-L:2
(Dexun et al., 2013) Code Automatic Rule-based Structural Static Fixed Quantitative 6 systems
S:4-M:1-L:1
(Ligu et al., 2013) Code Automatic Search-based Structural Hybrid NM Qualitative 1 system
S:0-M:1-L:0
(Khomh et al., 2009) Code Semi- Machine learning Structural Static Adaptive Quantitative 2 systems
automatic S:1-M:1-L:0
(Dhambri et al., 2008) Code Semi- Visualization Structural Static NM Quantitative 2 systems
automatic Semantic S:0-M:2-L:0
(Ouni et al., 2013) Code Automatic Search-based Structural Static Adaptive Quantitative 6 systems
S:2-M:2-L:2
(Palomba et al., 2013) Code Automatic ~ Machine learning Historical Static Adaptive Quantitative 8 systems
S:0-M:6-L:2
(Saranya et al., 2017) Model Automatic ~ Search-based Structural Static Adaptive Quantitative 3 systems
S:0-M:3-L:0
(Salehie et al., 2006) Code Automatic Rule-based Structural Static Fixed Quantitative 1 system
S:0-M:0-L: 1
(Kreimer, 2005) Code Automatic ~ Machine learning Structural Static NM Quantitative 2 systems
S:2-M:0-L:0
(Langelier et al., 2005) Code Semi- Visualization Structural Static NM Qualitative 1 system
automatic S:0-M:0-L: 1
(Palomba et al., 2015) Code Automatic ~ Machine learning Historical Static Adaptive Quantitative 20 systems
S:6-M:9-L:5
(Walter et al., 2015) Code Automatic ~ Rule-based Structural Static Fixed Quantitative 1 system (selected parts)
S:0-M:1-L:0
(Kessentini et al., 2014) Code Automatic Search-based Structural Static Adaptive Quantitative 9 systems
S:2-M:5-L:2
(Travassos et al., 1999) Model Manual Rule-based Structural Static NM Qualitative An Academic project
Semantic S:1-M:0-L:0
(Maiga et al., 2012a) Code Automatic Machine learning Structural Static Adaptive Quantitative 3 systems
S:0-M:1-L:2
(Marinescu, 2004) Code Automatic Rule-based Structural Static Fixed Quantitative 2 industrial case studies
S:0-M:2-L:0
(Ratiu et al., 2004) Code Automatic Rule-based Historical Static Fixed Quantitative 3 case studies
S:2-M:1-L:0
(Tourwe and Mens, 2003) Code Automatic Logic-based Structural Static NM Qualitative 1 system
S:1-M:0-L:0
(Fourati et al., 2011) Model Automatic ~ Rule-based Structural Static Fixed Qualitative Several designs collected
Behavioural from literature
Semantic S:NM-M:0-L: 0
(Mansoor et al., 2017) Code Automatic Search-based Structural Static Adaptive Quantitative 7 systems
S:0-M:2-L:5
(van Emden and Moonen, Code Semi- Visualization Structural Static NM Qualitative 1 academic project
2002) automatic S:1-M:0-L:0
(Akiyama et al., 2011) Model Automatic Logic-based Structural Static NM Qualitative Industrial system
S:1-M:0-L:0
(Kessentini et al., 2011) Code Automatic Search-based Structural Static Adaptive Quantitative 2 systems
S:0-M:2-L:0
(Khomh et al., 2011) Code Semi- Machine learning Structural Static Adaptive Quantitative 2 systems
automatic S:1-M:1-L:0
(Oliveto et al., 2010) Code Automatic ~ Machine learning Structural Static Adaptive Qualitative 2 systems
S:2-M:0-L:0

S: Small, M: Medium, L: Large

173

ICSOFT 2018 - 13th International Conference on Software Technologies

REFERENCES

Akiyama, M., Hayashi, S., Kobayashi, T., and Saeki, M.
(2011). Supporting design model refactoring for im-
proving class responsibility assignment. In Model
Driven Engineering Languages and Systems.

Alves, T. L., Ypma, C., and Visser, J. (2010). Deriving
metric thresholds from benchmark data. In IEEE Int.
Conf. on Software Maintenance, pages 1-10.

Arcelli Fontana, F., Mintyld, M. V., Zanoni, M., and Ma-
rino, A. (2016). Comparing and experimenting ma-
chine learning techniques for code smell detection.
Empirical Software Engineering, 21(3):1143-1191.

