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Abstract: This article briefly summarizes the theory of chaos and its applications. Firstly, we begin by describing 

chaos as an aperiodic bounded deterministic motion, which is sensitive to initial states and therefore 

unpredictable after a certain time. Then, fundamental tools of the chaos theory, used for identifying and 

quantifying chaotic dynamics, are shared. The paper covers a main numerical approach to identify chaos 

such as the Lyapunov exponents. Many important applications of chaos in several areas such as chaos in 

electrical and electronic engineering and chaos applications in robotics have been presented. An analysis of 

the reviewed publications is presented and a brief survey is reported as well. 

1 INTRODUCTION 

During the 20th century, three great revolutions 

occurred: quantum mechanics, relativity and chaos. 

The theory of chaos, also called dynamical systems 

theory, is the study of unstable aperiodic behavior in 

deterministic dynamical systems, which show a 

sensitive dependence on initial conditions 

(Vaidyanathan, 2013). The sensitive dependence on 

initial conditions implies that arbitrary initial 

conditions follow trajectories that move away from 

one another after a certain time (Moon, 2008), as 

shown in figure 1. Due to determinism (Morrison, 

2012), chaos is predictable for the short time;  but it 

is unpredictable in the long run due to sensitivity to 

initial conditions. Chaos is characterized by a large 

sensitive dependence to the initial state, by its 

inability to predict future consequences, by the 

Lyapunov exponent (Kuznetsov, 2016), by its fractal 

dimension, and so on. 

The nonlinear dynamics and chaos terms have 

become known to most scientists and engineers over 

the past few decades. Nonlinearities occur in 

feedback processes (Gaponov-Grekhov and 

Rabinovich, 2011), in systems containing interacting 

subsystems, and in systems interacting with the 

environment.  

This scenario is qualitatively and quantitatively 

distinct from the situations where the perturbations 

develop linearly. Thanks to the availability of high-

speed computers and new analytical techniques, it 

has become clear that the chaotic phenomenon is of 

a universal nature and has transverse consequences 

in various areas of human endeavour. 

The devices of the fire fighting and floor 

cleaning have been developed by exploiting 

autonomous mobile robots as useful tools in 

activities that put the integrity of humans in danger, 

such as monitoring and exploring of terrains for 

explosives or dangerous materials and such as 

intrusion patrols at military installations. This has 

driven to the development of intelligent robotic 

systems (Martins-Filho and Macau, 2007). 

Therefore, the unpredictability of a trajectory is also 

a crucial factor for the mission success for such an 

autonomous mobile robot. To meet this challenge, 

Sekiguchi and Nakamura suggested a strategy in 

2001 to solve the problem of path planning based on 

chaotic systems (Nakamura and Sekiguchi, 2001).  

 

Figure 1: Two trajectories that start close to each other but 

diverge within a few tens of seconds (Moon, 2008). 
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A key property of chaos is that simple dynamical 

systems can often engender complex dynamics. 

These systems can be implemented using simple 

analogue hardware (Aihara, 2012). 

In order to explore the applications of chaos in 

engineering and robotics, this paper is organized as 

follows. Section 2 gives an overview of the chaos 

theory. In section 3, we review the research on 

applications of chaotic dynamics in electrical and 

electronic engineering. Chaos synthesis in robotics is 

presented as an application of chaotic systems for 

motion planning of autonomous mobile robots in 

section 4. The conclusion is presented in section 5. 

2 CHAOS THEORY:  

AN OVERVIEW 

The movements of several natural or engineering 

systems can be governed by a set of equations 

derived from natural laws such as the Newton's laws 

or the Euler equation. The equations that describe a 

dynamic system can be algebraic or differential. The 

set of equations, mathematically defined as a 

dynamic system, gives the temporal evolution of the 

state of a system from the knowledge of its previous 

history. Therefore, the state at any time can be 

determined by the governing equations and the 

initial states. In modern science, the term chaos is 

used to describe a type of motion resulting from a 

dynamic system that appears to be disordered and 

extremely complex under detailed examination.   

