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Abstract: In this paper, we propose a method to estimate 3D pose information of an object in a randomly piled-up 
environment by using image data obtained from an RGB-D camera. The proposed method consists of two 
modules: object detection by deep learning, and pose estimation by Iterative Closest Point (ICP) algorithm. 
In the first module, we propose an image encoding method to generate three channel images by integrating 
depth and infrared images captured by the camera. We use these encoded images as both the input data and 
training data set in a deep learning-based object detection step. Also, we propose a depth-based filtering 
method to improve the precision of object detection and to reduce the number of false positives by pre-
processing input data. ICP-based 3D pose estimation is done in the second module, where we applied a 
plane-fitting method to increase the accuracy of the estimated pose. 

1 INTRODUCTION 

With the rapid development of modern visual 
recognition technology, many advanced systems 
have been introduced to automate the works of 
assembly lines in large industries. Such automation 
is achieved by implementing high-tech robots, 
mainly on the seek of increasing productivity and 
efficiency. Consequently, the topic bin-picking has 
started to attract the attention of many researchers. 
In computer vision society, this topic is defined as 
“the method of estimating the pose of randomly 
piled-up objects, and sending pose data to robots to 
act accordingly.” 

From the past to the present, a large number of 
bin-picking research works have been actively 
conducted. Kuo et al. proposed an automatic system 
for object detection and pose estimation using a 
single depth map (Kuo et al., 2014). Object detection 
is based on matching key-points (using RANSAC 
algorithm (Schnable et al., 2007)) extracted from the 
depth image, where pose estimation is achieved by 
applying ICP algorithm (Besl and McKay, 1992). 
Wu et al. introduced a method to estimate object 
pose by using a CAD model, where they applied a 
voxel grid filter (Skotheim et al, 2012) to reduce the 
total computation time (Wu et al., 2015). Wada et al. 

proposed a Convolution Neural Network-based 
(CNN) object recognition and splitting method for 
objects that are stacked in narrow spaces (Wada et 
al., 2016). Radhakrishnamurthy et al. researched 
about an automated stereo bin-picking system and 
proposed the ATOT (Acclimatized Top Object 
Threshold) algorithm to identify the top-most object 
in a pile of occluded objects (Radhakrishnamurthy et 
al., 2017). Instead of using a threshold value for 
binarization (Otsu, 1979) through trial-and-error, 
they advanced their algorithm to find the correct 
threshold value automatically. He et al. proposed a 
pipeline to reduce the number of false positives in 
object detection (He et al, 2017). They used template 
matching and clustering algorithms to detect objects, 
and their point cloud processing algorithm to 
estimate the object pose. 

Even though these existing methods are capable 
of obtaining promising results, most of them have 
two common drawbacks: Unstable corresponding 
point matchings in object detection, and insufficient 
3D point data acquisition in ICP-based pose 
estimation. In this paper, we address these 
drawbacks and introduce an effective bin-picking 
system by utilizing computer vision, and deep-
learning techniques. We divide our approach into 
two modules, an object detection module, and a pose 
estimation module. In the first module, we propose  
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Figure 1: Proposed system flowchart. 

an encoding method to integrate IR and depth 
images of the camera to generate a new-3-channel 
image and a depth-based filtering method to improve 
deep learning-based object detection precision. In 
the second module, we use the ICP algorithm to 
estimate the pose of the first module’s detected 
objects. To solve insufficient 3D point data problem, 
we apply plane-fitting (Radu and Cousins, 2011) to 
move the plane equation of the surface in the direct-
ion of its normal vector. This approach increased the 
total number of matching points of the object. 

Fig. 1 shows the flow chart proposed in this 
paper to estimate the pose of an object. First, an 
infrared image and a depth image are obtained from 
an RGB-D camera. Then, the two images of the 
previous stage are integrated into one image by the 
proposed method. This integrated image is used as 
training-data to train YOLO(You only look once) 
v2(Redmon and Farhadi, 2017). Then, we apply the 
depth-based filtering proposed in this paper to this 
integrated image. The reason for applying this 
filtering is to solve the problem that it is difficult for 
the detector to detect an object if the objects overlap 
each other. Then we detect the object with a detector 
trained with YOLO v2. Next, the point cloud of the 
detected object is obtained using the perspective 
back-projection transformation. Then, as in section 
3.1, we use PCL(Point Cloud Library)'s plane-fitting 
algorithm to acquire an additional point cloud of 
objects. Finally, we use PCL's ICP algorithm to 
estimate the pose of the object using the acquired 
point clouds and the CAD model of the object. In 
this paper, we study two kinds of objects. We 
randomly piled objects to make an experimental 
environment. However, we do not mix two kinds of 
objects in one experimental environment. 

