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Abstract: This paper proposes a novel framework for the segmentation and classification of 3D point cloud which jointly
uses spatial, temporal and semantic information. It improves the classification performance by reducing under-
segmentation errors. The presented framework, which can determine the number and label of objects in each
spatially extracted blob, is decomposed into three steps to acquire spatial, temporal and semantic cues. For
the spatial features, blobs are extracted spatially with a neighborhood system on an occupancy grid repre-
sentation. A smoothed motion field is estimated for the acquisition of temporal cue, where the grid cells are
tracked using individual Kalman filters and estimated velocities are transformed to one dimensional movement
directions. A support vector machine (SVM) classifier is trained to discriminate the classes of interest for the
semantic information of the blobs. A confidence metric is defined to probabilistically compare the volume of
each classified blob with the volume of an average object for that class. If this metric is below a predefined
threshold, a sequential variant of distance dependent Chinese restaurant process (s-ddCRP) performs the final
partition in this blob by using spatial and temporal information. If the s-ddCRP approach splits the blob,
the partitioned sub-blobs are afterwards reassigned to new objects by the classifier. Otherwise, the queried
blob remains the same. This procedure iteratively continues while searching each blob in the scene at each
time frame. Experiments on data obtained with a Velodyne HDL64 scanner in real traffic scenarios illus-
trate that the proposed framework improves the classification performance of an SVM classifier by reducing
under-segmentation errors.

1 INTRODUCTION

Autonomous vehicles require reliable representation
and understanding of their environment. The interpre-
tation of sensor readings which provides knowledge
of 3D position and movement of dynamic objects in
the scene is a fundamental ability for the safe motion
of a self-driving car. In order to extract information
from 3D Lidar data, perception systems normally go
through a point cloud segmentation, object tracking
and classification process. The segmentation algo-
rithm is used to cluster different points of the data
into smaller blobs according to a similarity criterion.
These blobs are subsequently tracked by a tracking
algorithm and labeled by a trained classifier into dif-
ferent categories, such as pedestrians, bicycles, cars,
etc., over consecutive time frames. Beside the velo-
city estimation and labeling of blobs, this pipeline
predicts the movement of the environment. These
predictions are used to plan the autonomous vehicle’s

own trajectory and to avoid collisions with any obsta-
cles in the surrounding.

The segmentation algorithm of many autonomous
vehicles’ perception systems relies on simple spatial
relationships to group the point cloud into smaller
blobs, which represent objects in a scene. A common
method is clustering Lidar data together uses their ne-
arness in distance: if points in the data are adequately
close to each other, they are assumed to be part of the
same object, and if points are far away and discon-
nected they are assumed to be bound up with different
objects.

Well-separated objects can be segregated with an
approach using proximity relations alone. However,
when individual objects in the point cloud are too
close, the segmentation becomes more difficult. For
example, pedestrians usually get under-segmented
with a neighboring object, such as a parked car or
a building. If an autonomous vehicle does not de-
tect that under-segmented pedestrian, the vehicle can
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Figure 1: Overview of the proposed framework.

not predict the movements of the pedestrian. Such
under-segmentation problems lead to inaccurate or
even wrong tracking and classification results, mis-
detection of objects and, consequently, possible de-
structive collisions. Therefore, for a more robust ob-
ject perception process, the segmentation algorithm
should benefit from additional cues as well.

This paper proposes a framework for the seg-
mentation and classification of 3D point cloud which
jointly uses spatial, temporal and semantic informa-
tion. It improves the classification performance with
overcoming the under-segmentation issue of moving
objects, i.e., assigning multiple objects to one blob.
When a self-driving vehicle has a complex dynamic
environment, such as pedestrians walking close to
their nearby objects, detecting if an extracted blob
consists of one or multiple objects can be difficult
with spatial features alone. This issue leads wrong
tracking and classification results. Figure (1) illustra-
tes the overview of the proposed approach. The pre-
sented framework, which can determine the number
and label of objects in a spatially extracted blob, is
decomposed into three steps to acquire spatial, tem-
poral and semantic cues. For the spatial features, the
first step is performed on an occupancy grid repre-
sentation, obtaining connected components of non-
ground grid cells, which build up extracted blobs. For
the acquisition of temporal cue, a smoothed motion
field is estimated for subsequent 3D Lidar scans ba-
sed on the occupancy grid representation, where the

