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Abstract:  This paper analyzes a flexible manufacturing system (FMS) and presents a new scheme to find the optimal 

operational parameters settings of two of the mostly used performance measures in assessing manufacturing 

and production systems, namely the throughput rate (TR)  and the mean flow time (MFT). The scheme uses 

an off-line model that combines discrete-event simulation, robust design principles and mathematical analysis 

to uncover the optimal settings. The research suggests a two-level optimization procedure that uses an 

empirical process followed by an analytical technique. In a first level, the empirical approach serves to derive 

the near-optimal values of the two individual performance measures of interest. These values are then used 

as targets in the second level of the optimization procedure in which, a Taguchi quality loss function (QLF) 

is applied to the FMS mathematical model derived through simulation-meta-modeling to find the optimal 

parameter settings. As advocated in Six Sigma Methodology the optimization of the modeled system is 

implemented and achieved through a minimization of the performance variation followed by an optimal 

adjustment of the performance’s mean if necessary, in order to minimize the overall loss incurred due to the 

deviation of the mean from target. 

1 INTRODUCTION 

A high reliability is one of the most desired features 

in operating a production system in general and a 

Flexible Manufacturing System (FMS) in particular. 

For this reason, there has been a highly increasing 

need in the manufacturing sector to seek for both 

flexibility and robustness under optimal settings of 

main operating parameters. 

The present research analyzes a hypothetical FMS 

and presents a unique scheme in designing, modeling 

and optimizing robust systems. The reader is referred 

to Tshibangu 2017 for a detailed description of the 

hypothetical FMS under study. A discrete-event 

simulation and typical data collection plan are used 

for the study. Data collected during simulation are 

subsequently fed into a non-linear regression model 

to generate meta-model that will characterize the 

FMS from the performance measures point of view. 

The optimization procedure as subsequently 

developed in this paper is performed at two levels. 

First an empirical technique is used to find near-to-

optimal values for each individual performance 

criterion of interest. These values are subsequently 

used as target goals in the second level of the 

optimization procedure in which a Taguchi Quality 

Loss Function (QLF) is applied to the meta-models to 

uncover the optimal setting of the system parameters 

while minimizing the loss incurred to the overall 

systems for possibly missing the targets as set. 

Specifically, the analytical optimization is applied to 

a regression model equation (meta-model) derived 

from the simulation output results. 

The approach used in this study takes advantage 

of a robust design methodology as it renders the 

system insensitive to uncontrollable factors (noise) 

and hence, guarantees the system stability required 

before any improvement and /or optimization 

attempt. The research is also motivated by both the 

Six Sigma governing principle, that seeks 

performance improvement through a reduction of 

variability and the Six Sigma methodology that 

advocates the use of DMAIC as roadmap to seek and 

implement the best solution while reducing defects, 

and thus, improving quality. The different steps in 

this study will identify the Six Sigma roadmap phases 

as well. 
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2 LITERATURE REVIEW 

The Six Sigma philosophy maintains that reducing 

‘variation’ will help solve process and business 

problems (Pojasek, 2003). This quality management 

methodology is extensively used to improve 

processes, products and/or services by discovering 

and eliminating defects. The goal is to streamline 

quality control in manufacturing or business 

processes so there is little to no variance throughout. 

The strategic use of Six Sigma principles and 

practices ensures that process improvements 

generated in one area can be leveraged elsewhere to a 

maximum advantage, resulting in quantum increasing 

product quality, continuous process improvement 

resulting in corporate earnings performance (Sharma 

2003). 

