
On Handling Source Code Positions and Local Variables in LTL
Software Model Checking

Guillaume Hétier and Hanifa Boucheneb
Laboratoire VeriForm, Department of Computer Engeneering and Software Engeneering, École Polytechnique de Montréal,

Montreal, Canada

Keywords: Model Checking, Concurrency, C, Specification, Verification, Instrumentation, LTL, Assertions.

Abstract: Software model checking techniques can provide the guaranty a system respects a specification. However,
some limitations reduce the expressiveness of the most used specification formalisms (the assertions and LTL)
and increase the risk of error, especially for concurrent programs. We design a new specification formalism
that extends LTL by allowing local variables and code positions in LTL atomic propositions. We introduce
validity areas to extend the definition of atomic propositions using local variables and to handle positions in
source code. Then, we introduce a source to source transformation that aims to reduce the LTL verification
problem to an assertion verification problem for finite programs by building the product between the program
code source and the implementation of Büchi automaton. Eventually, we apply this transformation to verify a
small benchmark specified with the specification formalism we proposed.

1 INTRODUCTION

Safety and security of critical systems are issues of
prime importance. Formal methods aim to provide
mathematical proofs that such systems behave as ex-
pected. However, they still struggle to scale to large
systems. Improving tool performances is one of the
main focuses of current research activities.

A crucial point for formal methods is the specifi-
cation of the system. In order to prove a system cor-
rectness, one must first explain what it means for this
system to be correct in a formalism understandable
by tools. An error in the specification may lead to
an invalid result: a correct proof of an unwanted re-
sult. Therefore, specification formalism must be user-
friendly to reduce the risk of errors while being ex-
pressive enough to describe the system properties and
features.

In this paper, we focus on a specific formal met-
hod: software model checking. More precisely, we re-
strict our study to software model checking tools that
target C concurrent programs (based on the pThread
POSIX library). The two main specification forma-
lisms supported by software model checking tools are
assertions and Linear Temporal Logic (LTL). Howe-
ver, their power of expression is limited. It is often ne-
cessary to modify the code of the program to express a
property. Assertions express safety properties: some

expression must be true when the assertion is reached
during the execution of a program. It is not possible
to specify a relation (order, simultaneity. . .) between
events with assertions. For instance, in a concurrent
context, ensuring some instructions are executed in
a specific order is a non-trivial property that is often
desirable to verify. However this property cannot be
specified directly with assertions: additional code is
necessary to keep track of the order of instructions.
On the other hand, LTL may seem a better fit for this
situation: it is designed to express properties about
the order of events in an execution trace. However
software model checkers do not allow the use of local
variables and source code positions in LTL specifica-
tion. This restriction makes it impossible to represent
an assertion or to designate a set of instructions with
an LTL specification, without additional code.

Mutual exclusion properties are a good example
where those limitations make the specification less
straightforward. Remarks that in the listings 1 and
2, global variables have to be inserted in the code for
the need of specification: it is easy to make an error in
this manual instrumentation or to forget to instrument
one section of the code.

Hétier, G. and Boucheneb, H.
On Handling Source Code Positions and Local Variables in LTL Software Model Checking.
DOI: 10.5220/0006865706150622
In Proceedings of the 13th International Conference on Software Technologies (ICSOFT 2018), pages 615-622
ISBN: 978-989-758-320-9
Copyright © 2018 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

615

Listing 1: Mutual exclusion specification with assertions.

i n t p = 0 ;
i n t f l a g = 0 ;
void ∗ t h r e a d 1 (void ∗ d) {

. . .
a s s e r t (! f l a g) ;
f l a g = 1 ;
p += 1 ;
f l a g = 0 ;
. . .

}
void ∗ t h r e a d 2 (void ∗ d) {

. . .
a s s e r t (! f l a g) ;
f l a g = 1 ;
p += 1 ;
f l a g = 0 ;
. . .

}

Listing 2: Mutual exclusion specification with LTL.

