
Formalizing Agile Software Product Lines with a RE Metamodel

Hassan Haidar1, Manuel Kolp1 and Yves Wautelet2

1LouRIM-CEMIS, Université Catholique de Louvain, Belgium
2KULeuven, Faculty of Economics and Business, Belgium

Keywords: Agile Product Line Engineering, Requirements Engineering, Goal Model, Feature, Feature Model, AgiFPL.

Abstract: Requirements engineering (RE) techniques can play a determinant role when making the strategic decision
to adopt an Agile Product Line approach to the production of software-intensive systems. This paper
proposes an integrated goal and feature-based metamodel for agile software product lines. The aim is to
allow analysts and developers to produce specifications that precisely capture the stakeholder’s needs and
intentions as well as to manage product line variabilities. Adopting practices from requirements engineering,
especially goal and feature models, helps designing the domain and application engineering tiers of an agile
product line. Such an approach allows a holistic perspective integrating human, organizational and agile
aspects to better understand product lines dynamic business environments. It helps bridging the gap between
product lines structures and requirements models, and proposes an integrated framework to all actors
involved in the product line architecture.

1 INTRODUCTION

“Agile Product Line Engineering” is considered as a
pioneer approach that deals with the growing
complexity of information systems and the handling
of competitive and changing needs of the IT
production industry (da Silva et al., 2011). This
approach offers better support for reusable and
evolving software artefacts and helps managing
changes in requirements, promoting product quality,
decreasing development costs and reducing time to
market.

Requirements engineering (RE) – more precisely
in this research GORE (Goal-Oriented Requirements
Engineering) and Feature Modeling ̶ including
elicitation, analysis, specification, verification, and
management (Pohl et al., 2010), plays a determinant
role in making the strategic decision to adopt a
Software Agile Product Line.

Considering this role of requirements
engineering, we formulate the following research
question: Which requirements engineering
techniques allow analysts and developers of an agile
product line to represent efficiently, stakeholders’
intentions and goals on the one hand and product
line variabilities and communalities on the other
hand?

Intentions, goals and variability play an
important role in the development life tiers of
product lines i.e., domain and application
engineering. In domain engineering, intentions and
goals guide the variability development of the
product line, while they are used for the
configuration of products in the application
engineering.

This paper focuses on defining a Goal and
Feature-based Metamodel for engineering agile
product lines. We apply it on a concrete example
taken from the literature for illustration purpose. The
metamodel is defined mainly for feature-oriented
agile product lines such as our own methodology
called AgiFPL (Haidar et al., 2017a) considered in
the context of this research. Usually these agile
approaches involve two classical tiers of product line
engineering: Domain Engineering and Application
Engineering.

The domain engineering deals with all the
aspects of managing reusable assets (artifacts), while
the application engineering aims at developing a
specific product for a particular stakeholder.
Therefore, requirements engineering approaches
have to cope with the different organizational levels
and architectural complexity. Specifically, for
product lines, requirements engineering, captures

90
Haidar, H., Kolp, M. and Wautelet, Y.
Formalizing Agile Software Product Lines with a RE Metamodel.
DOI: 10.5220/0006849000900101
In Proceedings of the 13th International Conference on Software Technologies (ICSOFT 2018), pages 90-101
ISBN: 978-989-758-320-9
Copyright © 2018 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

both commonality and variability among product
line members (Borba and Silva, 2009).

Our proposed metamodel follows a holistic
approach that allows the modeling of the
organizational and operational context of a product
line within flexible and rapid environment. It offers
thus a better understanding of the representation of
product lines requirements and their stakeholders’
requirements. In addition, our model takes
inspiration from research in GORE frameworks such
as iStar 2.0 (Dalpiaz et al., 2016), and from feature-
oriented modeling (Acher et al., 2012), related to
agile requirements practices like user stories
(Leffingwell, 2011; Wautelet et al., 2014).

The remainder of this paper is organized as
follows. Section 2 describes the main concepts of
our metamodel and details the main representative
elements using the Z specification. Section 3
highlights an example of application of our proposal.
Section 4 presents briefly the integration of our
proposed metamodel to our AgiFPL agile
methodology. Section 5 concludes the paper.

2 A METAMODEL FOR AGILE
PRODUCT LINES

Our motivation is to understand and build an
efficient structure of the requirements engineering of
a feature-oriented product line in an agile context.
This leads us to define a goal and feature-oriented
specification to provide modeling constructs that
permit:

 Representations of stakeholder’s intentions
and goals;

 Variability, commonality and technical
elements of the agile product line;

 Requirements artifacts and their
relationships used by agile teams.