Complicacy and disorder are due to the reasons that 

chaos is a recurrent aperiodic motion. Hence, chaos 

can be defined as a bounded steady-state response 

that is not an equilibrium state, a periodic motion, or 

a quasi-periodic motion.  

Chaotic movements are also characterized by 

sensitivity to initial states; i.e, a simple variation in 

the initial conditions can quickly produce enormous 

differences in response. The long-term prediction of 

chaos is impossible, due to such sensitivity. In other 

words, chaos is unpredictable after some time 

because a small difference in initial conditions 

beyond their precision will result in a rapid growing 

of the movement. 

 

A dynamical system is called chaotic if it 

satisfies the three properties: boundedness, infinite 

recurrence, and sensitive dependence on initial 

conditions (Azar and Vaidyanathan, 2015, Azar and 

Vaidyanathan, 2014). The Chaos theory investigates 

the qualitative and numerical study of unstable 

aperiodic behaviour in deterministic nonlinear 

dynamical systems. 

In 1963, Lorenz (Lorenz, 1963) discovered a 3-D 

chaotic system when he was studying a 3-D weather 

model for atmospheric convection. After a decade, 

Rössler (Rössler, 1976) discovered a 3-D chaotic 

system, which was constructed during the study of a 

chemical reaction. These classical chaotic systems 

paved the way to the discovery of a lot of 3-D chao-

tic systems such as the Arneodo system (Arneodo et 

al., 1981), the Chen system (Chen and Ueta, 1999), 

the Lü-Chen system (Lü and Chen, 2002), the Tigan 

system (Tigan and Opriş, 2008), etc. 

Some other scientists have tried to propose new 

dynamic systems. In (Leonov and Kuznetsov, 2013), 

Leonov gave a survey on the relationship between 

hidden oscillators and hidden chaotic attractors. 

Snchez-Lpez et al. (Sánchez-López et al., 2010) 

proposed a method to generate a multi-scroll chaotic 

attractor based on Saturated Nonlinear Function 

Series. In (Zhang and Tang, 2012), Zhang and Tang  

introduced a new chaotic system with four 

components that can generate chaos, hyperchaos, 

and periodic and quasi-periodic behaviors. Sun et al. 

(Sun et al., 2014) presented a finite-time 

combination scheme of four chaotic systems and 

solved the problem of the synchronization of two 

systems. Bouallegue (Bouallegue, 2015b) found a 

method to generate a new class of chaotic attractors 

that possessed a multi-fractal scroll based on a 

fractal process, as illustrated in figure 2. Another 

work by Kais Bouallegue (Bouallegue, 2015a) and 

Salah Nasr (Salah NASR, 2015) put forward a new 

behavior of chaotic attractors with separated scrolls 

using the combination between the fractal process 

and the chaotic attractors as depicted in figure 3. 

 

Figure 2: Chaotic attractor with fractal and multifractal 

scrolls. (a) Multichaotic attractor with Lorenz system, (b) 

multichaotic attractor with Chua system and (c) 

multichaotic attractor with Rössler system (Bouallegue, 

2015b). 
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Figure 3: Chaotic attractors with four behavior forms 

(Salah NASR, 2015). 

2.1 Identification of Chaos 

The identification of chaos is the set of diagnostic 

tests to determine if chaotic behavior occurs in a 

specific system. To identify chaos, some numerical 

characteristics associated with the motion of a 

system can be used. These characteristics include the 

Lyapunov exponents, power spectra and entropies. 

2.2 Lyapunov Exponent 

To estimate and compute the Lyapunov dimension, 

Leonov (Kuznetsov et al., 2016, Kuznetsov, 2016) 

proposed an analytical approach in 1991. A 

Lyapunov exponent may be positive or negative. A 

positive Lyapunov exponent implies the divergence 

in the corresponding direction. A negative exponent 

implies the constriction in the corresponding 

direction. Hence, most dynamic systems can be 

characterized by their Lyapunov exponents 

(Kaygisiz et al., 2011). For a chaotic attractor, a two-

dimensional system must have a positive and a 

negative Lyapunov exponents. If the system has two 

zero Lyapunov exponents and two negative ones 

then, the system is quasi-periodic. If the four-

dimensional system is hyperchaotic, it should have 

two positives, a zero one and a negative one. 