There is still a limited number of reported flexible 

manufacturing system optimization using Six Sigma 

or a combination of both Lean principles and Six 

Sigma. Moreover, there is virtually no documentation 

on the merge of Six Sigma and Taguchi Quality Loss 

Function in attempt to optimize a process and or 

system. Sharma (2003) also mentions that there are 

many advantages of using strategic Six Sigma 

principles in tandem with lean enterprise techniques, 

which can lead to quick process improvement and/or 

optimization. More than 95% of plants closest to 

world-class indicated that they have an established 

improvement methodology in place, mainly 

translated into Lean, Six Sigma or the combination of 

both. Valles et. al 2009 use a Six Sigma methodology 

(variation reduction) to achieve a 50% reduction in 

the electrical failures in a semi-conductor company 

dedicated to the manufacturing of cartridges for ink 

jet printers. Han et al. 2008 also use Six Sigma 

technique to optimize the performance and improve 

quality in construction operations. Hansda et. al 

(2014) use a Taguchi QLF in a multi-characteristics  

optimization scheme to optimize the response in 

drilling of GFR composites. Tsui (1996) proposes a 

two-step procedure to identify optimal factor settings 

that minimize the variance and adjust to target using 

a robust design inspired from Taguchi methodology. 

Zhanga et. al (2013) use a QLF to adjust a process in 

an experimental silicon ingot growing process.  

3 THE ROBUST 

DESIGN - (DEFINE) 

Being part of what is known today as the Taguchi 

Methods, Robust Design includes both design of 

experiments concepts, and a particular philosophy for 

design in a more general sense (e.g. manufacturing 

design). Taguchi sought to improve the quality of 

manufactured goods, and advocated the notion that 

“quality” should correspond to low variance, which is 

also the backbone of the Six Sigma methodology 

today as it seeks a reduction of variance as a means to 

stabilize a process and, hence, improve “quality”. The 

present study uses a robust design configuration 

inspired by Taguchi robust design methodology. 

However, because of the high amount of criticism 

against Taguchi’s experimental design tools such as 

orthogonal arrays, linear graphs, and signal-to-noise 

ratios, the robust design formulation adopted here 

avoids the use of Taguchi’s statistical methods and 

rather uses an empirical technique developed by 

Tshibangu (2003). Overall, implementing a robust 

design methodology or formulation requires the 

following steps: 

• Define the performance measures of interest, the 

controllable factors, and the uncontrollable factors or 

source of noise. 

• Plan the experiment by specifying how the 

control parameter settings will be varied and how the 

effect of noise will be measured. 

• Carry out the experiment and use the results to 

predict improved control parameter settings (e.g., by 

using the optimization procedure developed in this 

study). 

• Run a confirmation experiment to check the 

validity of the prediction. 

In a robust design experiment, the settings of 

control parameters are varied simultaneously in few 

experimental runs, and for each run, multiple 

measurements of the main performance criteria are 

carried out in order to evaluate the system sensitivity 

to noise.  

This study investigates the FMS performance 

with respect to the mean flow time (MFT) and 

throughput rate (TR) separately by considering 5 

variables Xi as controllable parameters, namely: i) the 

number of AGVs (X1), ii) the speed of AGV (X2), iii) 

the queue discipline (X3), iv) the AGV dispatching 

rule (X4), v) and the buffer size (X5). These 

parameters are not the only variables susceptible to 

affect the performance of the FMS under study. 

However, because one objective of the research is to 

design a robust FMS, the parameters considered here 

are those related to the performances of the most 

costly and vulnerable components of the system, also 

potential sources of disturbances, namely: machines 

and material handling (AGVs). The controllable 
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parameters are tested at two settings (min and max) 

as displayed in Table 1. 

The principal sources of noise tested in this study 

and commonly investigated and documented in the 

reported literature (Tshibangu 2014) are: i) the arrival 

rate between parts or orders in the manufacturing 

environment (X6), ii) the mean time between failures 

of the machines (X7), and iii) the associated mean 

time to repair (X8).  

These noise factors are also tested at two setting 

levels in combination with each control factor at all 

setting levels. Table 2 depicts settings and natural 

values for noise factors. For both controllable and 

noise factors, the coded levels are (-1) and (+1) for 

the low and high level, respectively. 