The proposed metamodel defines two main
perspectives. The first one is the product line
engineering perspective itself, in which goal (i.e.
Family goal model) and feature models provide
different variability perspectives and the rationale of
the variability. The second one is the agile
development perspective, in which the agile
requirements artifacts and goal models provide an
exhaustive structure for the implementation of
product line’s features and products derivation.

Standard goal models languages like i* (Yu et
al., 2011) can represent intentional variability, but
lack mechanisms for representing differences
between intentional spaces of various systems (i.e.,

product line variability in the intentional space).
Therefore, Asadi et al. (2016) have introduced the
notion of family goal model to extend standard goal
modeling techniques, which we apply in this paper
to iStar 2.0 (Dalpiaz et al., 2016).

Our metamodel connects family goal models and
features models through mappings. They provide
bidirectional relationships and traceability links
between high-level stakeholders’ business
objectives, which are described by goal models and
implementation units enclosed within features in
feature models. In addition, we seek to support the
stakeholders of a product line, especially in the
application engineering tier, through iStar 2.0
models, which provide a graphical and
comprehensive vision of the stories and their
relationships. In fact, in our proposed model,
Backlog items (i.e., user stories,…), and family goal
models are connected by mappings performed
through heuristics rules proposed in (Jaqueira et al.,
2013) and (Apel et al., 2010).

Figure 1 introduces the main entities and
relationships of our metamodel. We subdivide it into
four sub-models:

 The Organizational sub-model, describing
the members (i.e. actors, teams, …) of the
product line, their organizational roles,
responsibilities, capabilities and
relationships;

 The Goal-oriented sub-model, describing
the intentions of the product line
stakeholders and generating a stakeholder’s
view of feature models;

 The Feature-oriented sub-model,
illustrating the product line variability;

 The Agile requirements artifacts sub-model
defining the requirements artifacts used by
agile teams, as well as the relationships
among these artifacts.

The primitives of our framework are also of
different types. We classify them as:

 Meta-concepts: Goal, Feature, Actor, User
Story …

 Meta-relationships: Qualifies, Refines,
Composition, Aggregation, Generalization
…

 Meta-attributes: Power, Motivation ...
 Meta-constraints: implications between

features located in different parts of the
feature hierarchy.

All meta-concepts, meta-relationships and meta-
constraints have the following mandatory meta-
attributes: Name, and Description.

Formalizing Agile Software Product Lines with a RE Metamodel

91

Figure 1: Requirements-oriented Meta-model for Agile Product Lines.

ICSOFT 2018 - 13th International Conference on Software Technologies

92

Name allows unambiguous reference to the instance
of the meta-concept; and Description provides a
precise and unambiguous description of the
corresponding instance of the meta-concept. The
description should contain sufficient information for
a formal specification to be derived for use in
requirements specifications for a future product or
application of the product line.

Figure 1 insists on meta-concepts and meta-
relationships. Meta-attributes and meta-constraints are
formalized with the Z state-based specification
language (O’Regan, 2013). We use Z since it provides
sufficient modularity, abstraction and expressiveness
to describe the requirements engineering aspects of
agile product line and the wider context in which they
are used in a consistent and structured way. In
addition, Z offers a pragmatic approach to
specifications by allowing a clear transition between
specification and implementation of product line’s
applications. Moreover, it is widely accepted in the
software development industry and Academia.

Due to lack of space, this paper only details the
organizational, goal-oriented, feature-oriented sub-
models and their integration, and user story concept.
It also discusses their relevance for agile product
lines requirements engineering.

2.1 Organizational Sub-model

This sub-model identifies the relevant Actors of the
product line, the Roles they occupy, and the
Dependum for which Actors depend on one another.

2.1.1 Actor

Most of stakeholders are represented as actors.
Actors can be human, organizations, technical
systems (i.e. hardware, software), or any
combination thereof. Actors are active, autonomous
entities that aim at achieving their goals by
exercising their know-how, in collaboration with
other actors. According to the iStar 2.0 language,
two types of actors can be distinguished (Dalpiaz et
al., 2016):

• Role: an abstract characterization of the
behavior of a social actor within some
specialized context or domain of endeavor.

• Agent: an actor with concrete, physical
manifestations, such as a human individual,
an organization, or a department.

Actor’s intentionality is made explicit through the
actor boundary, which is a graphical container for
their intentional elements.

[Name]
[Informal_Defintion]
[Actor_Type] := Role | Agent
[Goal]

 Actor
name : Name

description : Informal_Definition

is_a : Actor_Type

want : set Goal

own : set Resource

possess : set Capability

(want ≠ ø) ˄ (possess ≠ ø) (c1)

(∀ act : Actor) act.is_a = Agent act.own ≠ ø (c2)

The Actor schema above shows the Z formal
specification of the Actor concept. The first part of
the specification represents the definition of types.
The Actor specification first defines the type Name
(which represents the Name attribute) by writing
[Name]. This declaration introduces the set of all
names, without making assumptions about the type
(i.e. whether the name is a string of characters and
numbers, or only characters,…). The type
[Actor_Type] is defined as being either a Role or an
Agent or even just an Actor.