grid cells are tracked using individual Kalman filters
and estimated velocities are transformed to one di-
mensional movement directions. A classification step
is applied for the semantic information. Features are
extracted from spatially extracted blobs, capturing the
distribution of local and global spatial properties. A
support vector machine (SVM) classifier (Schölkopf
et al., 2000) is trained to discriminate the classes of in-
terest in a supervised learning framework. We defined
a confidence metric for the classifier to measure how
well a labeled blob matches with its pre-trained class.
If the metric is below a threshold, a sequential variant
of the distance dependent Chinese Restaurant Process
(ddCRP) (Blei and Frazier, 2011) performs the final
partition in this blob by using spatial and temporal
information. When the s-ddCRP approach partitions
the blob, the separated sub-blobs are afterwards reas-
signed to new objects by the classifier. Otherwise, the
assignment and class of the queried blob remains the
same. We present experimental results achieved using
the data collected with a 3D Velodyne scanner in real
traffic to show the feasibility and benefit of the propo-
sed method. Our framework improves the classifica-
tion performance of an SVM classifier with reducing
the under-segmentation errors.

The layout of this paper is as follows. Section 2
discusses the related work. Section 3 explains the ex-
traction of spatial and temporal features. Section 4
presents the proposed segmentation and classification
framework in detail. Section 5 evaluates the perfor-
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mance of the presented framework on real traffic data.
Section 6 recapitulates the most important findings
and gives an outlook on future work.

2 RELATED WORK

Many 3D Lidar based multi-target tracking met-
hods (Petrovskaya and Thrun, 2009; Morton et al.,
2011; Teichman et al., 2011; Azim and Aycard,
2012; Choi et al., 2013) use only spatial distance be-
tween points for the segmentation of Lidar data, ig-
noring temporal and semantic information. There-
fore these methods may not be able to resolve under-
segmentation errors.

Object segmentation and classification have been
studied for years (Himmelsbach et al., 2009; Serna
and Marcotegui, 2014; Douillard et al., 2014; Haber-
mann et al., 2013). Some methods incorporate se-
mantic evidence for segmentation (Gupta et al., 2014;
Lai et al., 2012; Spinello et al., 2010). They can
only segment objects of particular classes. Wang et
al. (Wang et al., 2012) proposes a classifier for the
recognition and segmentation of objects. A probabi-
listic 3D segmentation method is proposed in (Held
et al., 2016) which combines spatial, temporal, and
semantic cues to solve under- and over-segmentation
problems. Kundu et al. (Kundu et al., 2014) and
Sengupta et al. (Sengupta et al., 2013) label each in-
dividual point in the scene. A bottom-up approach
was proposed by Himmelsbach and Wuensche (Him-
melsbach and Wuensche, 2012) that considers the
tracking history and appearance of targets for the dis-
crimination of static and dynamic objects. Tuncer
and Schulz (Tuncer and Schulz, 2015) proposed the
distance dependent Chinese Restaurant Process (dd-
CRP) (Blei and Frazier, 2011) for the segmentation
of 3D Lidar data to exploit spatial and motion featu-
res together. The ddCRP is a distribution over partiti-
ons of data and based on the Chinese Restaurant Pro-
cess (CRP) (Pitman et al., 2002). For a faster appro-
ach, a sequential variant of ddCRP was proposed, cal-
led sequential-ddCRP (s-ddCRP) (Tuncer and Schulz,
2016b). In (Tuncer and Schulz, 2016a), the s-ddCRP
segmentation approach is integrated with a smoot-
hed motion field estimation and an object tracking
module. In (Tuncer and Schulz, 2017), the mean-
shift (Fukunaga and Hostetler, 1975; Comaniciu and
Meer, 2002) and ddCRP algorithms were jointly used
to significantly decrease the computational time. The
presented framework in this paper performs the clas-
sification and s-ddCRP segmentation approaches to
improve the classification performance of the system
with decreasing under-segmentation errors.