3.1 Planning the Experiment 

Planning the experiment is a two-part step that 

involves deciding how to vary the parameter settings 

and how to measure the effect of noise. In the case of 

a full factorial experimental design, with the 5 

variables X1, X2, X3, X4, and X5, identified as the 

control parameters to be evaluated at two settings, the 

experiment will require 25
 = 32 experimental runs. 

The research also investigates three noise factors X6, 

X7, and X8, varied at two settings each, resulting in 

measuring a total of 23 = 8 noise combination settings 

for each experimental run. 

Therefore, the total number of experimental runs 

to be conducted in a full factorial configuration would 

therefore be equal to 32 x 8 = 256 simulation 

experiments. 

Two-level, full factorial or fractional factorial 

designs are the most common structures used in 

constructing experimental design plans for system 

design variables. Tshibangu (2003) recommends 

appropriate fractional factorial designs of resolution 

IV or V in the design of robust manufacturing 

systems. This research decides to use a two-level 

fractional design of resolution V, denoted 2v 5-1 

requiring only 16 runs, instead of the 32 needed for a 

full factorial design. Across the full set of noise 

factors, the design leads to a total of 16 x 8 =128 

simulation runs (instead of 256 as required for a full 

factorial design). The study uses a design of 

resolution V to allow an estimation of both main 

factors and two-way interactions effects, necessary 

for the empirical optimization technique 

implemented in this research study. 

Normally, a standard, statistical experimental 

design, also known as a data collection plan, should 

be used when conducting simulation experiments. 

Table 1: Natural Values and Setting of Controllable 

Factors. 

Designation Noise Factor Low Level (-1) High Level(+1) 

X6 
Inter-arrival EXPO(15) EXPO(5) 

X7 
MTBF EXPO(300) EXPO(800) 

X8 
MTTR EXPO(50) EXPO(90) 

Table 2: Natural Values and Setting of Noise Factors. 

Designation Control Factor 
Low  
Level (-1) 

High 
Level(+1) 

X1 Number of AGVs 2 9 

X2 Speed of AGV 100 200 

X3 Queue Discipline FIFO SPT 

X4 AGV Dispatching Rule FCFS SDT 

X5 Buffer Size 8 40 

The data collection plan used in this research is 

inspired from Genichi Taguchi’s strategy for 

improving product and process quality in 

manufacturing. The proposed design strategy 

includes simultaneous changing of input parameter 

values. Therefore, the uncertainty (noise) associated 

with not knowing the effect of shifts in actual 

parameter values such as shifts in mean inter-arrival 

times, mean service times, or the effect of not 

knowing the accuracy of the estimates of the input 

parameter values, is introduced into the experimental 

design itself. Tshibangu (2003) gives detailed 

information about this specific data collection plan 

used in this study to run the simulation experiments 

and collect the statistics thereof.  

3.2 Level 1 Optimization Procedure: 
Four-Step Single Response 
Optimization for Robust Design 

Because flexible manufacturing systems are subject 

to various uncontrollable factors that may adversely 

affect their performance, a robust design of such 

systems is crucial and unavoidable. In order to 

improve the expected value of the function estimate 

or performance measure, Tshibangu (2003) has 

developed a four-step optimization procedure to be 

used simultaneously with the robust design in an 

empirical fashion as follows: 

Let iy  represent the average performance measure 

across all the set of noise factors combination, 

averaged across all the simulation replications for 

each treatment combination (or design configuration) 
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i. Let log 2
wrtnf(i) be the associated logarithm of the 

variance with respect to noise for that particular 

treatment i. The author recommends to use the 

logarithm of the variance in order to improve 

statistical properties of the analysis.   

Employ the effects values and or graphs in 

association with normal probability plots and or 

ANOVA procedures to identify and partition the 

following three categories of control factor vectors: 

(i) Xv
T the vector of controllable factors that have a 

major (significant) effect on the variance with 

respect to noise factors 2
wrtnf (represented by 

log 2
wrtnf) of the performance measure of 

interest y. 