More complex and structured types are defined
with specific schemata. For instance, the Actor
schema is partitioned horizontally into two sections:

• The declaration section introduces a set of
named, typed variable declarations.

• The predicate section provides predicates
that constrain values of the variables. We
use identifiers e.g. “(c1)” to refer to
predicate, i.e. constraint (c1) of the schema.

In essence an Actor of an agile product line
wants to fulfil the product line Goals as well his/her
own Goals. In fact, an Actor possesses his/her
specific Capabilities and owns a set of Resources.
Each Actor applies plans that are part of his/her
Capabilities and uses Resources in order to achieve
the Goal that he/she wants. As the Actor is present
in a rapid and flexible environment, he/she to take
into account the changing Intentional Elements
related to the product line as well as the ones related
to specific customer’s needs, in order to adapt its
behavior to environmental circumstances.
Considering these changes is crucial when eliciting

Formalizing Agile Software Product Lines with a RE Metamodel

93

product line requirements as well as Stakeholders
(i.e. product owner, etc.) requirements.

Since an Actor can be also a Role or an Agent,
two different types of actor links exist:

• is-a: represents the concept of generalization or
specification. Only Roles can be specialized
into Roles, or general Actors into general
Actors. However, Agents cannot be
specialized via is-a, as they are concrete
instantiations.

• participates-in: represents any kind of
association, other than generalization or
specialization, between two Actors. No
restriction exists on the type of actors linked
by this association. Note that every Actor can
participates-in multiple other Actors.

Thus, a is-a relationship applies only between pairs
of Roles or pairs of Actors. There should be no is-a
cycles. In addition, there should be no participate-in
cycles. A pair of Actors can be linked by at most one
actor link. It is not possible to connect two actors via
both is-a and participates-in. An Actor can
(sometimes, has to) cooperate with another Actor to
fulfil common Goals to the Roles that each of these
Actors occupies.

2.1.2 Role

As stated above, an organizational Role of the
product line is an abstract characterization of
expected behavior of an Actor within some specified
context of the product line. An Actor can occupy
multiple Roles and multiple Actors can occupy a
Role.

The following Role schema shows the Z formal
specification of Role concept within a product line.
Each Role requires a set of Capabilities to fulfil or
contribute to Goals for which it is responsible. An
Actor can occupy the Role only if it possesses the
required Capabilities (c4). Moreover, to entering
Roles, Actors should be able to leave roles at
runtime (c5).

Roles are responsible for Goals (c6) and can
control their fulfilment. This control procedure
requires that a single Actor can never occupy distinct
Roles that are responsible of and control the
fulfilment of the Goal (c7). In addition, Roles can
have different levels of authority. Consequently, a
Role can have authority on other Roles. The
authority on relationship specifies the hierarchical
structure of the product line.

[Goal_control_Status]

 Role
name : Name

description : Informal_Definition

require : set Capability

responsible : set Goal

control : set (Goal, Goal_control_status)

authoroty_on : set Role

(require ≠ ø) ˄ (responsible ≠ ø) (c3)

(∀ act : Actor ; r : Role) (c4)

r ∈ act.occupy r.require ⊂ act.possess

(∀ act : Actor ; r : Role) (c5)

act.leave r ∉ act.occupy

(∀ r : Role ; g : Goal) (c6)

g ∈ r.responsible g.sec_is_a = Goal

(∀ r1 , r2 : Role ; g : Goal ; a1 , a2 : Actor) (c7)

(g.sec_is_a = Goal ˄ g ∈ r1.responsible ˄

g ∈ r2.control ˄ r1 ≠ r2 ˄ r1 ∈ act.occupy ˄

r2 ∈ act.occupy) a1 ≠ a2

2.1.3 Dependum

In social models such as iStar 2.0, dependencies
represent social relationships. A dependency is
defined as a relationship with five arguments:

• Depender is the actor that depends for
something (the dependum) to be provided;

• DependerElmt is the intentional element
within the depender's actor boundary where
the dependency starts from, which explains
why the dependency exists;

• Dependum is an intentional element that is
the object of the dependency;

• Dependee is the actor that should provide
the dependum;

• DependeeElmt is the intentional element
that explains how the dependee intends to
provide the dependum.

Dependencies link the dependerElmt within the
depender actor to the dependum, outside actor
boundaries, to the dependeeElmt within the
dependee actor.