/ / LTL : G ! (f l a g 1 && f l a g 2)
i n t p = 0 ;
i n t f l a g 1 = 0 ;
i n t f l a g 2 = 0 ;
void ∗ t h r e a d 1 (void ∗ d) {

. . .
f l a g 1 = 1 ;
p += 1 ;
f l a g 1 = 0 ;
. . .

}
void ∗ t h r e a d 2 (void ∗ d) {

. . .
f l a g 2 = 1 ;
p += 1 ;
f l a g 2 = 0 ;
. . .

}

In this paper, we introduce an extension of LTL
aiming to overcome these limitations by bringing the
support for local variables and source code positions
in LTL formula, by using the concept of validity areas.
Then, in order to verify whether a program respect a
specification in the proposed formalism, we present a
source to source transformation that reduces LTL ve-
rification to assertion verification on the transformed
programs, in the restricted context of terminating pro-
grams.

2 PRELIMINARIES

2.1 Software Model Checking

Software model checking is a class of formal methods
that allow to prove whether a model of a program sa-

Code Model

Specification

Model checker

Figure 1: Principle of software model checking.

tisfies a specification or not. In this context, the pro-
gram is abstracted in a transition system where states
represent the configuration of the program memory
(or a position in the program) while transitions bet-
ween states represent the effect of instructions. The
specificity of software model checking is that the mo-
del is automatically extracted from the source code of
a program, without human intervention. The specifi-
cation is a logical property. Model checking consists
in exploring exhaustively the reachable states of the
model in order to check whether every path satisfies
the specification.

The main issue of software model checking is
combinatorial explosion. The number of states in a
model increases exponentially with the size of the
program: the time and memory required to explore
every state quickly become too important to complete
the exploration. This problem is even more present
for concurrent programs where every interleaving bet-
ween threads has to be considered. Several algorithms
(D’Silva et al.,) and reduction techniques have been
developed in order to fight combinatorial explosion.
They often trade precision or completeness for per-
formances and limit themselves to specific categories
of properties.

Different formalisms are used to express a speci-
fication. Two of the most popular and the most used
by model checkers for concurrent programs are asser-
tions and LTL formulas.

2.2 Linear Temporal Logic (LTL)

Linear temporal logic allows to express logical pro-
perties over the evolution of a system, represented by
an execution trace.

Formally, let AP be a set of atomic propositions
over the state of the system, and Σ = 2AP an alphabet.
Each letter of Σ represents a possibly empty set of
atomic propositions. We define infinite traces as Σω.
A trace a = (a0,a1, ...) ∈ Σω represent the evolution
of an execution.

We define inductively LTL by the following gram-
mar, for φ and ψ two LTL formulas and p ∈ AP an
atomic proposition:

ICSOFT 2018 - 13th International Conference on Software Technologies

616

φ,ψ := true | p |φ∧ψ|¬φ|Xφ|ψUφ
Given an infinite trace a = (a0,a1, ...) ∈ Σω, LTL

has the following semantics :

s |= p≡ s0 |= p (1)

s |= Xφ≡ (s1,s2, . . .) |= φ (2)

s |= φUψ≡ ∃k,(sk,sk+1, . . .) |= ψ
∧∀i <= k,(si,si+1, . . .) |= φ

(3)

¬, ∧, and true are interpreted in the usual way. Xφ
means the next state of the trace satisfy φ and φUψ
means the states of the trace must satisfy φ until one
state satisfy φ.

The operators F and G are then defined as F p ≡
trueU p and Gp ≡ ¬F¬p. F express the fact an ato-
mic proposition is eventually true and G express the
fact it is always true.

LTL is mainly limited by the restrictions impo-
sed over atomic propositions: global variables do not
allow formulas to be expressive enough. Software
model-checking tools usually allow an atomic propo-
sition to be any side effect free boolean expression on
global variables. Allowing local variables and code
positions in LTL formulas would improve LTL ex-
pressiveness.

3 HANDLING LOCAL VARIABLE
AND CODE SOURCES
POSITIONS

Several issues must be overcome to allow local varia-
bles and code position in a LTL specification. These
issues have been previously avoided by restricting
atomic proposition to global variable.