The structure of our paper is as follows. The first 
module: image encoding and object detection are 
introduced in section 2, where ICP-based pose 
estimation is stated in section 3. We validated the 
accuracy of two modules through experimental 
results and summarized them in section 4. Lastly, 

conclusions are summarized in the final section of 
this paper. 

2 IMAGE ENCODING AND 
OBJECT DETECTION 

2.1 Generating 3-channel Encoded 
Image 

A time-of-flight (ToF) camera is a range imaging 
capable camera that resolves distance to points in 2D 
images. Kinect v2 is a ToF-type camera capable of 
producing both depth and infrared images 
(Butkiewicz, 2014). Even though ToF-type cameras 
have an illumination variant characteristic, they are 
less likely to be influenced by lighting conditions in 
indoor environments. Based on this assumption, in 
this paper, we created a three-channel image using 
depth and IR images acquired from Kinect v2 using 
the following method. 

First, we normalize the depth value of the depth 
image using Eq. (1) and then assign this value to the 
first channel(channel1). 

Channel1=
Depthinput	-	Depthmin

Depthmax	-	Depthmin
                   (1) 

 

Figure 2: A graphical representation of how bins are piled-
up. The RGB-D camera is mounted on top of the bin. 

Fig. 2 depicts a general situation where objects are 
piled-up on a flat surface. Depthinput represents the 
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depth data obtained from the RGB-D camera, where 
Depthmin and Depthmax represent the distances to 
starting and end positions of the user-defined 
working area from the camera. The starting point is 
not necessarily the starting point of the first piled 
bin. Second, we assigned original data of the IR 
image to the second channel(channel2). To 
summarize the first and second channels, the first 
channel is assigned a normalized depth value, and 
the second channel is assigned a normalized value of 
the pixel size of the IR image. 

Finally, we used the predefined thresholds to 
remove the background of the IR image and assign 
the normalized value to the third channel(channel3) 
using Eq. (2). This method emphasizes the shape of 
an object by making the difference between the 
object and the background large. The reason for 
doing this is to make the features of the object 
stronger when training the deep learning model. In 
Eq. (2), the constant value is an experimentally 
obtained value. Fig. 3 shows an example of the 
process of creating a 3-channel image using the 
proposed method. In Fig. 3, the right image is the IR 
image and the depth image, and the left image is the 
resulting image. 

Channel3	=	128	+	pixel_value	×	6           (2) 

 
Figure 3: Creating a 3-channel image using IR image and 
depth image. 

2.2 Depth-based Filtering 

Detecting target objects when they are overlapped 
with each other is not an easy task. Overlapping 
results in changing the characteristics of individual 
objects. This is a very common issue in objects with 
holes in their center. For example, as in the case of 
Fig. 4, the object detector falsely recognizes two or 
more overlapping objects as a single object. 

We propose a recursive depth-based filtering 
method to solve this problem. This is a method of 
acquiring data between distance threshold from the 
camera position in the work area. This method 
applies to the only channel3 in the encoded image. 

 
(a)                                     (b) 

Figure 4: Examples of target objects piled up in a 
rectangle box (a) color image (b) proposed encoding 
image. 

Taking Fig. 2 as an example, our proposed filtering 
method is to remove data located farther away than 
the red line based on the camera position. This red 
line indicates the vertical search area from the 
camera position to the distance threshold. The data 
removal method is to set the pixel having a value 
greater than the distance threshold to zero. In the 
next step, this filtered image is used to detect the 
object using the object detector. When this task is 
completed, the distance threshold is incremented by 
1 mm to repeat the task. We set the initial distance 
threshold to Depthmin and the maximum value to 
Depthmax. 

This process is performed recursively until all 
the objects are detected. Fig. 5 (a) shows the image 
before depth-based filtering is applied. Fig. 5(b) 
shows an example that depth-based filtering is 
applied to the image that captures the situation 
where objects overlap each other. The red circle in 
Fig. 5(b) represents the target object detected in the 
search region. Pixels which depth is larger than the 
threshold value are regarded as background and 
represented with blue. This representation allows to 
easily identify objects even they overlap with each 
other. 

 
(a)                                            (b) 

Figure 5: Depth filtering (a) before depth-based filtering 
(b) after depth-based filtering. 