The type of the dependum specializes the
semantics of the relationship:

o Goal: the dependee is expected to achieve
the goal, and is free to choose how;

ICSOFT 2018 - 13th International Conference on Software Technologies

94

o Quality: the dependee is expected to
sufficiently satisfy the quality, and is free to
choose how;

o Task: the dependee is expected to execute
the task in a prescribed way;

o Resource: the dependee is expected to
make the resource available to the
depender.

[Dependum_Type] := Goal | Quality | Task | Resource

 Dependum
name : Name

description : Informal_Definition

type : Dependum_Type

depender : set Role

dependee : set Role

(type ≠ ø) ˄ (depender ≠ ø) ˄ (dependee ≠ ø) (c8)

(∀ d : Dependency ; dpd : Dependum ; r1, r2 : Role) (c9)

r1 ≠ r2 ˄ (d ≡ r1 x dpd x r2) (depender = r2 ˄ dependee = r1)

(∀ d : Dependency ; dpd : Dependum ; r1, r2 : Role) (c10)

r1 ≠ r2 ˄ (d ≡ r1 x dpd x r2) ˄ (dpd.type = authorization)

 r1 ∈ r2.authoroty_on

(∀ res : Resource ; a1, a2 : Actor ; cap1, cap2 : Capability ;

 t1, t2 : Task ; r1, r2 : Role) (c11)

(a1 ≠ a2 ∧ cap1 ≠ cap2 ∧ t1 ≠ t2 ∧ (t1 ∈ cap1.composed_of ∧

cap1 ∈ a1.possess) ∧ (t2 ∈ cap2.composed_of ∧

cap2 ∈ a2.possess) ∧ res ∈ t1.postcondition ∧

res ∈ t2.input ∧ r1 ∈ a1.occupy ∧ r2 ∈ a2.occupy ∧ { r1, r2} ∉ { a1.occupy ∩ a2.occupy})

⇔ (∃ dm: Dependum ∧ dm.type = Resource ∧

dm.name = res.name ∧ dm.depender = r2 ∧

dm.dependee = r1)

The Dependum schema above shows the
formal specification of the Dependum. Resource
dependency allows us to represent any specialization
of the Resource concept as a Dependum. For
example, a Role (r1) might depend on another Role
(r2) for an Authorization. This has implication on the
authority on relationship, as this dependency means
that r2 must have authority on r1 (i.e. c11). In
addition, the constraint (c11) demonstrates that the
existence of a Resource Dependum among Roles has
implications on the Input and Postcondition of Tasks
accomplished by Actors that occupy these Roles.

2.2 Goal Sub-Model

Intentional elements are the actors’ needs. As such,
they model different kinds of requirements and are
central to our proposal. The following elements are
considered as Intentional Elements (Family Goal
Model Elements) in this work:

• Goal: a state of affairs that the actor wants
to achieve and that has clearly cut criteria
of achievement;

• Quality: an attribute for which an actor
desires some level of achievement;

• Task: an action that an actor wants to be
executed, usually with the purpose of
achieving some goal;

• Resource: a physical or informational entity
that the actor requires in order to perform a
task.

[Family_Goal_Element] := Goal | Quality | Task | Resource
[Goal_Type] := Requirement | Expectation
[Goal_Pattern] := Achieve | Cease | Maintain | Avoid
[Status] := Fulfilled | Unfulfilled
[Refinement_Alternative]

 Family Goal Model
name : Name

description : Informal_Definition

intentional_elmt_is_a : Family_Goal_Element

goal_is_a : Goal_Type

pattern : Goal_Pattern

status : Status

refined_by : set Refinement_Alternative

(∀ g: Goal ; t: Task) g.intentional_elmt_is_a = Goal ∧

t.intentional_elmt_is_a = Task (g.status ≠ ∅) ∧ (t.status ≠ ∅) (c12)

(∀ g: Goal) g.intentional_elmt_is_a = Goal ∧ ∃ tset = {t1 , ... , t2} ⇒ g.status = Fulfilled (c13)

(∀ g : Goal ; r : Role ; act : Actor) (c14)

(g.intentional_elmt_is_a = Goal ∧ r ∈ act.occupy ∧ g ∈ r.responsible ∧ act.isa = Agent)

g.goal_is_a = Requirement

(∀ g : Goal ; r : Role ; ac t: Actor) (c15)

(g.intentional_elmt_is_a = Goal ∧ r ∈ act.occupy ∧ g ∈ r.responsible ∧ act.isa = Role)

g.goal_is_a = Expectation

Formalizing Agile Software Product Lines with a RE Metamodel

95

The Family Goal Model schema above
highlights the formal specification of the Family
Goal Model adopted in our proposal. Constraint
(c12) states that Goals and Tasks must have a non-
empty status. In addition, if there is a set of Tasks
(tset), such that the Goal is a subset of tset, then the
Goal is fulfilled (c13). Moreover, a Goal is a
Requirement if there is some Agent Actor act which
occupies a Role which in turn is responsible for the
Goal (c14). A Goal is an Expectation, if there is
some specific Role that is responsible for the Goal
(c15).