3.1 Handling Local Variable

Global variables are uniquely named in a program,
so their name is enough to refer to them without am-
biguity. However, the name only does not allow to
identify unambiguously a local variable.

• First, local variables in different contexts can
share the same name. In order to identify them
uniquely, a commonly used solution is to pre-
fix the name of the variable with the name of
the function: for instance, the variable foo in a
function bar can be designated by bar::foo.

• Second, several instances of the same local vari-
able (from the same lexical definition) can coex-
ist in the memory. It happens for local variable
in recursive functions or when several threads are

executing the same code. In this situation, varia-
ble instances are defined dynamically therefore it
is difficult to designate them in a static way. We
do not propose a solution to this issue. We present
a partial solution implemented by the model chec-
ker Divine (Barnat et al., 2013) in the section 5.

3.2 Handling Code Source Positions

In order to use code source positions in the specifi-
cation, we need a way to designate a position that is
both robust, user-friendly, and precise enough. An
external mechanism, such as using line numbers is
not robust: any modification of the code source could
break the specification. Therefore, we use marks in
the source code. We choose labels as they are part of
the C language and are already designed to mark an
instruction.

Further on, we say that a program reach a code
position when an instruction pointer of the program
point on the instruction designated by the label.

Next, we need to integrate code source locations
to the LTL specification. Three options may be consi-
dered:

1) an atomic proposition is either a position or a
condition on the program variable, on an exclu-
sive way. For instance, if pos1 and pos2 repre-
sent two positions in the program, we specify the
variable x is not null between pos1 and pos2 by
G({pos1} =⇒ {x 6= 0}U{pos2}).

2) an atomic proposition is composed of both a con-
dition on the program variables and an infor-
mation about positions. The previous example
would become G¬p, where p is the atomic pro-
position true for every state between pos1 and
pos2 and where x is null. We could write p as
{x! = 0}∧ [pos1, pos2] with the convention an in-
terval of positions is evaluated to true when an
instruction pointer designates an instruction bet-
ween the two positions.

3) position information are constraints applied to
temporal operators, in a similar way than the MTL
logic (Koymans, 1990). We would then write
G[pos1,pos2]¬{x 6= 0}.
We rejected the third option to preserve the stan-

dard behavior of LTL operators.

3.3 Extending LTL Atomic Propositions

An atomic proposition of a LTL formula is intrinsi-
cally global: for every state s of the program (i.e. a
configuration of the program memory and a set of va-
lues for instruction pointers), it may be necessary to

On Handling Source Code Positions and Local Variables in LTL Software Model Checking

617

evaluate whether s verify the atomic proposition. This
depends upon the value of a boolean expression in the
state s, evaluated using the value of variable in the
state s.

However, when this expression use local varia-
bles, it can only be evaluated in a state s where all
those local variables are defined. Therefore, an ato-
mic proposition is correctly defined only in the con-
text where all its variables are defined (are not out of
scope). In order to get a valid definition of an atomic
proposition involving local variable, it is necessary to
extend its definition to the whole set of program sta-
tes.

3.4 Syntax and Semantics of the
Proposed Specification

3.4.1 Syntax

Our specification is composed of a standard LTL for-
mula and the definition of the atomic propositions that
are used. Atomic propositions are composed of the
following parts:

• a name: it is the identifier of the atomic proposi-
tion.

• a validity area: it defines a block of instructions.
A validity area is defined by two labels. Every
instruction pointer that reach the entry label must
reach the end label before it exits the context (a
branching instruction must not allow to go out of
the validity area while avoiding the exit label).

• an evaluation function: the name of a pure bool-
ean C function. This function is used to decide
whether a program state in the validity area verify
the atomic proposition. Its parameters are provi-
ded, in order, by the parameter list.

• a parameter list, to specify the variables to trans-
mit to the evaluation function. Every parameter
has to be defined in the validity area.

• a default value: an atomic proposition takes its
default value out of its validity area.