3 EXTRACTION OF BLOBS AND
TEMPORAL INFORMATION

This section first describes the pre-processing of 3D
point cloud measurements, which builds up coarsely
extracted blobs. Then we explain the acquisition of
temporal information, which consists of grid cell as-
sociation, Kalman filtering and a smoothing process.
The spatially extracted blobs and estimated tempo-
ral information are exploited in the segmentation and
classification processes by using the proposed frame-
work which is described in Section 4.

3.1 Blob Extraction

We applied the pre-processing approach of (Tuncer
and Schulz, 2016a), which briefly consists of occu-
pancy grid representation, filtering and smoothing.
The grid cells store the center of mass, averaged heig-
hts, variance of the height and total number of the
points falling into each grid cell. After the data points
belonging to the ground are removed with a deci-
sion rule, a connected components algorithm (Bar-
Shalom, 1987) using the 8 neighborhood on the grid
representation is applied to extract blobs spatially.
The framework assigns these coarse blobs to objects
and labels them if the confidence metric of the classi-
fication method, which will be described in Section 4,
is above a threshold. Otherwise, the blobs are sent to
the s-ddCRP segmentation algorithm for further par-
tition. Separated sub-blobs are afterwards reassigned
and relabeled by the classifier.

3.2 Temporal Information

The 3D point cloud data provides spatial features as
described in Subsection 3.1 but the temporal evidence
needs to be acquired. Therefore a motion field esti-
mation approach is used to acquire the temporal in-
formation. Grid cells are treated as the basic elements
of motion and each cell is assigned to its own mo-
tion vector. Nearest Neighbor (NN) filters with gating
are used for grid cell associations. Individual Kal-
man filters are applied to each non-ground grid cell to
solve the estimation problem. Association errors of
grid cells are compensated with a smoothing process
as explained in (Tuncer and Schulz, 2016a).

4 THE PROPOSED
FRAMEWORK

This section explains our novel framework, which
consists of a trained support vector machine (SVM)
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classifier (Schölkopf et al., 2000) and a variant of se-
quential distance dependent Chinese Restaurant Pro-
cess (ddCRP) (Tuncer and Schulz, 2016a), for the
segmentation and classification of 3D point clouds by
jointly using spatial, temporal and semantic informa-
tion. Points in the data are clustered into coarse blobs
according to the method described in Section 3. An
SVM classifier is trained for different categories, such
as pedestrians, bicycles, cars, etc. For each trained
class, we model the volume of an average object for
that class. The extracted blobs are temporarily labeled
by the SVM classifier into different categories. A con-
fidence metric is defined to probabilistically compare
the volume of each classified blob with the volume of
an average object for that class. If this metric is below
a pre-defined threshold, a sequential variant of ddCRP
performs the final partition in this blob by using spa-
tial and temporal information. If the s-ddCRP appro-
ach separates the blob into sub-blobs, they are reas-
signed to new objects and relabeled by the classifier.
Otherwise, the assignment and class of the queried
blob remains the same. After the proposed framework
has been applied to each blob in a time frame, the al-
gorithm outputs the segmented and classified scene.
The cooperation of the classifier and s-ddCRP appro-
ach improves the segmentation and classification per-
formances of the object perception system of an auto-
nomous vehicle as shown in Section 5.

4.1 Classification

For the classification of blobs, a set of discriminative
features in the data needs to be chosen that either re-
present the object on point or object level. The ex-
tracted features should be representative, ie., similar
for objects in a given class, but also discriminative,
i.e., vary as much as possible between different clas-
ses. The object and point level features are described
below.

Object Level Features: Object level features do
not involve any local computation of points. The final
set contains six features describing global attributes
of the blob, all of which are scalar valued.

• f1: Volume of the blob.

• f2: Height of the blob.

• f3: Width of the blob.

• f4: Length of the blob.

• f5: Standard deviation of the distance from each
point to the center of mass of the blob.

• f6: Length of the hypotenuse between the width
and length of the blob.