Several types of link exist in order to connect
intentional elements. These links are: refinement,
needed-by, contribution and qualification.

Refinement is an n-ary relationship relating one
parent to one or more children. An intentional
element can be the parent in at most one refinement
relationship. There are two types of refinement –
applied to any kind of parent (i.e. Goal or Task) –
that define the logical operator relating the parent
with the children:

• AND-refinement: the fulfillment of all the n
children (n ≥ 2) makes the parent fulfilled.

• Inclusive OR: the fulfillment of at least one
child makes the parent fulfilled.

The Needed-By relationship links a task with a
resource and indicates that the actor needs the
resource in order to execute the task. The
Contribution links represent the effects of intentional
elements on qualities, and are essential to assist
analysts in the decision-making process among
alternative goals or tasks. Contribution links lead to
the accumulation of evidence for qualities. The
Qualification relationship relates a quality to its
subject (i.e. a task, goal, or resource).

In our proposal the goal model called Family
Goal Model, represent the intentional space of a
domain for which the product line is developed.
Basically, the adopted goal-oriented approach helps
to build artifacts that represent stakeholders’
objectives and strategies.

2.3 Feature Sub-Model

As stated above, our proposal offers feature-oriented
design and implementation for which Feature
Models are a standard visual representation. Feature
models support a natural description of a wide range
of variability schemata.

Several definitions to what domain experts call
“feature” exist in the literature (See Haidar et al.,
2017b). Due to the lack of space, we will not list
them here and adopt the following definition of the
term “feature” based on (Haidar et al., 2017b): A
feature is a characteristic or end-user-visible
behavior of a software system. Features are used in
product line engineering to specify and
communicate commonalities and differences of the
products between stakeholders, and to guide
structure, reuse, and variation across all phases of
the software life cycle (Apel et al., 2013).

A feature model is a tree whose nodes are
labelled with feature names. It also proposes various
parent-child relationships between features and their
constraints. In fact, if a feature f is a child of another
feature p, f can be selected only when p is also
selected. Typically, a feature model includes mutual
relations between features. In addition, Mandatory
and Optional features are distinguished within the
feature model. Note that in our proposal we focus on
Boolean features identified by a name. In principle,
non-Boolean features or attributes of features may
also be of interest in distinguishing applications of
the product line. In this paper, we cover essentially
Boolean features; non-Boolean features will be
studied in future work.

[Feature_Type] := Parent | Child | Abstract | Concrete
[Feature_Availability] := Available | Unavailable
[Feature_Constraint_Type] := Mandatory | Optional |
Alternative | Or

 Feature Model
name : Name

description : Informal_Definition

is_a : Feature_Type

availability : Feature_Availability

constraint_type : Feature_Constraint_Type

root (f) ≡ f (c16)

mandatory (p, f) ≡ f ⇔ p (c17)

optional (p, f) ≡ f p (c18)

alternative (p, {f1 , … , fn}) ≡ ((f1 ˅ … ˅ fn) ⇔ p)

˄ (∧ i < j ¬ (fi ˄ fj)) (c19)

Or (p, {f1 , … , fn}) ≡ (f1 ˅ … ˅ fn) ⇔ p (c20)

The Feature Model schema above formalizes
the Feature Model concepts. All feature names from

ICSOFT 2018 - 13th International Conference on Software Technologies

96

the set F of feature names are interpreted as
propositional variables, p, f and fi represents
members of F. Each edge in the tree is defined by
exactly one feature constraint, that is, by a
declaration of one of the feature constraint types
mandatory, optional, alternative, or “or”.

A mandatory feature definition between a
parent feature and a child feature corresponds to a
logical equivalence. That is, whenever the parent
feature is selected, so must the child and vice-versa
(c17).

An optional feature corresponds to implication.
The implication states that the parent feature may be
chosen independently from the child feature, but the
child feature can only be chosen if the parent feature
is selected (c18).

The alternative constraint defines a one-out-of-
many choice. The definition of the constraint (c19)
has the parent feature as first parameter and a non-
empty set of child features as second parameter. This
constraint is a disjunction, in which, at least, one
child feature is selected when the parent is chosen.
In addition, we ensure for each pair of child features
that no two child features are selected together.

An unrestricted choice or “or” defines a some-
out-of-many choice. Again, the constraint (c20) has
a non-empty set of child features as second
parameter. The selection of parent feature is
equivalent to a disjunction of the child features.