The Table 1 presents the grammar of an atomic
proposition.

3.4.2 Semantics

Classic logic operators and temporal operators follow
the usual semantics of propositional logic and LTL.
An atomic proposition p is evaluated in a state s by:

• if the state s is not in the validity area of the atomic
proposition p, then p takes its default value.

• if the state s is in the validity area of the ato-
mic proposition p, then p takes the value returned
by the evaluation of its evaluation function in the
state s.

Validity areas have a double interest. The user can
specify manually where an evaluation function should
be used. He can exclude variable initializations and
other areas where program invariants are temporarily
broken. Moreover, validity areas allow to specify pro-
perties about intervals of program positions directly
in atomic propositions. It reduces the complexity of
the LTL formula, which improves the performances
of the verification task.

Our specification is a weaker restriction of LTL
than the one used by most model checkers, so expres-
sing an LTL formula on global variables only is trivial
(validity areas are the whole program). It is also pos-
sible to express assertions: it can be represented by
the formula Gp with p a proposition atomic such as its
validity area is the position of the assertion only, with
true as a default value and the expression in the asser-
tion as an evaluation function. Therefore, our specifi-
cation formalism allows to express both the classical
version of LTL and assertions, while being capable to
specify directly properties such as mutual exclusion.

The listings 3 and 4 show how the presented for-
malism can be used to specify a mutual exclusion pro-
perty. No additional variable is needed. In this exam-
ple, the evaluation function does not depend of the
value of the variables, which explains why parameter
lists are empty in the specification.

Listing 3: Code with critical areas delimited using labels.

i n t p = 0 ;
i n t f e v () { re turn 1 ; }
void ∗ t h r e a d 1 (void ∗ d) {

. . .
b p1 :

p += 1 ;
e p1 : ;

. . .
}
void ∗ t h r e a d 2 (void ∗ d) {

. . .
b p2 :

p += 1 ;
e p2 : ;

. . .
}

ICSOFT 2018 - 13th International Conference on Software Technologies

618

Table 1: Grammar of atomic propositions.

<atomic-proposition> ::= <proposition-id> <evaluation-function> <parameters>
<default> <validity-area>

<proposition-id> ::= name of the proposition
<evaluation-function> ::= C pure boolean function

<parameters> ::= <parameter> <parameters> | nil
<parameter> ::= <global-parameter> | <local-parameter>

<global-parameter> ::= variable name
<local-parameter> ::= function name :: variable name

<default> ::= boolean
<validity-area> ::= <label> <label>

<label> ::= name of a C label

Listing 4: Specification for a mutual exclusion property.

{ ” l t l ” : ”G(! (p1 && p2)) ” ,
” pa ” : [
{” name ” : ” p1 ” ,

” d e f a u l t ” : f a l s e ,
” exp r ” : ” f e v ” ,
” span ” : [” b p1 ” , ” e p1 ”] ,
” params ” : []

} ,
{ ”name ” : ” p2 ” ,

” d e f a u l t ” : f a l s e ,
” exp r ” : ” f e v ” ,
” span ” : [” b p2 ” , ” e p2 ”] ,
” params ” : []

}
]

}

4 LTL TO ASSERTIONS

Most of the existing model checker for concurrent C
programs only accept assertions as specification and
do not support LTL. To adapt one of these tools or to
create a new one would have been a task far beyond
the scope of this work. Instead, we designed a source
to source translation. From a code source and a spe-
cification in the formalism presented in section 3, we
build a program specified with assertions. The trans-
formation respect the following invariant: “the obtai-
ned program satisfy the assertion if and only if the
initial program satisfy its specification”.

4.1 Transformation Desing

The classic algorithm for LTL model checking con-
sists in building the product between a model of the
system and a Büchi automaton representing the nega-
tion of the LTL specification. The model checker then
explores the product: every valid path that reach an
accepting cycle corresponds to an execution violating
the specification and is reported as an error.

