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Abstract: Condition monitoring of storm-water pipe systems are carried-out regularly using semi-automated proces-

sors. Semi-automated inspection is time consuming, expensive and produces varying and relatively unreliable

results due to operators fatigue and novicity. This paper propose an innovative method to automate the storm-

water pipe inspection and condition assessment process which employs a computer vision algorithm based on

deep-neural network architecture to classify the defect types automatically. With the proposed method, the

operator only needs to guide the robot through each pipe and no longer needs to be an expert. The results

obtained on a CCTV video dataset of storm-water pipes shows that the deep neural network architectures

trained with data augmentation and transfer learning is capable of achieving high accuracies in identifying the

defect types.

1 INTRODUCTION

Condition monitoring of storm-water pipe systems

are often carried-out to provide an understanding of

the current status of the storm-water system, which

enables the prediction of future deterioration of the

pipes and facilitate investment planning. These infor-

mation can also be used in allocating maintenance and

repair resources efficiently.

An on-site inspection with closed-circuit televi-

sion (CCTV) is currently the most common and com-

mercially available method for condition assessment

of storm-water pipes. The typical inspection process

can be described as follows. A certified technician

guides a CCTV camera mounted on a robot that tra-

vels inside a pipe segment. The technician must vi-

sually detect the defects in the pipe segment by ob-

serving the video feed. Once a defect is detected the

technician manually rotates and zoom the camera to

gain a better understanding of the defect and adds the

information relating to that defect (i.e. defect type,

defect parameters) to the video together with additi-

onal information such as pipe diameter, location, in-

spection date. The recorded video is then used for

further analysis including discrete condition rating,

deterioration modelling and planning (Tran et al.,

2010).

The above described CCTV inspection is conside-

red semi-automated and is time consuming, expensive

and produces varying and relatively unreliable results

in some cases due to operators fatigue and novicity. In

addition, training a professional technician to be able

to classify all the defect types, estimate defect para-

meters and conduct inspection is costly. Due to the

above limitations of the manual inspection process,

only around ten percent of the storm-water pipe sy-

stem in Melbourne, Australia can be inspected given

limited budget. Increasing the portion of the inspected

pipes would increase the reliability of the network as

well as improve the resource allocation and planning

processes.

In this paper, we propose an innovative method

to automate the defect detection and condition asses-

sment within the pipe inspection process. With the

proposed method, the operator only needs to guide

the robot through each pipe and no longer needs to be

an expert in piping. A computer vision algorithm ba-

sed on deep-neural network architecture is designed

to classify the defect types automatically. The block-

diagram of the overall process is shown in Figure 1.

In the proposed system, the technician still needs to

drive the robot through the pipe and record a clear

video of all the internal conditions of the pipe. The

video is then fed to the model and the model will go

through the video frame by frame to detects the un-

derlying defects in each frame. After successfully de-

tecting a defect, the system extracts those frames with

defects and classify the defect type and extract de-
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Figure 1: The overall block-diagram of the automated storm-water pipe inspection process.

fect parameters required for condition assessment and

further analysis. By applying automated visual in-

spection, the reliability of the inspection process can

be improved. In addition, this automatic system redu-

ces the cost and time in comparison with the manual

visual inspection process.

The remainder of the paper is organized as fol-

lows: Section 2 provides a review of existing pipe in-

spection methods and deep neural networks. Section

3 provides a description of the overall method and

Section 4 show the results of of our experiments. Fi-

nally Section 5 concludes the paper.

2 BACKGROUND

2.1 Automated Inspection of

Storm-water/Sewage Pipes

Numerous attempts have been made to automate the

pipe inspection process using computer vision and

machine learning techniques. Xu et al. (Xu et al.,

1998) proposed an automated method for pipe defor-

mation analysis and crack detection that uses image

processing techniques such as edge detection and bi-

nary image thresholding combine with boundary seg-

ment analysis.

