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In this paper the algorithm KSCP (KLMS with Surprise Criterion and Parallel Hyperslab Projection Along
Affine Subspaces) for adaptive estimation of nonlinear systems is proposed. It is based on the combination
of: - the reproducing kernel to deal with the high complexity of nonlinear systems; -the parallel hyperslab
projection along affine subspace learning algorithm, to deal with adaptive nonlinear estimation problem; -
the kernel least mean square with surprise criterion that uses concepts of likelihood and bayesian inference
to predict the posterior distribution of data, guaranteeing an appropriate selection of data to the dictionary
at low computational cost, to deal with the exponential growth of the dictionary, as new data arrives. The
proposed algorithm offers high accuracy estimation and high velocity of computation, characteristics that are
very important in estimation and tracking online applications.

1 INTRODUCTION

Machine Learning algorithms for nonlinear estima-
tion have been widely exploited in the last years.
The supervised machine learning algorithms are ca-
pable of producing function approximations and sig-
nal predictions only from inputs and reference sig-
nals, using past information that has been learned and
different kinds of optimization and statistical techni-
ques. The high complexity of nonlinear systems
has represented a great challenge, but since the ap-
parition of the Mercer Kernel theorem (Aronszajn,
1950), the kernel properties have played an impor-
tant role in adaptive learning methods (Kivinen et al.,
2004), (Scholkopf and Smola, 2001), enabling the use
of well-developed linear techniques in nonlinear pro-
blems through the Reproducing Kernel Hilbert Space
(RKHS). Many methods have been proposed in the
area of kernel adaptive learning such as Kernel Le-
ast Mean Square (KLMS) (Liu et al., 2008), Kernel
Recursive Least Square (KRLS) (Engel et al., 2004),
Kernel Affine Projection Algorithms (KAPA) (Sla-
vakis et al., 2008), Extended Kernel Recursive Least
Squares (EX-KRLS) (Haykin et al., 1997). Among
these methods the Affine Projection Algorithm from
Ozeki and Umeda (Ozeki, 2016) a generalization
and improvement of the Normalized LMS algorithm,
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is characterized by a low complexity like the Least
Mean Square (LMS) algorithm and has faster conver-
gence than the Normalized LMS algorithm. Howe-
ver, one of its disadvantage is that as more delayed
inputs are used its velocity decreases. Yukawa and
Takizawa (Takizawa and Yukawa, 2015) proposed a
more evolved version of Affine Projection Methods
that uses ideas of projection-along-subspace and pa-
rallel projection to reduce the complexity and there-
fore increase the velocity of performance.

A well-known problem of kernel adaptive filtering
methods is the exponential growth of the dictionary:
the set of past information learned and stored. As
new data arrives, incorporating the new data into the
dictionary requires an adequate policy to avoid un-
necessary calculations with an increasing number of
variables, which results in a problem of high com-
putational cost and low velocity performance, ma-
king these algorithms unsuitable for online applica-
tions. Many heuristic selection criteria for the dicti-
onary have been proposed like: Approximate Linear
Dependency (ALD) (Engel et al., 2004) and Novelty
Criterion (Platt, 1991). To solve this problem of dicti-
onary control we propose a solution based on the sur-
prise criterion of Liu (Liu et al., 2009a), as it offers
a solid mathematical criterion that evaluates the true
significance of the new sample and if it will contribute
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to the learning system, deciding whether the new data
should be taken or discarded.

The surprise criterion calculates the probability of
the posterior distribution of data given the past infor-
mation learned, using log likelihood and Bayesian in-
ference to evaluate in a certain sense, how related or
known the new data can be for the learning system.