Our transformation reuse this scheme with one
major difference, as presented in (Morse et al., 2015):
instead of building the product between the model of
the system and the Büchi automaton, we implement
the Büchi automaton in C and we build its product
with the code of the system. Thus, we obtain a new
code which contains the automaton and that can be
explored by most model checking tools.

The global organization of our transformation is
presented in Figure 2.

4.1.1 Implementing the Büchi Automaton

We use LTL2BA (Gastin and Oddoux,), an efficient
and well-known tool, to compute the structure of the
Büchi automaton from the LTL formula. Then, we
need to translate the automaton to C code. The trans-
formation uses the following elements:

• a global variable representing the current state of
the automaton

• a set of boolean variables representing the current
valuation of atomic propositions

• a function implementing the transition function of
the automaton. Every call to this function allows
the automaton to take a transition (if several tran-
sitions are possible, a non-deterministic choice is
made).

4.1.2 Build the Product

The next step is to synchronize the execution of the
program with the Büchi automaton. We instrument
the program with instructions that update the values
of atomic propositions and trigger transitions in the
automaton. It would be useless and inefficient to in-
strument every instruction of the program. We only
need to instrument instructions that could modify an
atomic proposition value: the entrance and exit in a
validity area, and the assignment of a parameter of the
evaluation function inside the validity area are the first
candidates. Assignments to global variables out of

On Handling Source Code Positions and Local Variables in LTL Software Model Checking

619

Code Product

Specification (Φ) Automaton (¬Φ) Automaton code

Model checker

Correct Error

Figure 2: Organization of the source to source transformation.

validity areas must also be instrumented: they could
have an impact on the valuation of an atomic propo-
sition when another thread is in the validity area. In-
strumentation is placed in atomic blocks to avoid the
generation of additional interleaving. Examples of in-
strumentation can be found on the repository of the
project: https://github.com/xNephe/baProduct.

4.1.3 Extract the Results

The last step is to use assertions to signal the model
checker when an error state is reached during the ex-
ploration. This can be done easily when it is possible
to know in a finite time whether the execution trace
is valid or not. However, when it is not possible, it
is extremely difficult to detect a cycle in the program
from the inside of itself. To avoid this problem, we
limit ourselves to terminating programs, where every
execution terminates. This raise another issue: LTL
is only defined on infinite traces. Although several
extensions of LTL to finite traces exist (Beer et al.,),
none make consensus. Here, we use the stuttering ex-
tension, that consists in making a finite trace infinite
by repeating its last state: it matches well a program
behavior, where the notion of next state is not preci-
sely defined. Also, a program can easily be assumed
to stay in its last state indefinitely at the end of the
execution.

Given the infinite extension, we can now deter-
mine whether a finite trace is accepted by precompu-
ting the result for every state and every configuration
of atomic properties. To make a distinction between
the results obtained using only a finite prefix of the
trace and those that make use of the infinite extension
(and so may be different with another trace suffix), we
use a four valuated logic. The possible outcomes are:
• VALID SURE: the automaton rejects the execu-

tion trace for every extension
• VALID MAYBE: the automaton rejects the exe-

cution trace for the stuttering extension but may
accept it with another extension

• ERROR MAYBE: the automaton accepts the exe-
cution trace for the stuttering extension but may
reject it with another extension

• ERROR SURE: the automaton accepts the execu-
tion trace for every extension

4.1.4 Implementation

We implemented a tool to produce this instru-
mentation, available at https://github.com/xNephe/
baProduct. The tool is implemented in OCaml (Leroy
et al., 2016) and use the CIL library to instrument the
code. Büchi automatons are produced using LTL2BA
(Gastin and Oddoux,).

4.2 Experimental Results

We tested the presented tool and specification for-
malism on a benchmark of tests (available with the
tool). It consists on 11 small scenarios (less than
100 line each) implementing common concurrent pat-
terns (producer-consumer, data race, answer on re-
quest, road signals. . .). The tests focus on concur-
rency and errors related to the misuse of synchroniza-
tion primitives. We used two bounded model checkers
as backends to perform verification tasks over the in-
strumented code, ESBMC 4.2 (Cordeiro et al.,) and
CBMC 5.7 (Clarke et al.,), running on a computer
with a processor Intel Core i7 (4 cores at 3.7GHz,
6 Go of RAM and Fedora 25 (64 bits). The tables
2 and 3 summarize the results we obtained.