(ii) Xm
T the vector of controllable factors that have a 

significant effect on the mean y . The group Xm
T 

is further partitioned into two sub-groups:  

a. (Xm
T)1 including factors having a significant 

effect on the mean y , with their main and 

interaction effects with members of Xv
T having 

no or less significance on the variance 2
wrtnf . 

The main idea here is: since these factors or any 

of their interaction with the controllable factors 

members of Xv
T do not have a significant effect 

on the variance, but have a large effect on the 

mean, they can be used as “tuning” factors to 

adjust the mean on the target without altering the 

variability. 

b. (Xm
T)2 including factors having a significant 

effect on mean y  and on the variance 2
wrtnf 

simultaneously. That is, (Xm
T)2 is a subset of Xv

T, 

or is totally confounded to the Xv
T set. (Xm

T)2 is 

further categorized in (Xm
T)2

A that includes 

factors with effect on variance and mean acting 

in the same direction, and (Xm
T)2

B containing 

factors with effects on variance and mean acting 

in opposition. Because these settings affect 

inversely (in relation with the experiment’s 

goal), there is a need for trade-off.  

(iii) X0
T the vector of controllable factors that affect 

neither the variance 2
wrtnf nor the mean y , and 

whose interactions with members of set Xv
T has 

no effect on the variance 2
wrtnf. 

Note that controllable factors members of set Xv
T 

may also affect the mean y , i.e., they can also be 

members of Xm
T. Such factors affect both the variance 

2
wrtnf and the mean y . Thus, a compromise between 

variance and mean might be required if necessary. 

However, a controllable factor member of X0
T cannot 

be simultaneously a member of Xv
T and or Xm

T. Also, 

the robust design configuration should have enough 

resolution (at least resolution IV) to allow 

identification of the two-way interaction effects. 

This study assumes that Xv
T, Xm

T, and X0
T, are not 

empty sets and subsequently implements the four-

step optimization procedure as developed and 

proposed by the author (Tshibangu 2003). Using the 

related plots and tables, and applying it to the Mean 

Flow Time (MFT) and Throughput Rate (TR) 

performance measures, the following coded results 

are obtained: MFT = 0.3666 units time /part and TR = 

3000 parts/month (100 parts/day). These values will 

be considered as the optimal target values to be 

achieved in the second level of the optimization 

procedure (multi-criteria optimization).  

3.3 Simulation Meta-modeling - 
(Measure) 

Kleijnen (1977) defines the purposes of meta-

modeling as the method by which to measure the 

sensitivity of the simulation response to various 

factors that may be either decision (controllable) 

variables or environmental (non-controllable) 

variables. Meta-models are usually constructed by 

running a special RSM (Response Surface 

Methodology) experiment and fitting a regression 

equation that relates the responses to the independent 

variables or factors.  

Let us assume that, for each objective 

performance of the FMS under study a model has 

been developed, representing the relationship 

between the system objective performances   and the 

operating parameters X1, X2,…, Xp, in the form of: 

1 2
ˆ ( , ,..., )j py f x x x  (1) 

where ˆ
jy  is an estimate of the performance measure 

of interest obtained through regression meta-

modeling, and 
1 2, ,..., px x x  are the coded units of 

operating variables X1, X2,…, XP. The FMS simulation 

statistics collected were subsequently fed into a non-

linear regression meta-model. Applying the meta-

modeling technique to the FMS under study leads to 

the estimate-equations ˆ
TRy  and ˆ

MTFy  for the 

responses of interest, i.e., for the throughput rate (TR), 

and for the mean flow time (MFT). The simulation 

results, not displayed here, but available upon 

request, yield the following equations for the 

performance measures of interest, ˆ
TRy  and ˆ

MTFy . 
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𝑦̂𝑇𝑅 = 90.7617 + 20.6726𝑥1 + 2.5357𝑥2

+ 2.6977𝑥3 + 3.8574𝑥4 + 0.5617𝑥5

− 4.712𝑥1
2 − 9.042𝑥2

2 − 8.732𝑥3
2 − 4.712𝑥4

2

− 7.923𝑥5
2 − 7.458𝑥1𝑥2 + +3.5513𝑥1𝑥3

− 0.5315𝑥2𝑥3 − 0.3304𝑥3𝑥4 

(2) 

where 
54321 ,,,, xxxxx  are the coded units for the 

operating variables X1, X2, X3, X4, and X5, 

respectively.  