Shehab and Moselhi (Shehab and Moselhi, 2005)

propose a machine learning based method for in-

filtration detection in pipes. They first extracted

17 features from images of pipes using a sequence

of image processing operations including: dilation,

background subtraction, thresholding, and segmenta-

tion. These features were then used in a neural net-

work to predict the presence of infiltration which was

trained using back propagation. Yang and Su (Yang

and Su, 2008) also proposed a machine learning ba-

sed automatic pipe inspection framework. They ex-

tracted texture based features from the image using

techniques including wavelet transform and compu-

tation of co-occurrence matrices. These features are

used with, three machine learning approaches: back-

propagation neural network (BPN), radial basis net-

work (RBN), and support vector machine (SVM) to

classify pipe defect patterns to following categories:

broken pipe, crack, fracture, and open joint. By ana-

lysing the above mentioned classifiers they concluded

that SVM and RBN are better than BPN.

Yang and Su (Yang and Su, 2009) proposed a pipe

defect detection method that utilized both supervised

and un-supervised techniques. In their method images

from CCTV camera were first converted to a set of fe-

atures using morphology based segmentation techni-

que. The most important features were then identi-

fied using principle component analysis and used in

a Radial basis network (RBN) to classify them into

one of the following defect types: broken pipe, crack,

fracture, and open joint. Su and Yang (Su and Yang,

2014) also proposed a morphological segmentation

based method for detecting defects in CCTV video

of sewer pipelines. This method was only designed to

identify cracks and open joints in pipelines.

Halfawy and Hengmeechai (Halfawy and Heng-

meechai, 2014) proposed a method that first extract

image region of interest using image segmentation

techniques. Next histogram of gradient features were

extracted from those regions and used in a SVM clas-

sifier to predict weather the region is defective or not.

None of the above mentioned methods are relia-

ble enough to completely replace the current manual

inspection due to the limitation of data size, data col-

lection techniques, image processing and pattern clas-

sification approaches (Guo et al., 2009). Also, most

of them only cover few of the defect types.

2.2 Deep Convolutional Neural

Networks

Since winning the ImageNet competition in 2012

(Russakovsky et al., 2015), deep-learning method has

gained significant attention in computer vision com-

munity with many applications in image classification

and segmentation.

Deep convolutional neural networks (CNN) used

in image classification comprises of multiple layers of

convolution operations coupled with non-linear ope-

rations. The output of the convolutional stack is fed

through a classification neural network that output the

probability of the input image belonging to each of the

predifined categories (Krizhevsky et al., 2012). The

parameters of the overall network is learned end-to-

end using back propagation algorithm on labelled trai-

ning data. Many CNN architectures has been propo-

sed so far for image classification tasks and, the state-
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of-the art method include (Simonyan and Zisserman,

2014) , (He et al., 2016) and (Szegedy et al., 2015).

Unlike traditional machine learning that require

the features to be hand-crafted, CNNs learn the re-

levant features from data. However, end-to-end trai-

ning of a deep neural network requires large amount

of labelled data which might not be available for many

applications. Several approachers have been propo-

sed to solve this problem including: Unsupervised

pre-training of feature layers, data-augmentation and

transfer learning (use off-the shelf pre-trained models

and fine-tune the final classification layer).

3 PROPOSED METHOD

In this section we describe our proposed method for

storm water pipe inspection. The focus of the paper is

the novel defect type detection module which is desig-

ned to detect five main types of defects found in storm

water pipes i.e. 1) Breaking - complete separation of

a pipe segment due to a radial crack 2) Cracks - either

radial or longitudinal 3) Deposition - sediment build-

up on the floor of the pipe 4) Root intrusion - intrusion

of tree roots through a gap in the pipes at a crack or at

the place where two pipes segments join and 5) Ho-

les. Examples of each defect type is shown in Figure

2. Unlike the existing methods that use hand-crafted

features combined with a learned classifier, in this pa-

per we intend to use a deep neural network that learns

end-to-end using data alone.