We observe that ESBMC and CBMC succeed in
most of the verification tasks, although some unex-
pected results are observed: ESBMC find an error in
a valid test case and CBMC miss an error in an inva-
lid test case. As far as we can tell, these behaviors are
not triggered by an error in the transformation. They
may be related to a loss of precision due to perfor-
mance optimizations in the backend model checkers.
ESBMC fails on the test battery var as well after ha-
ving used all the available memory.

Performance measurements show that CBMC is
much more efficient than ESBMC on this benchmark.
We explain this difference by the different algorithms
used to handle concurrency: ESBMC explores every
interleaving independently while CBMC builds a sin-
gle verification goal integrating all interleaving. Most

ICSOFT 2018 - 13th International Conference on Software Technologies

620

Table 2: Results of the verification of an instrumented benchmark.

Test scenario CBMC ESBMC Expected result
answer simple ERROR MAYBE ERROR MAYBE ERROR MAYBE
answer simple valid ERROR MAYBE VALID MAYBE VALID MAYBE
battery simple ERROR SURE ERROR SURE ERROR SURE
battery var ERROR SURE Runtime error ERROR SURE
crossing exclusive green VALID MAYBE VALID MAYBE VALID MAYBE
crossing exclusive mutex VALID MAYBE VALID MAYBE VALID MAYBE
crossing GF green ERROR MAYBE ERROR MAYBE ERROR MAYBE
crossing order VALID MAYBE VALID MAYBE VALID MAYBE
prod cons mutex VALID MAYBE VALID MAYBE VALID MAYBE
prod cons simple ERROR SURE VALID SURE ERROR SURE
race ERROR MAYBE ERROR MAYBE ERROR MAYBE

of our tests consist on finding a specific interleaving,
which is more compatible with CBMC approach.

5 RELATED WORK

5.1 Support of Local Variable in LTL

Divine is a model checker for concurrent C programs
which supports LTL specifications. In (Barnat et al.,
), a formalism supporting local variables and positi-
ons in the program in LTL specification is presented.
It is based on a set of macros that allow to modify di-
rectly the value of an atomic proposition in the code
and to bind an expression (containing or not local va-
riables) to an atomic proposition in a lexical context.
This approach allows to express atomic propositions
in a more intuitive manner at the cost of being more
invasive in the code source. However, they do not in-
troduce the concept of validity areas: it is more com-
plicated to restrict the use of an evaluation function to
specific instructions, and relations between values of
variables and positions in the code has to be realized
in the LTL formula, which increases its complexity.

A partial solution to the issue of the identification
of local variable in recursive functions or threads is
also introduced. Using the fact that most of the time,
the interesting event is when an atomic proposition ta-
kes its non-default value, their solution is to compute
the valuation of the atomic proposition in every pos-
sible context and to keep the non-default value if it is
produced at least once. This solution corresponds to
the expected behavior for safety or reachability pro-
perties. However it is an arbitrary decision in general.

5.2 Reduction of LTL Specification to
Assertions

We based our source to source transformation on the
work of J.Morse, in (Morse et al., 2015). However, in

this work, the automaton is implemented in an addi-
tional thread, that behave as an observer. In order to
avoid the generation of many interleavings, a model
checker specific instruction is used, that allows con-
text switch to the observer thread at specific position
of the code only. By using a function instead of a
thread, our version avoid the use of this model chec-
ker specific instruction and remains compatible with
several tools.

6 CONCLUSION

In this paper, we highlighted some of the limitations
of two of the most used specification formalism in the
context of concurrent C programs. We proposed a
new specification formalism based on LTL that ans-
wer to those limitations thanks to the concept of vali-
dity areas: this mechanism allows to handle both local
variables and code positions in an LTL specification.
Then, in order to test the proposed formalism, we pre-
sent a source to source transformation that reduce the
problem of LTL verification to the verification of as-
sertion for terminating programs and we implement it
in a tool.