Additionally, a set of cross-tree constraints may
be defined in the Feature Model. The corresponding
propositional formula of the feature constraints and
the cross-tree constraints are conjoined resulting in
one logic formula that represents the semantics of
the whole Feature Model.

2.4 User Story Concept

Our proposed metamodel focuses on agile
perspectives. Relevant agile requirements artifacts
play, thus a core role within the proposal. This
section details the user story concept, which the
proposed metamodel integrates. User stories are
considered here due to their wide use and to take
profit from their effectiveness.
Leffingwell (2011) and Chon (2004), consider them
as an increasingly popular textual notation to capture
requirements in agile software development. User
stories are statements that use a simple template
such as “As a ⟨role⟩, I want ⟨goal⟩, [so that ⟨benefit⟩]”.

[User_Story_Element] := Format | Role | Means | Ends
[Mean] := Subject | Action_Verb | Direct_Object |
Indirect_Object | Adjective
[End] := Clarification | Dependency | Quality
[Status] := To_Do | In_Progress | Testing | Done

__ User Story
identifier : Identifier

user_story_elmt_is_a : User_Story_Element

mean_is_a : Mean

end_is_a : End

status : Status

(∀ μ1 , μ2 : User_Story) (c21)

is_Full_Duplicate (μ1, μ2) ↔ μ1 =syn μ2

(∀ μ1 , μ2 : User_Story) (c22)

is_Sem_Duplicate (μ1 , μ2) ↔ μ1 = μ2 ∧ μ1 ≠syn μ2

(∀ μ1 , μ2 : User_Story ; m1, m2 : Means ; E1, E2 : Ends) (c23)

diff_Means_same_Ends (μ1 , μ2) ↔ m1 ≠ m2 ∧ E1 ⋂ E2 ≠ ∅

(∀ μ1 , μ2 : User_Story ; m1, m2 : Means ; E1, E2 : Ends) (c24)

same_Means_diff_Ends (μ1 , μ2) ↔ m1 = m2 ∧ (E1 ∖ E2 ≠ ∅ ∨ E2 ∖ E1 ≠ ∅)

(∀ μ1 , μ2 : User_Story ; m1, m2 : Means ; E1, E2 : Ends ;

r1, r2 : Role) (c25)

same_Role_diff_Story (μ1 , μ2) ↔ r1 ≠ r2 ∧

(m1 = m2 ∨ E1 ⋂ E2 ≠ ∅)

(∀ μ1 , μ2 : User_Story ; m1, m2 : Means ; E1, E2 : Ends) (c26)

purpose_is_Means (μ1 , μ2) ↔ E1 = {m2}

(∀ μ1 : User_Story ; f1, fstd : Format) (c27)

is_not_Uniform (μ1, fstd) ↔ f1 ≠syn fstd

(∀ μ1 : User_Story ; av1, av2 : Action_Verb ;

do1, do2 : Direct_Object) (c28)

has_Dep (μ1 , μ2) ↔ depends (av1, av2) ∧ do1 = do2

(∀ μ1 , μ2 ∈ U : User_Story ; do1, do2 : Direct_Object) (c29)

has_is_a_Dep (μ1 , μ2) ↔ ∃ μ2 ∈ U . is_a (do1, do2)

(∀ μ1 , μ2 ∈ U : User_Story ; av1, av2 : Action_Verb ;

do1, do2 : Direct_Object) (c30)

void_Dep (μ1) ↔ depends (av1, av2) ∧ ∄ μ2 ∈ U . do1 = do2

The User Story schema above formalizes the
User Story (μi) concept. Let U = {μ1, μ2,…} a set of
user stories in a project. A user story μ is a 4-tuple μi
= ⟨ri, mi, Ei, fi⟩ where r is the role, m is the means, E

Formalizing Agile Software Product Lines with a RE Metamodel

97

= {e1, e2,…} is a set of ends, and f is the format. In
addition, a means m is a 5-tuple m = ⟨s, av, do, io,
adj⟩ where s is a “subject”, av is an “action verb”,
do is a “direct object”, io is an “indirect object”,
and adj is an “adjective” (io and adj may be null).

A user story μ1 is an exact duplicate of another
user story μ2 when they are identical (c21). The
constraint (c22) indicates that a user story μ1
duplicates the request of μ2, while using a different
text (i.e. Semantic Duplicate). (c23) denotes two or
more user stories that have the same end, but
achieve this using different means. (c24) represents
the case in which two or more user stories use the
same means to reach different ends. For the case
where two or more user stories with different roles,
but same means and/or ends we formalize the
constraint (c25).

When there is a strong semantic relationship
between two user stories, it is important to add
explicit dependencies to the user stories, although
this breaks the independent criterion (c26).