2.3 Target Object Detection using Deep 
Neural Network 

In this paper, we trained the object detector using the 
YOLO v2 (Redmon and Farhadi, 2017) library. The 
YOLO v2 library uses the Dartnet-19 model. This 
model has 19 convolutional layers and 5 maxpooling 
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layers. We have collected training data as shown in 
Fig. 6(a) to train this deep learning model. Fig. 6(b) 
shows the labeling information of the training data 
(Fig. 6(a)). In this paper, the input image of the 
object detector is the depth-based filtered image and 
the output is the area of the detected object. Fig. 7 
shows an example of the results of detecting objects 
using an object detector.  

 
(a)                               (b) 

Figure 6: Example of training data, (a) Training data (b) 
Labelling image of training data. 

 
(a)                                           (b) 

Figure 7: Object detection examples using YOLO v2, (a) 
detected object regions of hexagonal rings (b) detected 
object regions of circular rings. 

Occasionally, objects are tilted in the working 
environment. If depth-based filtering is applied in 
this case, the result as shown in Fig. 8(a) is output. 
However, the object detector we trained do not 
detect the object. Because we did not train an object 
like Fig. 8(a). If an object is not detected, depth-
based filtering increases the depth threshold. When 
it looks like Fig. 8(b), the detector detects the tilted 
object. 

 
(a)                                           (b) 

Figure 8: A case with an inclined object, (a) Object 
detector does not detect the object (b) After increasing the 
depth threshold, the object detector detects the object. 

3 3D POSE ESTIMATION OF 
TARGET OBJECTS 

3.1 Plane Fitting of the Object Top 

Once the object regions are detected, we use the ICP 
algorithm in each object region to estimate the pose 
of the objects. We acquire a 3D point cloud using 
the perspective back-projection transformation 
formula for the region detected in the previous step. 
This point cloud is matched with the 3D CAD model 
of the object to find the 3D rotation and translation. 
The model of the object is also represented by 3D 
points. In general, ICP algorithm works better if the 
number of 3D points of the object is large. There 
arises a problem of insufficiently acquiring the 
perspective back-projection-converted 3D points 
because the pixels exist only in the upper part of the 
object in the 2D image. Therefore, in this paper, we 
employ a plane fitting method to acquire more 3D 
points for the target object.   

Suppose we obtain the 3D point clouds for a 
detected target object which is reconstructed from 
the object region in the depth image. An example is 
shown in Fig. 9(a). This point cloud is represented as Pൌሼሺx1,	y1,	z1ሻ,	…	,	ሺxκ,	yk,	zκሻሽ. The plane equation 
(Eq. (3)) is fitted to this point cloud as shown in Fig. 
9(b). The direction of the normal vector ሬ݊Ԧ as in Eq. 
(4) is always opposite to the coordinate origin 
because c	 and z	 values are positive in this equation. 
To obtain enough 3D points from the depth, the 
fitted plane is shifted along the normal direction by a 
short length (δ) as shown in Fig. 9(c). Then, more 
points which satisfy Eq. (5) are added to the point 
clouds ࣪. In Eq. (5), ࣯	is uniform distribution. ܽݔ ൅ ݕܾ ൅ ݖܿ ൅ ݀ ൌ 0	ሺܿ ൒ 0, ݖ ൒ 0ሻ       (3) ሬ݊Ԧ ൌ ሺܽ, ܾ, ܿሻ                            (4) ܽݔ௞ ൅ ௞ݕܾ ൅ ௞ݖܿ ൅ ሺ݀ ൅ δሻ ൑ 0	with	݇~࣯ሼ1, Kሽ (5) 

In summary, once, the plane equation as shown 
in Fig. 9(b) is obtained through the plane fitting for 
the point cloud of the object as shown in Fig. 9(a). 
Then, the plane equation as shown in Fig. 9(b) is 
moved in parallel to the normal vector direction by a 
certain size(δ). We acquire closer points from the 
plane relative to the origin and use it as a data set for 
ICP algorithm. The origin indicates the position of 
the camera. By applying this method, we can acquire 
more 3D points for the object than before. 
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Figure 9: Plane fitting and Shifting along the plane normal 
direction. 

3.2 3D Pose of Target Object 

The pose of a target object means the 3D 
transformation of the object from the origin of the 
depth sensor. The 3D pose of target object must be 
known to perform the picking task of a robot system. 
The 3D pose of a target object is estimated by the 
following method. 

First, we create 3D models of the two target 
objects. The 3D target models are also point clouds 
data which has the same scale with the target 
objects. In Fig. 10(a), one of the target models is 
placed at the coordinate origin in green color. The 
coordinate origin is defined as the coordinate of the 
RGB-D camera used in experiments. 