The surprise criterion for the conventional Kernel
affine projection algorithm represents a high compu-
tational cost in the sense that it requires calculating
the inversion of the Gram matrix at every instant of
time, when only the calculation of the approximation
of the prediction variance is needed to decide whet-
her the new data are going to be inserted or not into
its dictionary. For this reason, we propose to use the
KLMS and the Surprise Criterion which have a low
computational cost (it will be shown in section 2.2.1),
in fact there are two different problems: 1) establish
with some mathematical criterion the dictionary con-
trol and 2) calculate the approximation of the nonli-
near function. We develop an algorithm which esta-
blishes the dictionary control based on ideas of the
KLMS-Surprise Criterion algorithm and approxima-
tes the nonlinear objective function based on ideas
of Parallel hyperslab projection along affine subspace
algorithm, achieving with this, a method for adap-
tive nonlinear estimation with high velocity of per-
formance, high accuracy and low complexity. These
results will be shown through a computational expe-
riment and be compared with some other methods. In
section 2 the main ideas are discussed, in section 3 the
algorithm is presented, the computational experiment
is shown in section 4 and finally the conclusions are
presented in section 5.

2 MAIN IDEAS

2.1 Problem Definition and Notation

Consider the problem of adaptive estimation of a non-
linear system f, where the input data ¥ € U and the
signal reference d arrive at each instant of time.

To enable the use of the linear techniques, we deal
with the nonlinear estimation in the Reproducing Ker-
nel Hilbert Space (RKHS) where the inputs belong to
the domain U and are mapped into a high-dimensional
feature space F. The mapping will be done by the
nonlinear function @(-), such that ¢ : U — F. Then,
with the transformed input ¢(u), we are able to apply
a linear algorithm in order to obtain the estimate of
the nonlinear function.

Let y(-) be areal function of the Hilbert Space %,
there exists a continuous, symmetric, positive-definite
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function u; — k(u;,u;) such that k : UxU — R associ-
ated with it; where (-, u;) is the kernel function eva-
luated in u, satisfying the reproducing property

\II(M/) =< W()ak(aul) > (D
From this property of the reproducing kernel and the
transformed input, we get:

k(i uj) =< @(ui), @(uj) >4 )
Due to this reproducing kernel property, it is possi-
ble to evaluate the kernel by using the inner product
operation in the feature space. As the algorithm is for-
mulated in terms of inner products, there is no need to
develop calculations in the high-dimensional feature
space, a great advantage of the kernel properties.

To obtain the best estimation y of the nonlinear
system f, a least squares approach for this nonlinear
regression problem, looks for the determination of a
function y(-) that minimizes the sum of squared er-
rors between the reference signals and the output es-
timator, given by

N
W) = ) hik(-,u;) 3)
where h; is a coefficient of k(-,u;) at time i.
2.2 Dictionary Control

Before calculating the optimal error solution to esti-
mate iteratively the nonlinear function f, we must de-
cide if the incoming data are significant and therefore
they should be learned and inserted in the dictionary
or if they should be discarded by being insignificant.
For doing this we use as a rule for dictionary control
the Surprise Criterion of Liu (Liu et al., 2010), that
gives the uncertainty amount of the new data with re-
spect to the current knowledge of the learning system
and is defined as follows: Surprise Spy;) is the nega-
tive log likelihood of the new data given the current
dictionary D;:

Sy (wir1,div1) = —log p(uiv1,dig1|Di)  (4)
where p(u;t1,di+1|D;) is the posterior distribution of
{uiy1,diz1}.

In this sense, if the probability of occurrence of
{ttis1,dis1|D;} is large, it means that the new data
are known by the learning system and therefore there
is no need to be learned; in the other case, if the proba-
bility is small, it means that the new data are unknown
by the learning system and they should be learned or
they are “abnormal”, which indicates that they can
come from the errors or perturbations.

By using Bayesian inference and assuming all the in-
puts with a normal distribution, the posterior probabi-
lity density p(uit1,di+1|D; can be evaluated by
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Uiy, dz+1\17 = p(dit1|uir1, Di) p(uiv1|D;)
z+1 t+1 (5)
m61+1 < Hrl >p(ul+1| l+l)
and
Siv1 = —log[p(uis1,dis1]|Diy1)]
=logv2n+logoiy1 ©)
d; dii1)?
+ (14-1272!4-1) —log[p(ui+1|D;)]
GH—I

Assuming that the distribution p(u;4) is uniform, the
equation (6) can be simplified to

(dis1 —dip1)?

2
2Gz+1

Siy1 =1log0iy1 + (7N
From the equation above, we can observe that the cal-
culation of the surprise can be deduced directly from
the variance 67, and the error e = (diy — dis1).