Point Level Features: Object level features do not
involve local point cloud statistics. Therefore Lalonde
features L1, L2 and L3 (Lalonde et al., 2006) are eva-
luated at all points of the blob. They uses the distribu-
tion of neighboring points to express the scatterness,
linearness, and surfaceness as explained in (Himmels-
bach et al., 2009). The quired point’s 20 nearest neig-
hbors within a radius of 0.5m are calculated by con-
structing a kD-tree.

• L1: Scaterness.

• L2: Linearness.

• L3: Surfaceness.

A histogram for every point feature is defined to
be represented in object level. All point features are
normalized to take values in the range of 0....1 with
dividing every bin value by the total number of points
in the blob. Three histograms, each consisting of 4
bins equally spaced over the range 0...1, are added to
the final feature set.

We finally have an 18 dimensio-
nal feature set, which is defined as f =
( f1, f2, f3, f4, f5, f6,H4

L1
,H4

L2
,H4

L3
). There are six

scalar object level features and three histograms over
point level features, each contributing four bins.

For the classification step, a Support Vector Ma-
chine (SVM) classifier (Schölkopf et al., 2000) is trai-
ned on KITTI data set (Geiger et al., 2012; Fritsch
et al., 2013; Geiger et al., 2013) which provides labe-
led objects from different time steps. For the multi-
class problem, a one-versus-all approach is applied,
where one binary SVM is trained for every class, se-
parating the class from all other classes. The SVM de-
pends on a penalty parameter ζ for weighting classifi-
cation errors and a kernel function parameter γ. A grid
search is performed to determine the optimal choice
of these parameters. In the grid search, different pai-
rings of ζ and γ are validated and the parameters with
the best performance are chosen.

We apply the validation set method, which sim-
ply divides the labeled data in a training set which is
used to determine parameters and a validation set that
evaluates the performance.

After the SVM classifier is trained for different ca-
tegories, the volumetric size of an average object for
each class is modeled by a Gaussian with parameters
µc and σc. A confidence metric is defined in Equa-
tion (1) to probabilistically compare the volumetric
size of each classified blob, bv, with the volume of an
average object ob for that class.

PV (bv|ob) = ηexp

(
−(bv−µob)

2σ2
ob

)
< τv (1)
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If the metric in Equation (1) is below the threshold τv
for a labeled blob, a sequential variant of ddCRP de-
fined in Subsection 4.2 decides the final clustering in
this blob by incorporating spatial and temporal featu-
res. The divided sub-blobs are afterwards reassigned
to new objects and relabeled by the classifier. Other-
wise, the assignment and class of the queried blob re-
mains the same.

4.2 Sequential Distance Dependent
Chinese Restaurant Process

After mapping the data on a grid and removing the
points belonging to the ground, we apply a connected
components algorithm on the occupancy grid to spa-
tially partition the scene into blobs. We applied the
sequential distance dependent Chinese restaurant pro-
cess (s-ddCRP), which was proposed in (Tuncer and
Schulz, 2016b) to partition the blobs by grouping the
grid cells together with considering spatial continuity
and the features of grid cells. The s-ddCRP appro-
ach determines the clusters, which represent different
objects, in a blob based on posterior inference. Dif-
ferent segmentation hypotheses are generated and the
s-ddCRP decides on the most probable ones by using
temporal and spatial features together. The mean va-
lue of smoothed motion vectors of grid cells which
form an object can be assigned as a temporal feature
of the object. The scope of this paper is on the inte-
gration of segmentation and classification steps.

5 EXPERIMENTAL RESULTS

The proposed framework was evaluated on the KITTI
data set (Geiger et al., 2012; Fritsch et al., 2013; Gei-
ger et al., 2013) which was recorded using a Velo-
dyne HDL-64D Lidar sensor from a moving car on
city streets. It consists of tracklets, which are the se-
quences of the same objects from different time steps
in a recording. We used approximately 80% of these
tracklets to train our method and select parameters,
and the remaining tracklets were used for testing and
evaluation. Table (1) shows the number of examples
used in each data set. Tracklets from different data
sets were used for training and test to avoid the bias
of an object reoccurring in both data sets.