𝑦̂𝑀𝐹𝑇 = 4.6503 − 8.8338𝑥1 − 4.4760𝑥2 − 3.2451𝑥3

− 0.1345𝑥4 + 0.5054𝑥5 + 14.1731𝑥1
2

+ 1.5309𝑥2
2 − 1.3399𝑥3

2 − 0.4519𝑥4
2

− 1.4569𝑥5
2 + 5.3816𝑥1𝑥2 − 0.7952𝑥1𝑥3

− 0.0335𝑥1𝑥4 − 0.504𝑥1𝑥5 − 0.1457𝑥2𝑥3

− 0.3251𝑥2𝑥4 + 0.4863𝑥3𝑥5 − 0.7655𝑥4𝑥5 

(3) 

3.4 Variance Metamodels – (Measure) 

The same methodology used to derive the 

metamodels for the means of performance measures 

in equations (2) and (3) is applied to TR and MFT 

logarithmic variances to derive a regression model 

able to predict the variance with respect to noise at 

any treatment combination of the controllable factors 

(equations 4 and 5). Tables 3 displays an example of 

outputs from SPSS®, from which the metamodels of 

the TR log variances are generated as follows:  

𝜎̂𝑇𝑅 
2 = 97.2712 + 214.5807𝑥1 + 54.382𝑥2 

− 91.435𝑥3 − 1.2502𝑥4 − 7.6521𝑥5

− 3700.923𝑥1
2 − 4586.6423𝑥2 

2

+ 2396.3647𝑥3
2 + 5952.9562𝑥4

2 + 57.182𝑥5
2

+ 53.5783𝑥1𝑥2 − 91.90𝑥1𝑥3 − 1.3993𝑥1𝑥4 

− 6.6974𝑥1𝑥5 − 13.2394𝑥23 + 1.1630𝑥2𝑥4

+ 7.08𝑥2𝑥5 + 7.6523𝑥3𝑥4 + 0.9297𝑥3𝑥5 

− 13.633𝑥4𝑥5  

(4) 

 
𝜎̂𝑀𝐹𝑇 

2 = 14.1221 + 11.3930𝑥1 − 0.3565𝑥2 

− 18.207𝑥3 − 1.8633𝑥4 − 7.1266𝑥5

+ 24.7261𝑥1
2 + 1.7262𝑥2 

2 + 6.3262𝑥3
2

+ 9.8262𝑥4
2 + 12.9262𝑥5

2 + 17.1912𝑥1𝑥2

− 51.0237𝑥1𝑥3 − 2.55724𝑥1𝑥4 

+ 4.0895𝑥1𝑥5 − 15.3107𝑥2𝑥3

+ 6.4177𝑥2𝑥4 + 2.1228𝑥2𝑥5 + 1.1445𝑥3𝑥4

− 2.1945𝑥3𝑥5 − 1.35103𝑥4𝑥5 

(5) 

For all the equations generated in this paper, i.e., 

(Equations 2, 3, 4 and 5) the R-squared values of all 

the prediction models are very high (e.g., 0.999+), 

indicating a good approximation of the prediction 

models.  The accuracy of these prediction models 

have been verified and confirmed through simulation 

runs of all 21 designs followed by a subsequent 

residuals calculation and comparison of the observed 

values to the predicted values.  The magnitude of 

residuals (not shown here) was less than 5% overall. 

Table 3: Non Linear Regression Analysis and ANOVA for 

Var TR. 