2.2.1 Kernel Least Mean Square with Surprise
Criterion (KLMS-SC)

For kernel adaptive filtering, the KLMS algorithm of-
fers a great advantage in terms of simplicity. The
calculation of the prediction variance is simplified by
using a distance measure M, an approximation that
selects the nearest inputs in the dictionary to estimate
the total distance and defined as:

M = minypye,cn, | Q(uir1) — o)) (8)

where c; is an element of the dictionary and b is a
coefficient. Solving the equation 8 we get

K2 (uiv1,¢))
k(cjyej)
where v;;1 denotes the prediction variance and A is a
regularization parameter. For more details of KLMS-

Surprise Criterion see (Liu et al., 2010).

In contrast, if the Kernel Affine Projection Algo-
rithm with surprise criterion were used, we should
solve the following problem:

(©))

Vit1 = M+-k(uis 1, ui1) —maxye e,

>

Z ion)| (10

M = minypyn e, || Q(ui+1)

that results in
Vi1 = A+k(uirr,uip1) —hg (G +M] " 'h, (1)

where h, = [k(u;i1,c1),...,k(uir1,¢,)]7, T is the
identity matrix and G, is the Gram matrix.

From the equation above, we see that the calcu-
lation of the prediction variance includes the inver-
sion of the Gram matrix G for each instant of time.
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This is very computationally expensive and is not al-
ways possible to calculate the inversion of the Gram
Matrix. However, we only need to calculate the pre-
diction variance and the prediction error of the new
data with respect to the learned system, to decide if
the new data are going to be inserted to the dictionary
or not. This is independent of the calculation process
of the approximation of the gradient direction and
of the estimation of the nonlinear objective function.
For this reason we are able to establish one method
for selection of data (dictionary control) and another
method for the nonlinear function estimation, and we
can take the advantage of the versatility of the Af-
fine Projection Algorithms. Thus, we propose an al-
gorithm that uses the KLMS and the Surprise Crite-
rion for dictionary control and the parallel hyperslab
projection along affine subspace for gradient direction
calculation that we call KSCP.

2.3 Parallel Hyperslab Projection along
Affine Subspace (¢-PASS)

Let ;1 be the next estimate of the current estimate
y; obtained by its affine projection onto a hyperplane
of optimal solutions I1; defined by

M= {yidi— (W k(o)) =0} (12)

We suppose that y; belongs to the dictionary 2;
for estimation updating. As it is possible that y; ¢ D;
for the dictionary control, the solution we adopt is
the parallel hyperslab projection along affine sub-
space (¢-PASS) by Takizawa and Yukawa (Takizawa
and Yukawa, 2013). It is based on projection-along-
subspace, where the intersection of the dictionary
space D; with the hyperplane IT; is calculated and the
current estimate \; is projected onto the intersection
D; NI1;, that is equivalent to the projection of y; onto
I1; along D;.

Thus, once the KLMS with surprise criterion al-
gorithm has established that the new data should be
learned, the estimate of the nonlinear function is cal-
culated using the ®-PASS, enabling in all cases that
the estimate be updateable. Another advantage of
the ®-PASS algorithm is the idea of parallel projecti-
ons, where using the p most recent measurements
(u,dp)icr,, (Where L; == (i,i—1,....,i—p+1) is the
index set of data) at each time and accommodating
into the hyperplanes Il;c,,, the current estimate \;
is projected onto these hyperplanes in parallel, and
the direction of the next estimate is obtained in the
average point of the projections. This approach im-
proves the velocity of convergence and the noise ro-
bustness.
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3 THE KSCP ALGORITHM

The proposed algorithm KSCP (KLMS with Surprise
Criterion and Parallel Hyperslab Projection along Af-
fine Subspace) first establishes a dictionary control
which guarantees that only the significant data are
going to be used for the estimation, allowing an ap-
propriate use of resources to avoid the unnecessary
calculations with redundant data or data from errors
or perturbations, improving the calculation velocity of
the algorithm at low computational cost using ideas of
kernel least mean square. This characteristic is very
important in online applications. For calculating the
gradient direction and the approximation of the non-
linear function at each instant of time in the adaptive
way, we use the projection along affine subspace and
parallel projection approaches, achieving high accu-
racy and fast convergence.
The algorithm works in the following way:

When {u;11,d;+1} arrives, the inputs are transfor-
med using the kernel Gaussian function:

k(ui,uj) = exp(—=vllu; — ujl|?) (13)

wherewith we can use the affine projection technique
into the transformed inputs for the treatment of the
nonlinear system.