3.1 CNN Architecture and Cost

Functions

Given a set of labeled video frames, X = [xi,yi]
N
i=1,

where xi is a video frame, yi is the corresponding

class and N is the total number of training instances,

the intention here is to learn a parametrised function

f (xi;θ) that maps an unseen image to a correspon-

ding class. In this paper we test two network archi-

tectures to model this function. The first network was

a shallow network with only six layers, which inclu-

des three convolution layers (Conv), a Global average

pooling layer (GAP) and two fully connected layers

(FC). The above model has only a few parameters

(670,981 trainiable parameters) compared to typical

deep networks, and the architecture is shown in Ta-

bel 1. The next model is based on the well known

ResNet-50 architecture (He et al., 2016). This net-

work consists of 50 residual blocks and it is selected

as it is a deep architecture that provides an appropriate

balance between complexity and accuracy for image

Table 1: Architecture of the shallow network. Relu stands
for Rectified linear units.

Layer Type Activation Shape Filters

1 Conv Relu 11x11 128
2 Conv Relu 5x5 256
3 Conv Relu 3x3 512
4 GAP
5 FC Relu 128
6 FC Softmax 5

classification task. However this architecture has mil-

lions of parameters (23,597,957 trainable parameters)

and training of the network needs large amount of

data.

Training of the modes require a loss function that

quantifies the errors made by comparing the model

output with the supervision signal (ground truth labels

for each image). Here we used a categorical cross-

entropy as the loss function. The categorical cross-

entropy loss function can be written as:

L =
N

∑
i=1

C

∑
j=1

yi j ln ŷi j (1)

where yi j is the ground-truth indicating whether

image i belongs to category j, ŷi j is the predicted pro-

bability of image i belonging to category j, N is the

number of instances in the dataset and C is the number

of detection classes which is 5 in our application.

3.2 Transfer Learning

The way the model parameters are initialized would

have a significant effect on the final result. One way

to initialize the parameters is to set them to randomly

chosen values. This method of model training is cal-

led training from scratch and this does not involve any

prior information. As a neural network contained mil-

lions of parameters training from scratch effectively

requires a large dataset. It is not economically feasi-

ble to generate such a large dataset in our application.

Another well known method to train networks

with limited data is to start from a set of parameters

that is trained on a different domain and fine tune the

parameter with the limited dataset collected for the

task of interest. As we have only a limited dataset we

adopted this approach and used the parameters of the

ResNet-50 model that was trained on natural image

classification task in ImageNet competition (He et al.,

2016). The ImageNet challenge involved classifying

natural images into 1000 different classes. Because

our application involves only five classes and does

not map into any class that is in ImageNet competi-

tion, we removed the last classification layer of the

network and added a new layer which was initialized

to random values.
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Figure 2: Examples of defect types.

3.3 Model Training

3.3.1 Dataset Preparation

We obtained 90 videos of storm water pipe inspecti-

ons and most of the video range from 15 to 25 mi-

nutes in duration recorded at 25 frames per second.

The videos were first divided into training and valida-

tion splits of 80% and 20% respectively. These videos

were then broken down into images. After converting

these videos to images, those images containing de-

fects were taken out and moved to different folders

with respect to its type of defects. Each image has a

resolution of 720 X 576, which matches the resolution

of the video. Since images are generated from video

frame by frame, it is inevitable to get many duplicated

photos, which would cause over-fitting of the model.

A software called “Duplicate Photo Fixer” was used

to remove all the duplicated images at 83% simila-

rity. We achieved 13 classes of images at the very

beginning, which includes cracking, breaking, hole,

sparling, fracture, intrusion, root, steel reinforcement

explosion, deposition, water accumulation, and angu-

lar, longitudinal and radial joint displacement. But

due to image data insufficiency for some of the defect

types, we only kept the breaking, crack, deposition,

hole and root defect instances.