The SVM depends on a penalty parameter ζ for
weighting classification errors and a kernel function
parameter γ. A grid search was performed to deter-
mine the optimal choice of these parameters. In the
grid search, different pairings of ζ and γ were valida-
ted with ζ= 2−7,2−5, ....29 and γ= 2−17,2−15, .....25.
The parameters were chosen as ζ = 27 and γ = 2−3.

Estimated grid cell velocities were transformed to
one-dimensional movement directions. For the s-
ddCRP part of the proposed framework, larger α va-
lues bias the algorithm towards more clusters so we
set α = 10−4 (Tuncer and Schulz, 2016b). The dd-
CRP sampler was run with 20 iterations for each ex-
tracted blob.

Table 1: Number of samples for each class and for each data
set.

Class Training Evaluation
Pedestrian 1208 293
Cyclist 556 141
Car 7771 1942
Van 1039 196
Total 10574 2639

Figure (2) shows how the proposed framework
runs for the segmentation and classification of 3D Li-
dar data. It displays a scene where a person goes out
of the car and starts walking. The camera image is
given for better understanding of the scene. The blob
is spatially extracted in the second image. This leads
to the under-segmentation of the person with the car.
Therefore the SVM classifier labels the blob as a car.
When the confidence metric defined in Equation (1) is
below the threshold τv, the s-ddCRP approach makes
a further clustering in this blob by jointly incorpora-
ting spatial and temporal features. The divided two
sub-blobs are afterwards reassigned to a car and a pe-
destrian by the classifier. This procedure iteratively
continues while searching each blob in the scene at
each time frame. After the proposed framework has
been applied to each blob in a time frame, the algo-
rithm outputs the labeled scene.

Table 2: The number of under-segmented objects for the
classes in the test data set.

Pedestrian Cyclist Car
Spatial Alone 60 31 15

Proposed Framework 13 20 9

Output of the proposed framework is a partitio-
ning of the grid cells in each time step into disjoint
labeled blobs, where each blob is intended to repre-
sent a single object instance. The evaluation metric
defined in (Tuncer and Schulz, 2017) is used to eva-
luate how well the proposed framework avoids under-
segmentation errors. Table (2) shows the number of
under-segmented objects for the pedestrian, cyclist
and car categories in the test data set. The first row is
the number of under-segmented blobs when they are
extracted spatially while the second row is the number
of under-segmented objects at the output of the pro-
posed framework. It can cope with dynamic under-
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Figure 2: Levels of the proposed framework for the under-segmented objects.

segmented objects. However, due to the stationary
under-segmented objects, which do not have tempo-
ral cues, and the group of nearby pedestrians moving
in the same direction, the proposed framework can not
completely avoid under-segmentation errors.

Table 3: Confusion matrix for the SVM classifier when
the spatially extracted blobs are labeled directly without the
proposed framework.

Pedestrian Cyclist Car Van
Pedestrian 225 13 41 14

Cyclist 13 105 7 16
Car 11 7 1915 9
Van 0 3 64 129

Table (3) gives the accuracy results of the SVM
classifier in case the extracted blobs are labeled di-
rectly without the s-ddCRP approach. The rows are
the ground truth labels while the columns show the
predicted class labels. When the segmentation and
classification processes are performed consecutively,
pedestrians and cyclists moving close to other vehi-
cles are mostly under-segmented and labeled as their
neighboring objects. The overall accuracy of the clas-
sifier stays around 89.9% because of those pedestri-
ans and cyclists which are under-segmented with cars
and vans. The other reason of this accuracy rate is the
issue of discerning vans from cars because of their si-
milar appearances. More sophisticated features might
solve this issue.

The confusion matrix for the classification result
of the proposed framework is given in Table (4) to

Table 4: Confusion matrix for the classification result of the
proposed framework. The rows are the ground truth labels
while the columns show the predicted class labels.