However, our specification formalism may not be
intuitive to write, which could be improved in a fu-
ture work. Moreover, the instrumentation and code
transformation we propose does not use any reduction
technique, which limits it to very small programs. The
addition of partial order reductions taking into ac-
count the structure of the Büchi automaton may im-
prove the performances. It would also be interesting
to implement the support for the proposed specifica-
tion directly in a model checking tool. It would pro-
bably be possible to overcome the restriction to ter-
minating programs and to gain both in precision and
performances by doing so.

On Handling Source Code Positions and Local Variables in LTL Software Model Checking

621

Table 3: Performances of the verification of an instrumented benchmark.

CBMC ESBMC
Test scenario Time (s) Memory (MB) Time (s) Memory (MB)
answer simple 0.87 42 5.57 56
answer simple valid 0.81 41 12.91 72
battery simple 1.07 42 13.95 61
battery var 666.04 954 N/A OOM
crossing exclusive green 2.93 44 32.12 119
crossing exclusive mutex 1.73 44 32.20 120
crossing GF green 1.99 46 41.70 117
crossing order 1.02 40 11.62 56
prod cons mutex 10,046.32 593 229.99 28
prod cons simple 1.70 52 454.00 2711
race 1.08 41 5.65 28

REFERENCES

Barnat, J., Brim, L., Havel, V., Havlı́ček, J., Kriho, J.,
Lenčo, M., Ročkai, P., Štill, V., and Weiser, J. (2013).
DiVinE 3.0 – An Explicit-State Model Checker for
Multithreaded C & C++ Programs. In Computer Ai-
ded Verification (CAV 2013), volume 8044 of LNCS,
pages 863–868. Springer.

Barnat, J., Brim, L., and Rockai, P. Towards LTL model
checking of unmodified thread-based c c++ programs.
In Lecture Notes in Computer Science (including sub-
series Lecture Notes in Artificial Intelligence and Lec-
ture Notes in Bioinformatics), volume 7226 LNCS,
pages 252 – 266.

Beer, I., Ben-David, S., and Landver, A. On-the-fly model
checking of RCTL formulas. In Proceedings of the
10th International Conference on Computer Aided Ve-
rification, CAV ’98, pages 184–194. Springer-Verlag.

Clarke, E., Kroening, D., and Lerda, F. A tool for checking
ANSI-c programs. In Tools and Algorithms for the
Construction and Analysis of Systems, pages 168–176.
Springer, Berlin, Heidelberg. DOI: 10.1007/978-3-
540-24730-2 15.

Cordeiro, L., Morse, J., Nicole, D., and Fischer, B. Context-
bounded model checking with ESBMC 1.17 (compe-
tition contribution). In Lecture Notes in Computer
Science (including subseries Lecture Notes in Artifi-
cial Intelligence and Lecture Notes in Bioinformatics),
volume 7214 LNCS, pages 534 – 537.

D’Silva, V., Kroening, D., and Weissenbacher, G. A survey
of automated techniques for formal software verifica-
tion. 27(7):1165–1178.

Gastin, P. and Oddoux, D. Fast LTL to büchi automata
translation. In Computer Aided Verification, pages 53–
65. Springer, Berlin, Heidelberg.

Koymans, R. (1990). Specifying real-time properties with
metric temporal logic. Real-time systems, 2(4):255–
299.

Leroy, X., Doligez, D., Frisch, A., Garrigue, J., Rémy, D.,
and Vouillon, J. (2016). The OCaml system (release
4.04): Documentation and user’s manual. Institut Na-

tional de Recherche en Informatique et en Automati-
que.

Morse, J., Cordeiro, L., Nicole, D., and Fischer, B. (2015).
Model checking ltl properties over ansi-c programs
with bounded traces. Software & Systems Modeling,
14(1):65–81.

ICSOFT 2018 - 13th International Conference on Software Technologies

622