3.3.2 Class Balancing

The resulting dataset was not balanced as it had large

number of instances from some classes and few in-

stances of some other classes. Training a model with

such class imbalance would result in the model lear-

ning to predict only the dominant classes in the data-

set. To overcome this issue, we balanced the classes

by oversampling the instances in less frequent classes.

3.3.3 Data Augmentation

Due to the limited number of images and variation

of the classes, over-fitting would be a major concern.

Consequently, it is a challenge to achieve high clas-

sification accuracy by the limited number of data we

have. To reduce this issue, we applied images aug-

mentation on the dataset. New images were created

by randomly zooming, shearing and horizontally flip-

ping the originals, so that a relatively larger dataset

exist to train the model and reduce the likelihood of

over-fitting.

Once the dataset was prepared, we trained the mo-

del using ADAM optimization. The network was trai-

ned on a Nvidia Titan X GPU with 12 GB of RAM for

150 epoch. The hyper parameters for training are: Ba-

tch size: 32, learning rate 0.001, β1 = 0.9, β2 = 0.999.
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(a) S-net

(b) Resnet-RND (c) Resnet-TL

Figure 3: Area under ROC curve plots for each tested network types.

Table 2: The confusion matrix on the validation set for the method Resnet-TL. Dep stands for the class deposition.

Break Roots Crack Dep Hole

Break 290 33 48 9 20

Roots 7 383 1 3 6

Crack 88 6 300 0 6

Dep 1 0 2 397 0

Hole 33 12 30 0 325

Table 3: Per-Class Precision and Recall of each model.

Class S-net Resnet-RND Resnet-TL

Precision Recall Precision Recall Precision Recall

Breaking 0.45 0.38 0.65 0.70 0.69 0.72

Roots 0.80 0.70 0.89 0.74 0.88 0.96

Cracks 0.78 0.42 0.73 0.76 0.79 0.75

Deposition 0.71 0.93 0.95 1.00 0.97 0.99

Hole 0.50 0.72 0.88 0.88 0.91 0.81

Average 0.65 0.63 0.82 0.82 0.85 0.85

4 RESULTS

We tested the trained models on a held out validation

set created from 20% of the original inspection vi-

deos. The validation set consists of 400 images per

each category. The evaluations were done using area

under the receiver operating characteristics (ROC)

curve. We also report the precision and recall for each

category.

The results for the shallow network (S-net),
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Resnet-50 without random initialized weights

(Resnet-RND) and Resnet-50 with transfer learning

(Resnet-TL) are shown in Figure 3 and Table 3.

The results show that S-net, even with fewer pa-

rameters compared to Resnet, has only been able to

achieve an overall ROC value of 0.88. However both

Resnet with and without transfer learning has been

able to obtain high ROC values of 0.97 and 0.96 re-

spectively. The Resnet with transfer learning shows

slightly better ROC values in classifying breaking and

roots whereas the ROC values across other catego-

ries are similar to that without transfer learning. The

results indicate that data augmentation has enabled

accurate learning of a deep network with limited data

in storm-water pipe inspection.

The confusion matrix on the validation set for the

method Resnet-TL is shown in Table 2. The confu-

sion matrix shows that there is some misclassification

between the classes cracks and breaking. This behavi-

our is understandable given that the two defect types

mentioned above share similar physical characteris-

tics.

5 CONCLUSIONS

The paper presents a new method for automated vi-

sual inspection of the storm water pipes. The main

novelty of our method is to use a deep convolutional

neural network in identifying the defect types. The re-

sults obtained on a held out validation set shows that

proposed deep neural network architectures trained

with data augmentation and transfer learning are ca-

pable of achieving high accuracies in identifying the

defect types.

In these experiments we have only used five de-

fect types due to the limited availability of data from

other categories and we intend to increase this in fu-

ture work. Defect parameters such as the crack width

are also important in decision making and we intend

to extend our work towards automated prediction of

defect parameters.
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