3 CHAOS ENGINEERING 

APPLICATIONS 

Over the last few decades, the terms chaos and 

nonlinear dynamics are known to most engineers 

and scientists. Nonlinearities occur in feedback 

processes, in systems containing interacting 

subsystems and in systems interacting with the 

environment. It is striking to note that simple 

devices, such as a double pendulum, and a very 

complex event such as time follow the same 

dynamics, which can only be predicted for short 

time horizons (Kaygisiz et al., 2011). Thanks to the 

existence of high-speed computers, new analytical 

techniques and sophisticated experiments, it has 

become clear that the chaotic phenomenon is of a 

universal nature and has transverse consequences in 

various fields of human endeavour. 

Recently, chaos theory is found to have 

important  applications in several areas such as 

biology (Garfinkel, 1992, May, 1976, Vaidyanathan, 

2015a, Vaidyanathan, 2015b), memristors (Pham et 

al., 2015, Volos et al., 2015a), electrical circuits 

(Volos et al., 2015b), robotics (Nakamura and 

Sekiguchi, 2001), etc. 

A lot of practical applications of deterministic 

chaos have been developed in various fields of 

engineering and technology. Actually, studies of 

nonlinear dynamics in engineering disciplines have 

been steadily progressing over a half century. 

Among these disciplines, we are going to deal with 

electrical and electronic engineering, and 

synchronization of chaotic systems. 

3.1 Electrical and Electronic 
Engineering 

A lot Electrical and electronic circuits are typical 

fields in which rich chaotic phenomena have been 

reported. In 1927, Van der Mark and Van der Pol 

heard noise corresponding to deterministic chaos in 

an electrical system composed of  a resistor, a neon 

glow lamp,  a variable condenser, and D.C. and A.C. 

power sources (Van der Pol and Van der Mark, 

1927). Since then, chaos has been detected both 

experimentally and numerically in many electrical 

and electronic circuits like the Chua's circuit, the 

Shinriki's circuit (Chua et al., 1993, van Wyk and 

Steeb, 1997) and the series RLC circuit with a 

varactor diode (Testa et al., 1982). It should be noted 

that both the Duffing equation and the Duffing-Van 

Der Pol mixed type equation are also models of 

electrical circuits with a nonlinear inductance and a 

nonlinear resistance, respectively. 

In order to create controlled chaotic outputs, the 

work presented in (Hanias and Tombras, 2009, 

Hanias et al., 2010) makes the study of simple 

circuits which are composed of simple transistors 

triggered externally be able to give significant 

results for the possibility of creating its chaotic 

outputs. These results are very important, especially 

in telecommunication systems where the need for 

safe signal transmission is imperative. In their work, 
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the authors presented the chaotic behavior of three 

forms of these circuits as well as corresponding 

theoretical methodology. Next, in the study of 

simple chaotic circuits, we consider the case of an 

optoelectronic chaotic circuit which is based on an 

optocoupler device and which can be used as a 

controlled optoelectronic chaotic signal generator, 

presented in (Hanias, 2010). 

These studies have confirmed that chaos can be 

actually and easily generated in nonlinear electrical 

and electronic circuits. 

3.2  Synchronization of Chaotic System 

In parallel with the great advances in the chaos 

theory, the prospects of utilizing chaos in various 

applications, particularly in telecommunication, 

have motivated researchers to study the possibility 

of synchronizing chaos. The synchronization of non-

linear oscillators is a phenomenon which has 

attracted the attention of researchers since the 

discovery and description of this phenomenon by 

Huygens in 1673, in an example of two coupled 

mechanical systems. The phenomenon of 

synchronization is manifested when two dynamic 

systems evolve in an identically as a function of 

time. 