Arnaoudova, V., Penta, M. D., Antoniol, G., and Guhneuc,
Y. G. (2013). A New Family of Software Anti-
patterns: Linguistic Anti-patterns. In /7th Eur. Conf.
on Software Maintenance and Reengineering.

Baeza-Yates, R., Ribeiro-Neto, B., et al. (1999). Modern
information retrieval. ACM press New York.

Brown, W. H., Malveau, R. C., McCormick, H. W., and
Mowbray, T. J. (1998). AntiPatterns: refactoring soft-
ware, architectures, and projects in crisis.

Carneiro, G. d. F, Silva, M., Mara, L., Figueiredo,
E., Sant’Anna, C., Garcia, A., and Mendonca, M.
(2010). Identifying Code Smells with Multiple Con-
cern Views. In Br. Symp. on Software Engineering.

De Mello, R. M., Oliveira, R. F., and Garcia, A. F. (2017).
On the Influence of Human Factors for Identifying
Code Smells: A Multi-Trial Empirical Study. In
ACM/IEEE Int. Symp. on Empirical Software Engi-
neering and Measurement, pages 68—77.

Dexun, J., Peijun, M., Xiaohong, S., and Tiantian, W.
(2013). Detection and refactoring of bad smell cau-
sed by large scale. Int. J. of Soft. Eng. & Applications.

Dhambri, K., Sahraoui, H., and Poulin, P. (2008). Visual
Detection of Design Anomalies. In /2th Eur. Conf.
on Software Maintenance and Reengineering, pages
279-283.

Din, J., AL-Badareen, A. B., and Jusoh, Y. Y. (2012). Anti-
patterns detection approaches in Object-Oriented De-
sign: A literature review. In 7th Int. Conf. on Compu-
ting and Convergence Technology, pages 926-931.

Erlikh, L. (2000). Leveraging Legacy System Dollars for
E-Business. IT Professional, 2(3):17-23.

Fokaefs, M., Tsantalis, N., and Chatzigeorgiou, A. (2007).
JDeodorant: identification and removal of feature
envy bad smells. In Int. Conf. on Soft. Maintenance.

Fontana, F. A., Braione, P., and Zanoni, M. (2012). Auto-
matic detection of bad smells in code: An experimen-
tal assessment. Journal of Object Technology.

Fontana, F. A., Dietrich, J., Walter, B., Yamashita, A., and
Zanoni, M. (2016). Antipattern and code smell false
positives: preliminary conceptualization and classifi-
cation. In 23rd IEEE Int. Conf. on Software Analysis,
Evolution, and Reengineering, pages 609-613.

Fontana, F. A., Ferme, V., Zanoni, M., and Yamashita, A.
(2015). Automatic metric thresholds derivation for
code smell detection. In 6th IEEE/ACM Int. Works-
hop on Emerging Trends in Software Metrics, pages
44-53.

174

Fourati, R., Bouassida, N., and Abdallah, H. B. (2011).
A metric-based approach for anti-pattern detection in
uml designs. In Computer and Information Science.

Fowler, M., Beck, K., Brant, J., Opdyke, W., and Roberts,
D. (1999). Refactoring: improving the design of exis-
ting code.

Fu, S. and Shen, B. (2015). Code bad smell detection
through evolutionary data mining. In Inz. Symp. on
Empirical Soft. Engineering and Measurement, pages
1-9.

Ganesh, S. and Sharma, T. (2013). Towards a Principle-
based Classification of Structural Design Smells.
Journal of Object Technology.

Ghannem, A., El Boussaidi, G., and Kessentini, M. (2016).
On the use of design defect examples to detect model
refactoring opportunities. Software Quality J.

Ghulam, R. and Zeeshan, A. (2015). A review of code smell
mining techniques. J. of Soft.: Evolution and Process.

Hassaine, S., Khomh, F., Gueheneuc, Y. G., and Hamel, S.
(2010). IDS: an immune-inspired approach for the de-
tection of software design smells. In 7th Int. Conf. on
the Quality of Information and Communications Tech.

Hozano, M., Ferreira, H., Silva, I., Fonseca, B., and Costa,
E. (2015). Using Developers’ Feedback to Improve
Code Smell Detection. In 30th Annual ACM Symp. on
Applied Computing, pages 1661-1663.

Karasneh, B., Chaudron, M. R. V., Khomh, F., and Gue-
heneuc, Y. G. (2016). Studying the Relation between
Anti-Patterns in Design Models and in Source Code.
In 23rd IEEE Int. Conf. on Software Analysis, Evolu-
tion, and Reengineering, volume 1, pages 36-45.