Nonlinear  

Regression   
Summary Statistics 

Dependent Variable 

VARTR 

Source DF  Sum of Squares Mean Square 

Regression 21  1903372.42116 90636.78196 

Residual 0      525.76464  

Uncorrected Total 21  1903898.18580  

(Corrected Total) 20  1162541.93246  

R squared = 1 - Residual SS / Corrected SS =     .99955 

4 TAGUCHI QUALITY LOSS 

FUNCTION ANALYSIS – 

(ANALYZE) 

This section overviews the basic features of the 

Quality Loss Function (QLF). Taguchi’s approach in 

Quality Engineering is explained in the following 

steps: 

 Each engineering output has an ideal target 

value. 

 Any deviation from target incurs a loss. 

These losses include tolerance stack-up, 

performance degradation, and life reduction.  

 The more the loss increases the more the 

output response deviates from the target. 

 The goal of Robust Design (RD) is to reduce 

deviation of performance measure(s) from 

the target(s).  

Performance begins to gradually deteriorate as the 

quality characteristic of interest and/or performance 

criterion deviates from its optimum value. Therefore, 

Taguchi proposed that the loss function be measured 

by the deviation from the ideal value. 

A variety of loss functions have been discussed in 

the literature. However, a simple Quadratic Loss 

Function (QFL) may be appropriate in many 

situations (Tshibangu 2003). These quality loss 

functions, especially the nominal-the-best type 

function, are widely used in process adjustment. Most 

existing literature developed the algorithm by 

minimizing the expected mean sum of squared error, 

which is consistent with the nominal-the-best loss 

function (Tshibangu 2015). 

In this research the Taguchi QLF is used to 

measure the loss of performance as compared to 

target value(s). The optimal values found during the 

implementation of the proposed empirical 

optimization procedure will be used as target values 

in the subsequent analytical optimization approach. 
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The two primary objective performances involved in 

separate and single optimization procedures as 

developed in this study are the Throughput Rate (TR) 

and the Mean Flow Time (MFT). 

Tshibangu (2003) shows that Taguchi QLF for a 

single objective criterion can be extended to the case 

of multiple quality characteristics or objective 

performances, and then referred to as a “multivariate 

quality loss function”. The purpose is to capture the 

overall system performance when addressing a set of 

performance objectives. This study addresses the 

single objective optimization for the MTF and TR 

using Taguchi QLF. 

Let yj, and Tj be the performance measures of 

interest (j =1 to Q, where Q is the total number of 

performance measures), and the target for objective 

performance yj respectively, and be denoted by y = 

(y1, y2,…, yQ)T
 and T = (T1, T2,…, TQ)T

 under the 

assumption that L(y) is a twice-differentiable function 

in the neighborhood of T.  

Assuming that each objective performance has a 

mean μ(x)i and a variance σ(x)i
2, then, after some 

mathematical developments and manipulations 

(Tshibangu 2003) the expected value of the quadratic 

loss function can be written as follows: 

   

  

2 2

1

1

2 1

Q

i i i i

i

Q i

ij ij i i j j

i j

E L y T

T T

  

   





 

         

   
 





 (6) 

where 

2

2

1

2
ij

i

L
i j

y


 
   

 
 (7) 

and 

21

2
ij

i j

L
i j

y y


 
   

   

 (8) 

and σij represents the covariance between yi and yj. 

Equation (6) reveals that several terms, such as the 

bias and variance generated by each objective 

performance, the covariance σij between objective 

performance, and the cross products between biases, 

must be reduced in order to minimize the expected 

loss. Assuming that all the objective performances of 

interest are statistically independent, then, 0ij  and 

equation (6) reduces to: 

   

  

2 2

1

1

2 1

( )
Q

i i i i

i

Q i

ij i i j j

i j

E L y T

T T





 

      
 

     





 
(9) 

As pointed out in Tshibangu (2015), there are 

three aspects of interest in formulating robust design 

systems: (i) deviation from targets; (ii) robustness to 

noise; (iii) robustness to process parameters 

fluctuations. A weighted sum of mean squares is 

appropriate to capture (i) and (ii), while gradient 

information is necessary to capture (iii). This research 

is particularly interested in deviation from target and 

robustness to noise. Therefore, only the first term of 

Equation (9) is needed.  