Pedestrian Cyclist Car Van
Pedestrian 272 11 6 4

Cyclist 12 116 2 11
Car 11 7 1921 3
Van 0 3 64 129

evaluate the benefit of incorporating spatial, temporal
and semantic information. The labeled blobs which
have low values of confidence metric in the first level
of the proposed framework are sent to the s-ddCRP
algorithm for further investigation to avoid under-
segmentation errors. The s-ddCRP approach does the
further segmentation of dynamic pedestrian and cy-
clist blobs. Afterwards these divided sub-blobs are
relabeled into correct classes. Avoiding the under-
segmentation errors raises the overall classification
accuracy of the proposed framework to 92.5%.

The confidence metric is defined in Equation (1) to
probabilistically compare the volumetric size of each
classified blob with the volume of an average object
for that class. If the metric is below the threshold τv
for a labeled blob, the s-ddCRP makes the final cluste-
ring in this blob. Figure (3) illustrates the percentage
number of blobs sent to the s-ddCRP algorithm in the
proposed framework depending on the threshold va-
lue τv of the confidence metric. Considering the total
number of under-segmented objects, which is 4% of
the whole segments in the test set, the volumetric mo-
del defined in Equation (1) causes unnecessary furt-
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Figure 3: The percentage number of blobs sent to the s-
ddCRP algorithm in the proposed framework depending on
the threshold value τv of the confidence metric.

her investigations of blobs, which does not change the
blob structures. A more complex confidence metric
might prevent this issue.

Figure 4: Under-segmented pedestrian and van due to the
lack of temporal information.

Figure (4) shows that there is a pedestrian stan-
ding behind a stationary van. This person is cor-
rectly detected with a bounding box in the camera
image. However, the person has no temporal infor-
mation so our framework detects them as one object
in the bottom image. Because of stationary under-
segmented objects, which do not have temporal cues,
and the group of nearby pedestrians moving in the
same direction, the framework can not cope with all
under-segmentation errors as shown in Table (2). Be-
side the usage of spatial and temporal information,
incorporating semantic clues would improve the seg-
mentation results, and, thus, will be part of our future
work.

6 CONCLUSION

We proposed a framework for the segmentation and
classification of 3D point cloud which jointly uses
spatial, temporal and semantic information to im-
prove classification performance with overcoming the
under-segmentation errors. Reduction of the motion
estimation into one dimension is sufficient to dis-

criminate moving objects from their neighbors such
as parked cars. However, distinguishing stationary
under-segmented objects and the group of pedestrians
moving in the same direction still remains as a pro-
blem. An appearance model together with the spatial
and temporal features might help to solve this issue.

Our framework uses spatial and semantic cues for
the classification. Afterwards it exploits semantic fe-
atures to decide if the blob needs further segmenta-
tion. However, the further segmentation is done with
spatial and temporal information. Adding semantic
cues for the segmentation process would significantly
resolve the under-segmentation problem of stationary
nearby objects and, thus, improve the general perfor-
mance of the object perception system.

The confidence metric is defined in Equation (1) to
probabilistically compare the volumetric size of each
classified blob with the volume of an average object
for that class. If the metric is below a threshold for
a labeled blob, the s-ddCRP makes the final cluste-
ring in this blob. We check the confidence value of
the classifier one time for each blob in the proposed
framework. It is illustrated that the volumetric model
causes unnecessary further investigations for the seg-
mentation of blobs, which does not change the blob
structures and increase the computational time. A
more sophisticated confidence metric might prevent
this problem.

This paper mostly focuses on improving classifi-
cation performance with providing better segmenta-
tion of the scene. However, we noticed that the clas-
sifier discerns vans from cars with high error rates due
to their similar appearances. Therefore more com-
plementary descriptive features should be proposed to
overcome this problem.

Applying an iterative closest point approach
would be interesting instead of tracking each grid cell
on an occupancy grid. We intend to compare the per-
formance of our framework with other novel algo-
rithms proposed in the literature.
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Tuncer, M. A. Ç. and Schulz, D. (2016a). Integrated ob-
ject segmentation and tracking for 3d lidar data. In
Proceedings of the 13th International Conference on
Informatics in Control, Automation and Robotics - Vo-
lume 2: ICINCO, pages 344–351.
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