With the result of the kernel evaluation in (13),
construct

Xir1 = k(i1 c1), o k(uier,c)]T (14)

where c¢; is a dictionary element at time i.

The output is calculated using the estimative y;
obtained by the parallel hyperslab projection along af-
fine subspace. It should be noted that if the dictionary
control establishes that the data should not be learned,
there is no need to update the estimative and the last
calculated value of the estimative will be taken. The
output is obtained by

Filwisr) =x] 1 (15)
initialized with yy = 0.
The prediction error is calculated by
eiv1 =diy1 — fi(uirr) (16)

The prediction variance is calculated using the Kernel
least mean squares approach

Vitl = 7¥+k(“i+1 JUiv1) — maxye ;e o,

17)
which offers a great advantage due to its simplicity,
with no need to compute the Gram matrix inversion
in the control dictionary step. It avoids the high com-
putational costs for achieving fast performance.
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With the predictions of variance and error, we cal-
culate the Surprise Criterion by

2

1 e:
Syt = Slogvip + 2'*‘ (18)
Vil

Based on the Surprise Criterion we establish the fol-
lowing rule for dictionary control:
If

e S;11 > Ty = Abnormal and Discarded
e 71 > S;i1 > T, = Learnable
e S;11 < T, = Redundant and Discarded

T) the abnormality threshold and 7, the redundancy
threshold, are parameters dependent of the problem.
It is possible to make a trade-off between more accu-
racy or more velocity of performance by adjusting the
parameters 77 and 7>.

If the new data are learnable, they will be inserted
in the dictionary 9); and the expansion coefficient y;
will be calculated and updated. If not the system just
takes the last estimate and returns to the beginning for
waiting new data.

With this step we avoid the waste of resources as
any aditional calculation would be done on insigni-
ficant data. This helps the algorithm to be more ef-
fective. It also improves the execution of the approxi-
mation of the gradient direction because this approxi-
mation involves calculations with matrices that grows
exponentially with the dictionary. With this approach
we get a dictionary that uses only the essential quan-
tity of data.

If the data are learnable and inserted in the dicti-
onary we are going to project the current estimate ;
onto the closed convex set defined by

=y nm, c o, (19)

where / is an affine subspace of the dictionary defi-
ned by

V== span (k(',uj))je];w +ViCD  (20)
and (k(. ’uj))jejl

Then, the projection of y onto the convex set is
given by

(i) 1s the set of selected elements.

Py =Y+ BPpk(-,u) 2D
where P is calculated by

max(| d —y(u) |,0)
P=g¢ (22)
Ljey Ojk(u,uj)
with the signum function £(-) and

Ppk(-u) =Y ouik(u,u;) (23)
JjeJ
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The projection Pgk(-,u) is obtained solving the
normal equation:

a=G"ly (24)
where G is the Gram matrix
k(uy,uy)  k(uy,up) k(up,uy,)
k(ug,uy)  k(ug,up) -+ k(up,uy)
G= . . . . (25)
k(up,ur)  k(uy,uz) k(up,un)
and
yi= [k(u,ul) k(u,u) k(u,un)]T (26)

Finally the nonlinear estimate is calculated by

Vir1 =Y+ A ( Y wa(;;wi - %) 27N

lel;

with w! > 0 and ; is updated in equation (15)

4 COMPUTATIONAL
EXPERIMENT

In this section we show the performance of the propo-
sed algorithm KSCP and compare it with some met-
hods: Kernel Affine Projection with Coherence Cri-
terion (KAP) (Richard et al., 2009), (Saidé et al.,
2012) Kernel Least Mean Square with Coherence-
Sparsification criterion and Adaptive L1-norm regu-
larization (KLMS-CSAL1) (Gao et al., 2013) and
Extended Recursive Least Squares (EXKRLS) (Liu
et al., 2009b). For these algorithms we used the tool-
box Kafbox (Van Vaerenbergh and Santamaria, 2013)
We employ the benchmark sinc function estima-
tion which is often used for nonlinear regression ap-
plications. The synthetic data are generated by

yi = sinc(x;) +V; (28)
where .
sinc(x) = {sm(ic)/x ii 8 (29)