The next step consists of applying the derived 

QLF to the FMS meta-models obtained from 

simulation outputs and expressed in Equations (4) and 

(5). In order to determine the optimal input 

parameters, an objective function is developed from 

Equation (9) following a framework adopted by 

Tshibangu (2014). 

Because of the robust design configuration 

adopted during the experiments and assuming a Six 

Sigma methodology is in use, it can be assumed that 

the variability of the system due to fluctuations of the 

operating parameters is negligible, then, for a given 

treatment, the loss incurred to a system as the result 

of a departure of the system performance   from the 

target Tj can be estimated as: 

𝐿(𝑖) = 𝑤𝑗[(𝑦̂𝑗−𝑇2) + 𝜎̂𝑦𝑗
2 ] (10) 

where L(i) is the loss at treatment i; wj is a weight 

to take into account to consider the relative 

importance of an individual performance measure 

jy  (j=1,2,…Q), especially in the case of a multiple 

optimization procedure; ˆ ,j yjy   are respectively the 

predicted (estimate) mean and standard deviation of 

the performance measures of interest yj; Tj is the 

target for the system performance measure yj. L(i) is 

the objective function to be minimized. In this 

particular form, the objective function has two terms. 

The first term of the objective function,  
2

ˆ
j jy T  

accounts for deviations from target values. The 

second term, 2ˆ
yj  accounts for the source of 

variability due to non-controllable (noise) factors. 

Because this study is addressing a single criterion 

optimization separately for each performance 

measure and because the determination of goal’s 

weights is beyond the scope of this research study, it 

has been assumed that both performance measures of 

interest are equally important, and most importantly, 

as the study is trying to set up a proof of concept by 

optimizing separately the performance measures 

before attempting any multivariate optimization 

procedure , a normalized weight value of 1 is applied 

to  for both the throughput rate TR and the mean flow 
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time MFT, respectively. Throughput Rate (TR) and 

Mean Flow Time (MFT) data means and their 

variances are also normalized. 

It worth it to say that R-squared values should be 

associated to residual analysis to check if the 

assumption about the normality in the data is valid 

and therefore, to justify any valid statistical analysis 

and subsequent conclusions. When the effects of the 

various control factors have been computed, they can 

subsequently be plotted to normal probability paper 

by adjusting the probability p as: 

 100* 0.5 /kp k n   (11) 

where k is the order number; k = 1, 2, …(n-1), n is the 

total number of runs, and pk is the probability of k. 

Residual analysis is also conducted to verify the 

conclusion on predicted significant effects. 

The residuals obtained from a fractional factorial 

design by the regression model should then be plotted 

against the predicted values, against the levels of the 

factors, and normal probability paper to assess the 

validity of the embedded model assumptions and gain 

additional insight into the experimental situation. The 

various residual plots required for this research are 

not displayed here for economy of space. These plots 

are used to check if the assumptions presumed 

embedded in the model are met.  

The most common assumptions are that errors are 

(Normally, Independently Distributed) NID (0, 2). 

When these assumptions are met, the residuals are 

normally distributed, have equal variances, and are 

not independent. The normal probability plots of TR 

residuals shown in Figure 1 for illustration purpose 

lie approximately along a straight line. As a result, 

there is no reason to suspect any severe non-normality 

in the data (p=0.15). Hence, residuals are NID(0, 2). 

The same conclusion is also drawn for the MFT 

whose plots are not displayed here for economy of 

space. 

Approximate P-Value > 0.15

D+: 0.108  D-: 0.125  D : 0.125

Kolmogorov-Smirnov Normality Test

N: 21

StDev: 0.313635

Average: -0.0000094
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Figure 1: Normal Probability plots for TR Residuals. 