Uniformity in the context of user stories means
that a user story format is consistent with the one of
the majority of user stories in the same set.
Therefore, the format f1 of an individual user story
μ1 is syntactically compared to the most common
format fstd to determine whether it adheres to the
uniformity criterion (c27).

In some cases, it is necessary that one user story
μ1 be completed before the developer can start on
another story μ2. Formally, the predicate has-Dep(μ1,
μ2) holds when μ1 causally depends on μ2 (c28).
Moreover, an object of one user story μ1 can refer to
multiple other objects of stories in U, indicating that
the object of μ1 is a parent or superclass of the other
objects. Formally, predicate has-is-a-Dep(μ1, μ2) is
true when μ1 has a direct object superclass
dependency based on the sub-class do2 o do1 (c29).

Implementing a set of user stories U should lead
to a feature-complete application. While user stories
should not thrive to cover 100% of the application’s
functionality preemptively, crucial user stories
should not be missed, for this may cause a show
stopping feature-gap. The predicate void-Dep(μ1)
holds when no story μ2 satisfies a dependency for
μ1’s direct object (c30).

3 APPLYING THE METAMODEL

A simple and short example related to an e-
commerce product line is outlined below to describe
and show the applicability of our proposed
metamodel. The e-commerce case study is available

in the SPLOT repository (Software Product Lines
Online Tools – http://www.splot-research.org/).

We first design the family goal model related to
the case study and then follow the practices of our
proposed metamodel to generate the correspondent
feature model. Due to the lack of space, we only
present the application of Goals and Features sub-
models, the mapping from the goal model to its
correspondent feature model and an example of user
story.

Figure 2 shows a concrete “Family Goal Model”
of the “Order Process” related to e-commerce case
study (modeled using iStar 2.0). It represents the
intentional elements and relations. For example, the
goal <Item_Available> can be achieved by
<Prepare_and_Package_Item>, by
<Obtain_From_Stock>, and by
<Aquire_From_Supplier>. In addition, satisfactions
of the tasks <Obtain_From_Stock>, and
<Aquire_From_Supplier> lead to satisfaction and
dissatisfaction of the quality
<Avoid_Unsold_Stock>. In fact, if the “sales
department” adopts a “Make to Stock” strategy, it
could could lead to unsold items. However, adopting
“Make to Order” strategy will help to avoid a stock
of unsold items.

According to our proposed framework, to
represent a mapping we should develop a mapping
relation (Φ) for each mapped task. For example, the
Approve Order (AO) task is mapped to the
Automatic Approval, and Manual Approval features.
Therefore, the mapping relation created is the
following:

ΦAO (Approve Order, {Automatic Approval,

Manual Approval}).

Moreover, the Receive e-Payment (REP) task is
mapped to Debit Card Payment, Credit Card
Payment, and Payment Gateway. Thus, the mapping
relation created is the following:

ΦREP (Receive e-Payment, { Debit Card

Payment, Credit Card Payment, Payment
Gateway}).

Once the “explicit mapping” between tasks in

family goal model and features in feature model is
executed, we can start an “implicit mapping”
between intermediate tasks, goals, and features. The
implicit mapping is performed between “intentional
relations” in family goal models and “feature
relations” in feature models. For example, following
our proposed metamodel, we can infer that the goal

ICSOFT 2018 - 13th International Conference on Software Technologies

98

Figure 2: A family goal model for "Order Processes" modeled from the e-commerce case study.

Figure 3: Correspondent Feature Model.

Payment Managed (PM) in the family goal model
(see Figure 2) is implicitly mapped to the feature
Payment Management (PMa) (see Figure 3).

Note that, if a feature is mapped to more than
one goal or/and task, then the corresponding feature
appears in the mapping relations of all those goals
or/and tasks.

Figure 3 shows the corresponding feature model
of the family goal model presented in Figure 3. The
obtained feature model is represented using a tree

graphical notation that could be translated into
propositional logic. In addition, the feature model of
Figure 3 is generated according to the rules and
practices of our proposed metamodel.

Based on the illustrated example, it was shown
that the modeled family goal model of “Order
Processes” (i.e. Figure 2) captures the intentional
variability and describes the intentions behind
existing features in the product line of e-commerce.
Hereafter we present some mapping as follow:

Formalizing Agile Software Product Lines with a RE Metamodel

99

Order Processes (G-OP) = Order Management
Order Approved (G-OA) = Order Preparation

Payment Managed (G-PM) = Payment Management
Item Available (G-IA) = Item Preparation

Check Correctness of Order (T-CCO) = Order Confirmation
(FC ˅ MC ˅ EC)

Obtain From Stock (T-OFS) = TFW
Acquire From Supplier (T-AFS) = BI
Apply Discount (T-AS) = (CoP ˅ PD)

Finally, as an illustration of user stories

generated according to our proposed metamodel
from the correspondent features, <Invoicing> could
be realized by several user stories, such as:

As ⟨Accountant⟩, I want to ⟨Generate and Send
Invoices⟩, so that ⟨the Invoice can be paid⟩.