V; is a zero-mean Gaussian noise with variance 0.04.
In the simulation we use 1000 samples for trai-
ning and 500 samples for testing. The estimation re-
sults are showed in Fig. 1 and in Table. 1 where the
mean square error (MSE) for the estimation for each
method is presented. The MSE is calculated by
l N
MSE = =Y (vi—9:)° (30)
NS
where y; is the reference or desired value and ¥; is the
estimated value.
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Figure 1: Sinc Function Estimation.

Table 1: Performance of the Algorithms.

Algorithm Performance
MSE (dB) Time of Execution (seconds)
KAP -10.33 0.31
KLMS-CSALI1 -16.48 0.27
EXKRLS -29.34 0.88
KSCP -32.42 0.72

The learning curve of each algorithm is presented
in Fig. 2. The parameters setting used by each one
of the methods are the following: for KAP the cohe-
rence criterion ty = 0.95, the step size = 0.5, the re-
gularization term A = 0.01, and the kernel parameter
Y= 1;for KLMS-CSALI the coherence criterion wy =
0.95, the step size n = 0.1, the sparsification thres-
hold p = 5x107*, and the kernel parameter Y = 0.5;
for EXKRLS the state forgetting factor o = 0.99, the
data forgetting factor f = 0.99, the regularization fac-
tor A = 0.01, the trade-off between modeling variation
and measurement disturbance ¢ = 1x10~3 and the ker-
nel parameter y = 1; for KSCP the abnormality thres-
hold 71 = 1, the redundancy threshold 7, = —0.5, the
step size 1 = 0.5, the regularization term A = 0.01,

02r
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Figure 2: Learning Curve for KAPCC, KLMS-CSAL1 and

KSCP.
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number of hyperslabs p = 8, the weight coefficient
® = 0.1250 and the kernel parameter Y= 1.

The obtained results lead to the following obser-
vations:

e The four algorithms presented in this experiment
have a fast performance, taking less than 1 minute
in the estimation with 1000 training samples. As
is showed in Table I, the KSCP achieves the mini-
mum mean square error, the KAP and the KLMS-
SCALI1 achieves more velocity in execution but
with a higher mean square error. It is important
to highlight that the settings of the 77 and 7, pa-
rameters are essential for the execution time and
the accuracy. The abnormality threshold parame-
ter 77 can be adjusted for achieving more velocity
and the redundancy threshold parameter 7, must
be adequately limited to guarantee high accuracy.

e The learning curve figure showed that in the Ker-
nel Affine Projection algorithm, the mean square
error begins to grow exponentially in the iteration
number 400; the KLMS-SCALI takes several ite-
rations to stabilize and the EXKRLS and KSCP
reach zero and remain stable from the first 50 ite-
rations for the considered situation.

S CONCLUSIONS

This paper presents our proposed algorithm KSCP
for adaptive nonlinear estimation. The KSCP impro-
ves the estimation performance based on 3 aspects:
First, an effective dictionary control is established,
guaranteeing an exhaustive selection of the most im-
portant data for the estimation, and low computational
complexity, basing not on heuristics but on a strong
mathematical foundation approach with statistical and
probabilistic techniques. Second, we take advantage
of the Kernel Least Mean Square and the Surprise Cri-
terion combining them to reduce the complexity of
the calculations of variance prediction and error pre-
diction of the incoming data. Third, for the high accu-
racy goal, we use the Parallel Hyperslab Projection
Along Affine Subspace.

With all of these ideas, we achieve a fast conver-
gence, high accuracy, small size of dictionary and fast
performance algorithm, which is demonstrated by the
computational experiment and the comparison with
some important and recognized algorithms like Ker-
nel Affine Projection with Coherence Criterion, Ker-
nel Least Mean Square with Coherence-Sparsification
criterion and Adaptive L1-norm regularization and
Extended Recursive Least Squares.
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