Since this innovative discovery, different 

synchronization regimes have been distinguished 

such as identical synchronization (Pecora and 

Carroll, 1990) and generalized synchronization 

(Rulkov et al., 1995). In (Jemaâ-Boujelben and Feki, 

2016, Feki, 2004), the authors suggested a simple 

Multi-input Multi-output (MIMO) adaptive control 

based on a Sliding Mode Observer (SMO) to 

synchronize chaos in the PMSM.  

Similar to the integration of order chaotic 

systems, the synchronization of fractional order 

chaotic systems has interested several researchers 

(Wang and Song, 2009, Tang and Fang, 2010). In 

(Kiani-B et al., 2009), the synchronization of 

fractional chaotic systems using the fractional 

extended Kalman filter has were presented with an 

application to secure communication. To 

synchronize uncertain fractional order chaotic 

systems, the authors used the adaptive fuzzy sliding 

mode control in (Lin et al., 2011), and in 

(Senejohnny and Delavari, 2012) the authors 

employed a combination of a classical sliding 

observer and an active observer. The generalized 

synchronization was also addressed in the context of 

fractional order chaotic systems. 

4 CHAOTIC APPLICATIONS IN 

ROBOTICS 

We hope time is ripe for reviewing the application of 

chaos in robotics. The community of robotics is 

trying to emulate these natural behaviours by 

investigating humanoids, bio-robots and the 

biologically inspired systems such as swarms. These 

systems confront problems like vibration, noise-

sensing and robot environment interactions leading 

to chaos. 

As a very interesting topic, Robotics and 

particularly their applications have emerged in 

various activities. In the military field, robotic 

systems should have an interesting feature as target 

identification and perception as well as positioning 

robots on the ground. Moreover, the greatest 

challenge for those successful robot missions is the 

optimal path planning. Such nonlinearities have led 

researchers to utilize chaotic trajectory planning 

techniques for autonomous mobile robots to ensure a 

rapid search of the whole workspace(Kaygisiz et al., 

2011) .  The aim of the employment of chaotic 

signals for autonomous mobile robots is to benefit 

from coverage areas got through their movement 

paths. 

To meet this challenge Sekiguchi and Nakamura 

suggested a strategy in 2001 to solve the problem of 

path planning based on chaotic systems (Nakamura 

and Sekiguchi, 2001). In that work, the chaotic 

behavior of the Arnold dynamical system was 

imparted to the mobile robot’s motion control. 

 

Figure 4: The chaotic autonomous mobile robot (Volos et 

al., 2013a). 

Since then, a lot of relative researches have been 

presented by many research teams because the 

chaotic movement of the robot ensures the scanning 

of the entire workspace without previous knowledge 

of the terrain map. In (Volos et al., 2013a), a new 

navigation strategy by designing a controller was 

experimentally investigated, which ensured a chaotic 
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motion to an autonomous mobile robot wich is 

presented in figure 4. The proposed controller 

produced an unpredictable trajectory by imparting 

the system’s chaotic behavior to the two independent 

active wheels of the mobile robot. 

In figure 5 a, the diagram shows the color scale 

map of the terrain’s cells versus the times of visiting. 

There are cells, wherein the robot has visited from 1 

to up 18 times in the 24 minutes of operation.  In 

addition, the coverage rate versus the number of 

visited cells, for the robot with the proposed chaotic 

motion controller, is presented in figure 5 b. 

Finally, according to the experimental results, the 

high unpredictability of the robot’s trajectory, which 

is very crucial in many tasks, is confirmed by 

utilizing the suggested chaotic motion controller. 

Furthermore, other two crucial tasks are succeeded 

such as the complete and fast scanning of the 

workspace. 

 

(a) 

 

(b) 

Figure 5: (a) Color scale map of the terrain’s cells versus 

the times of visiting, (b) Coverage rate versus number of 

motion commands, for operation of 16 minutes. (Volos et 

al., 2013a). 

Similarly, a chaotic path planning generator for a 

mobile robot was implemented by Volos et al. to 

cover the overall workspace in an erratic and swift 

manner. Therefore, the authors presented a Khepera, 

which is popular in the robotics community, 

integrating a behaviour-based control (Volos et al., 

2012a, Volos et al., 2012b). The chaotic generator 

used three different chaotic systems producing a 

double-scroll chaotic attractor. 