5 LEVEL 2 OPTIMIZATION 

USING TAGUCHI QLF AND 

METAMODELS  

(IMPROVE-CONTROL)  

Analysis of Equation (10) reveals that a minimal loss 

will be incurred to a performance measure when both 

terms of the equation are minimized. Let 𝑖𝑚𝑖𝑛1 and 

𝑖𝑚𝑖𝑛2 be the treatment level with the lowest  
2

ˆ
j jy T  

and 2ˆ
yj  value, respectively among all 21 treatment 

combinations simulated. The minimization of the 

second term 2ˆ
yj  of Equation (10) is key to the 

proposed approach as it is most critical term for the 

quality of the product as it guarantees less variation 

among the various products delivered under a specific 

combination of operational parameters. Therefore, 

the second level of the proposed optimization scheme 

will first start with the minimization of the variance 

(second) term 2ˆ
yj  in Equation (10).  

 Step 1. A mathematical manipulation using basic 

Linear Programing, of the metamodels derived in 

Equation (4) and (5), expressed in the form of 

objective functions as illustrated in Tshibangu 2014 

will lead to the determination of the treatment 

combination 𝑖𝑚𝑖𝑛2 that yields the minimal value for 

the second term 2ˆ
yj .  

 Step 2. The minimum of the first term  
2

ˆ
j jy T  

is obtained by computing  
2

ˆ
j jy T  for each treatment 

(i) of the 21 designs simulated across the noise level 

combination using TR and MFT metamodels found in 

Equations (2) and (3) in combination with the target 

values jT  derived from the empirical approach for 

both TR and MTF, respectively at each treatment 

level. The treatment combination yielding the 

minimum value is considered as the optimal 

combination for the first term of Equation (10). This 

treatment combination level will not necessarily be 

the same as the one derived through mathematical 

minimization of the second term 2ˆ
yj . 

Also, it worth it to say that because this research 

has used a fractional design of experiments the 

treatment combinations 𝑖𝑚𝑖𝑛1 and 𝑖𝑚𝑖𝑛2 do not 

necessary have to be among the 21 simulated 

combinations. However, because one of the 

objectives of robust design is to reduce the 

performance measure variance, 𝑖𝑚𝑖𝑛2 will be first 

consider as the basic optimal treatment combination 

level leading to the most robust (less variation) and 
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optimal setting of operational parameters. 

Confirmatory runs will be carried out to validate the 

results while possible fine-tuning adjustments may be 

necessary to compensate for any possible mean loss. 

6 RESULTS AND CONCLUSIONS 

This research first addresses a robust design 

formulation and simulation data collection plan for a 

hypothetical FMS and implements in a first level, an 

empirical optimization procedure to use in order to 

avoid the controversial Taguchi statistical tools. Then 

the research derives a metamodel from the simulation 

outputs. The study also derives a QLF from the 

traditional Taguchi loss function in order to capture 

the loss incurred to the overall FMS when addressing 

a specific objective performance (TR or MFT). Next 

(second level of the optimization scheme), the QLF is 

analytically applied to the metamodels to optimize the 

FMS with respect to an objective performance. 

Target/optimum values of 100 parts/day and 0.3666 

units time/part (in coded data) obtained in the first 

level of the empirical optimization procedure have 

been fixed for the TR, and MFT, respectively. This 

two-level optimization procedure leads to a solution 

that yields the least cost incurred to the overall FMS 

as a penalty for missing the objective targets. The 

values of 98 parts/day (-2% from target) and 0.3459 

units time/part (+5.6% from target) are obtained as 

optima, for TR and MFT, respectively. Figure 2 is a 

Minitab output depicting the effects of control factors 

for TR. When using TR as performance measure the 

most robust and optimal FMS configuration would be 

at the following settings in natural values: Number of 

AGVs (X1): 6; Speed of AGV (X2): 150 feet/min; 

Queue discipline (machine rule) (X3): SPT; AGV 

dispatching rule (X4): STD; Buffer size: (X5): 24.  

 

Figure 2: Effects of Control Factors on Log 2
(wrtnf) TR. 
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