Kessentini, M., Sahraoui, H., Boukadoum, M., and Wim-
mer, M. (2011). Search-based design defects detection
by example. In Fundamental App. to Soft. Eng.

Kessentini, W., Kessentini, M., Sahraoui, H., Bechikh,
S., and Ouni, A. (2014). A Cooperative Paral-
lel Search-Based Software Engineering Approach for
Code-Smells Detection. IEEE Trans. Softw. Eng.

Khombh, E., Penta, M. D., Guéhéneuc, Y.-G., and Antoniol,
G. (2012). An exploratory study of the impact of anti-
patterns on class change- and fault-proneness. Empi-
rical Software Engineering, 17(3):243-275.

Khombh, F., Vaucher, S., Guhneuc, Y. G., and Sahraoui, H.
(2009). A Bayesian Approach for the Detection of
Code and Design Smells. In 9th Int. Conf. on Quality
Software, pages 305-314.

Khombh, F., Vaucher, S., Guhneuc, Y.-G., and Sahraoui, H.
(2011). BDTEX: A ggm-based Bayesian approach for
the detection of antipatterns. J. of Sys. and Software.

Kreimer, J. (2005). Adaptive detection of design flaws.
Electronic Notes in Theoretical Computer Science.

Kumar, S. and Chhabra, J. K. (2014). Two level dynamic
approach for Feature Envy detection. In Int. Conf. on
Computer and Communication Technology.

Langelier, G., Sahraoui, H., and Poulin, P. (2005).
Visualization-based Analysis of Quality for Large-
scale Software Systems. In 20th IEEE/ACM Int. Conf.
on Automated Software Engineering, pages 214-223.

Lanza, M. and Marinescu, R. (2007). Object-oriented me-
trics in practice: using software metrics to charac-
terize, evaluate, and improve the design of object-
oriented systems.

Ligu, E., Chatzigeorgiou, A., Chaikalis, T., and Ygeiono-
makis, N. (2013). Identification of refused bequest
code smells. In Int. Conf. on Software Maintenance,
pages 392-395.

Liu, H., Liu, Q., Niu, Z., and Liu, Y. (2016). Dyna-
mic and automatic feedback-based threshold adapta-
tion for code smell detection. IEEE Trans. Softw. Eng.

Maiga, A., Ali, N., Bhattacharya, N., Saban, A., Guhneuc,
Y. G., and Aimeur, E. (2012a). SMURF: A SVM-
based Incremental Anti-pattern Detection Approach.
In 19th Working Conf. on Reverse Engineering.

Maiga, A., Ali, N., Bhattacharya, N., Saban, A., Guhneuc,
Y. G., Antoniol, G., and Ameur, E. (2012b). Support
vector machines for anti-pattern detection. In 27¢h Int.
Conf. on Automated Software Engineering.

Mansoor, U., Kessentini, M., Maxim, B. R., and Deb, K.
(2017). Multi-objective code-smells detection using
good and bad design examples. Software Quality J.

Mantyla, M., Vanhanen, J., and Lassenius, C. (2003). A
taxonomy and an initial empirical study of bad smells
in code. In Int. Conf. on Software Maintenance.

Marinescu, R. (2004). Detection strategies: metrics-based
rules for detecting design flaws. In 20th IEEE Int.
Conf. on Software Maintenance, pages 350-359.

Mens, T. and Tourwe, T. (2004). A survey of software re-
factoring. IEEE Trans. Softw. Eng., 30(2):126-139.

Mihancea, P. F. and Marinescu, R. (2005). Towards the Op-
timization of Automatic Detection of Design Flaws in
Object-Oriented Software Systems. In 9th Eur. Conf.
on Software Maintenance and Reengineering.

Moha, N., Gueheneuc, Y. G., Duchien, L., and Meur, A.
F. L. (2010). DECOR: A Method for the Specifica-
tion and Detection of Code and Design Smells. /EEE
Trans. Softw. Eng., 36(1):20-36.

Moha, N., Huynh, D.-l., Guéhéneuc, Y.-G., and Team, P.
(2005). A Taxonomy and a First Study of Design Pat-
tern Defects. STEP 2005, page 225.

Munro, M. J. (2005). Product metrics for automatic identi-
fication of bad smell design problems in Java source-
code. In 71th IEEE Int. Software Metrics Symp.