Furthermore, Volos et al. put forward a motion 

control strategy for humanoid and mobile robots 

utilizing a chaotic truly random bit generator (Volos 

et al., 2012d, Volos et al., 2012c). They implement-

ed an autonomous robot on an experimental platform 

called the “Magician Chassis” using this generator. 

This technique ensured highly unpredictable robot 

trajectories that are random from an observer’s 

viewpoint (Volos et al., 2013a, Volos et al., 2013b). 

The numerical simulations demonstrated the 

efficiency of this strategy and the statistical tests 

also proved the randomness of the planned motions. 

 

(a) 

 

(b) 

Figure 6: Intermediate iteration points distribution in the 

phase space and their trajectories: (a) Iteration points; (b) 

Iteration trajectories (Li et al., 2015). 

Other proposals such as the studies of Caihong et al. 

introduced a chaotic path planner based on a logistic 

map. This deterministic and simple system was 

characterized by a random behaviour, allowing large 
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workspace coverage (Li et al., 2013). Morever, they 

suggested a fusion strategy to develop a chaotic path 

planner for mobile robots, based on the standard 

map (Li et al., 2015). Figure 6 analyzes the iteration 

points distribution of the standard map in the phase 

space and the adjacent qualitative and quantitative 

trajectories. Using the original Standard map of the 

chaotic state as a robot path planner generator to 

perform the surveillance mission is a good choice 

except for its large distance of the chaotic trajectories 

between the iteration adjacent intermediate points. 

To accomplish boundary surveillance missions 

for mobile robots, Curiac and Volosencu proposed 

an improved chaotic path planning technique 

(Curiac and Volosencu, 2014). This study underpin-

ned the testing and design of a chaotic controller 

incorporating a known chaotic equation. While 

performing monitoring and research tasks, the 

chaotic trajectories for autonomous robots had a 

great enhancement over other methods. Security 

patrol, fire fighting and cleaning were included in 

the proposed applications of chaotic mobile robots. 

As depicted in figure 7, the authors started with the 

periodic motion on a closed contour of a reference 

frame in which the Henon chaotic system would 

evolve. They proved that the compound trajectories 

obtained in the fixed frame were also chaotic.  Based 

on this result, they developed an original method to 

create chaotic trajectories in the proximity of any 

arbitrary boundary shape. 

 

Figure 7: Chaotic robot path in the proximity of a closed 

curve (two complete laps along the guiding line) (Curiac 

and Volosencu, 2014). 

These efforts show that the application of the chaotic 

behaviour of dynamic systems for the planning of 

mobile robot movements is a fascinating 

interdisciplinary research field.  

Unlike other path planning methods, chaotic path 

planning does not require a map of the workspace 

and it is more efficient than the random walk 

algorithm. With various chaos equations, a robot 

could exhibit a range of motion paths. The chaotic 

controllers can be implemented by embedding 

simple chaotic circuits into the robots. Chaotic 

trajectories are generated using state variables of 

dynamical systems, which are used as input for the 

wheels of differential-drive robots. 

5 CONCLUSIONS 

This paper presents the concept of chaos, which 

leads to several understandings of chaos. The theory 

of chaos reveals our inability to make long-term 

predictions of these deterministic dynamic systems. 

Chaotic dynamics can be explained, measured and 

categorized using this theory. The growth of research 

on chaos is highlighted by the interdisciplinary nature 

of the field. Due to several applications in electrical 

appliances, the application of deterministic chaos has 

attracted a lot of attention. The deterministic chaos 

has been perceived as unpredictable and unstable, and 

therefore worthless. Over the past decades, its 

usefulness and application have been recognized. 

Like other fields of science and technology, chaotic 

dynamics have been discovered and implemented in 

various fields of robotics. 

In addition, some efforts for uncovering the 

chaotic behaviour of various robots are presented. 

This part provides basic knowledge about the 

common methods and processes involved in finding 

the evidence for the existence of chaos in robotic 

motion, which can help in better applications of 

chaos to real robots. 
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