Next, the point cloud of the object obtained 
through the plane shift method is matched with the 
point cloud of the target model using the ICP 
algorithm. The pose of the object is estimated 
through the translation and rotation matrices of the 
3D transformation derived by the ICP algorithm. 

 
(a)                                            (b) 

Figure 10: Two examples of ICP matching (a) Before 3D 
matching (b) After 3D matching. 

In Fig. 10(b), the target model, red-colored 
points, is matched with the target object, white-
colored points, after applying the ICP algorithm. 

4 EXPERIMENT RESULTS 

4.1 Experiment Environment 

To verify the performance of the proposed system, 
an experimental set is constructed as shown in Fig. 
11(a). As target object two types of ring are used, 
hexagonal ring(Fig. 11(b)) and circular ring(Fig. 
11(c)). The hexagonal ring has 5mm height and 
45mm diameter, and there is a circular hole of 
diameter 30mm. The circular ring has 10mm height 
and 70mm diameter, and there is a circular hole of 
diameter 55mm. 

The number of training data is shown in Table 1 
and it is trained by YOLO v2 library. The 
experimental method is as follows. First, we detect 
the target objects in depth images by the trained 
detector. Then, a target object is randomly selected 
from among the detected objects. After obtaining the 
3D pose information of the object, it is manually 
removed to simulate robotic bin picking. The 
simulated picking task is repeated until all target 
objects are removed and no object is detected. In this 
experiment, we excluded the case where the object 
was largely inclined. 

 

 
(a)                           (b)                        (c) 

Figure 11: (a) Experimental setup (b) Hexagonal ring (c) 
Circular ring. 

Table 1: Number of Training Data. 

 Training image Test image 

Hexagonal ring 454 323 

Circular ring 283 207 
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4.2 Experiment Results 

Table 2 and Table 3 show the results of pose 
estimation of two types of target objects. The target 
objects are randomly placed in a rectangle box. The 
number of object in a pile is 30 for the hexagonal 
object, 20 for the circular object. In each object type, 
experimental tests are done in five times. The single 
test consists of picking all detected objects out of the 
box. 

TP(True Positive) in Tables 2 and Table 3 are 
cases that the following two conditions are satisfied. 
The first condition is that when the target model, 
transformed to the target object by ICP algorithm, is 
projected onto the image of the target. In case of 
correct estimation, the projected image is exactly 
matched with the image of the target object. The 
second condition is when a target object is detected 
in the object piled, it must be one of the topmost 
objects. 

FP(False Positive) means the following two 
cases. The first case refers to a situation in which an 
object other than the topmost object is detected in 
the object piled. The second case refers to a case that 
a detected object region overlaps two objects. 

Fig. 12 shows some of the experiment results. 
Fig. 12(a) shows object regions decided by the deep 
neural network. Fig. 12(b) shows the pose between 
the target model and target object before and after 
ICP algorithm. The rotation and translation of the 
object pose are shown in Fig. 12(c). 

Table 2: Experimential results on hexagon al rings. 

 TOTAL TP FP Precision(%) 

TEST 1 30 25 5 83.3 

TEST 2 30 26 4 86.6 

TEST 3 30 26 4 86.6 

TEST 4 30 26 4 86.6 

TEST 5 30 25 5 83.3 

 150 128 22 85.3 

Table 3: Experimental results on circular rings. 

 TOTAL TP FP Precision(%) 

TEST 1 20 17 3 85.0 

TEST 2 20 18 2 90.0 

TEST 3 20 17 3 85.0 

TEST 4 20 17 3 85.0 

TEST 5 20 17 3 85.0 

 100 86 14 86.0 

 
(a)                           (b)                             (c) 

Figure 12: (a) Object detection (b) 3D matching (c) Pose 
estimation. 

5 CONCLUSION 

In this paper, we propose a method for estimating 
the 3D pose of target objects in an environment 
where objects are randomly piled up. We proposed 
an image encoding method of integrating a depth 
image and an infrared image which are robust to 
illumination changes. We trained and detected 
encoded images by YOLO v2. However, if objects 
with holes in the center are randomly piled up, there 
is a problem that it is difficult to detect because 
objects appear to cover each other and the middle 
part is filled with something else. We have solved 
this problem with the proposed depth-based filtering 
method. Furthermore, we proposed a method of 
acquiring more 3D points by both plane fitting 
algorithm and plane shift to obtain better results of 
ICP algorithm. Finally, we estimated the pose of the 
objects by ICP algorithm.  
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