Murphy-Hill, E. and Black, A. P. (2010). An Interactive
Ambient Visualization for Code Smells. In 5th Int.
Symp. on Software Visualization, pages 5-14. ACM.

Nickerson, R. C., Varshney, U., and Muntermann, J. (2013).
A method for taxonomy development and its applica-
tion in information systems. Eur. J. of Information
Systems.

Nongpong, K. (2015). Feature envy factor: A metric for
automatic feature envy detection. In 7th Int. Conf. on
Knowledge and Smart Technology, pages 7-12.

Oliveira, P., Valente, M. T., and Lima, F. P. (2014). Ex-
tracting relative thresholds for source code metrics. In
IEEE Conf. on Software Maintenance, Reengineering,
and Reverse Engineering, pages 254-263.

Towards a Taxonomy of Bad Smells Detection Approaches

Oliveto, R., Khombh, F., Antoniol, G., and Gueheneuc, Y. G.
(2010). Numerical Signatures of Antipatterns: An Ap-
proach Based on B-Splines. In /4th Eur. Conf. on Soft-
ware Maintenance and Reengineering.

Ouni, A., Kessentini, M., Sahraoui, H., and Boukadoum,
M. (2013). Maintainability defects detection and cor-
rection: a multi-objective approach. Automated Soft-
ware Engineering, 20(1):47-79.

Palomba, F., Bavota, G., Penta, M. D., Oliveto, R., Lucia,
A. D., and Poshyvanyk, D. (2013). Detecting bad
smells in source code using change history informa-
tion. In 28th IEEE/ACM Int. Conf. on Automated Soft-
ware Engineering, pages 268-278.

Palomba, F., Bavota, G., Penta, M. D., Oliveto, R., Poshyva-
nyk, D., and Lucia, A. D. (2015). Mining Version His-
tories for Detecting Code Smells. IEEE Trans. Softw.
Eng., 41(5):462-489.

Palomba, F., Lucia, A. D., Bavota, G., and Oliveto, R.
(2014). Anti-pattern detection: Methods, challenges,
and open issues. 95:201 — 238.

Radjenovi, D., Heriko, M., Torkar, R., and ivkovi, A.
(2013). Software fault prediction metrics: A syste-
matic literature review. Inf. and Software Technology,
55(8):1397 — 1418.

Ratiu, D., Ducasse, S., Girba, T., and Marinescu, R. (2004).
Using History Information to Improve Design Flaws
Detection. In 8th Eur. Conf. on Software Maintenance
and Reengineering, pages 223-232.

Sahin, D., Kessentini, M., Bechikh, S., and Deb, K. (2014).
Code-Smell Detection As a Bilevel Problem. ACM
Trans. on Software Engineering and Methodology.

Salehie, M., Li, S., and Tahvildari, L. (20006). A
Metric-Based Heuristic Framework to Detect Object-
Oriented Design Flaws. In 14th IEEE Int. Conf. on
Program Comprehension, pages 159—168.

Saranya, G., Nehemiah, H. K., Kannan, A., and Nithya,
V. (2017). Model level code smell detection using
EGAPSO based on similarity measures. Alexandria
Engineering Journal.

Soh, Z., Yamashita, A., Khomh, F., and Guhneuc, Y. G.
(2016). Do Code Smells Impact the Effort of Diffe-
rent Maintenance Programming Activities? In 23rd
1EEE Int. Conf. on Software Analysis, Evolution, and
Reengineering, volume 1, pages 393-402.

Stoianov, A. and Sora, I. (2010). Detecting patterns and an-
tipatterns in software using Prolog rules. In Int. Joint
Conf. on Computational Cybernetics and Technical
Informatics, pages 253-258.

Tourwe, T. and Mens, T. (2003). Identifying refactoring op-
portunities using logic meta programming. In 7th Eur.
Conf. on Software Maintenance and Reengineering.

Travassos, G., Shull, E., Fredericks, M., and Basili, V. R.
(1999). Detecting defects in object-oriented designs:
using reading techniques to increase software quality.

van Emden, E. and Moonen, L. (2002). Java quality assu-
rance by detecting code smells. In 9th Working Conf.
on Reverse Engineering, pages 97-106.

Walter, B., Matuszyk, B., and Fontana, F. A. (2015). Inclu-
ding Structural Factors into the Metrics-based Code
Smells Detection. In Scientific Workshop Proc. of XP.

175