4 THE AgiFPL METHODOLOGY

This section illustrates how our proposed metamodel
could be applied for the requirements engineering
processes of agile product lines, precisely our very
own methodology AgiFPL.

Like classical agile product lines methodologies,
AgiFPL is a feature-oriented approach involving two
classical tiers of product line engineering: Domain
Engineering and Application Engineering.

AgiFPL also considers two spaces: the Problem
and Solution ones. The problem space calls attention
to the perspective of stakeholders and their
problems, requirements, and views of the entire
domain and individual products. The solution space
represents the developer’s and vendor’s perspectives
(Apel et al., 2013). The Solution Space is not
targeted in this work since our proposed metamodel
is designed essentially for the requirements
engineering concerned by the Problem Space.

Integrating our proposed metamodel to AgiFPL
allows modelling and managing intentions, goals,
variabilities and commonalities of the product lines.
For example, the “Family Goal Models” of our
proposed metamodel will guide the development of
variability of the product line in the domain
engineering, while they are used for the
configuration of products in the application
engineering.

Figure 4 illustrates the problem space of the
Domain Engineering tier. The figure depicts the
main steps of the RE process followed in the domain
engineering. Based on the strategy of a software
vendor who decides to adopt AgiFPL, Domain
Experts and concerned teams apply our proposed
metamodel as follows:

1. Execute a sub-process for modeling the
family goal models. (i.e. Goal-oriented
requirements engineering);

2. Apply the stated practices and rules of our
proposal in order to generate the
correspondent feature models. (Specifies
and design the desired domain – i.e.
Domain Design & Feature Backlog);

3. Prioritize the identified features of the
designed domain and then document the
required user stories. (Apply the
correspondent agile requirements practices
– i.e. Stories Backlog, tests, …).

Figure 4: Problem space of Domain Engineering in
AgiFPL.

Figure 5 presents the problem space of
Application Engineering tier. The concerned
requirements engineering process of this tier starts
with the goals and the intentions of a specific
product owner. These personal goals and intentions
are studied, modelled and realized according to our
proposed metamodel. For this stage, we propose two
optional ways.

Figure 5: Problem space of Application Engineering in
AgiFPL.

ICSOFT 2018 - 13th International Conference on Software Technologies

100

Based on the goals and intentions of the “App i
Owner” and the context of the “Line i”, the “Line i
Team” has to choose the way that best fits the
context: First, in the case where the “line team” has
to develop new reusable artefacts that do not exist
within the common assets, the team applies the same
process used for the domain engineering phase.
Second, in the case where some stakeholders’ goals
do not affect the product line, have not equivalent
features in the common assets, and concern a
specific product, the “Line Team” produces directly
the User Stories and their Backlogs.

5 CONCLUSION

The aim of this paper was to propose an integrated
and consistent metamodel for software analysts and
developers who adopt agile product line approaches.
The research was conducted in the context of defining
our own agile software product line called AgiFPL.
The main contribution of the metamodel is to allow
capturing intentional variability and describing the
intentions behind existing features in the agile product
line. As a consequence, by using family goal models
we can ensure that existing features and variability
relations in feature models are aligned with
intentional variability in the family goal models. In
addition, we can trace back differences in products to
differences in the intentions of stakeholders.
Moreover, applying intentional elements within agile
product lines not only facilitates identifying features
in domain engineering lifecycle, but also eases the
selection of features based on stakeholder’s intentions
and needs in the application engineering lifecycle.

Modeling the organizational and operational
context of the domain and application engineering
tiers within the flexible and rapid environment of a
product line is usually founded on primitive
concepts such as those of Goal, Role, Feature, Actor,
and User Story. Our paper proposed an integrated
metamodel, described its main concepts, illustrated
it with an example and related it to our AgiFPL
methodology. Our approach differs from others
primarily in the fact that it is based on ideas from
goal-oriented requirements engineering frameworks,
feature-oriented approaches, and agile requirements
practices found to be relevant for the solicited
requirements engineering approach.

Future work will develop a procedure to discover
inconsistencies in mapping results (i.e. generated
goal models and/or generated feature models).
Finally, we will lead a formal and empirical
evaluation of our proposed framework.

REFERENCES

Acher M., Collet P., Lahire P., and France R. B. 2012.
Separation of concerns in feature modeling. In
Proceedings of the 11th international conference on
Aspect-oriented Software Development, New York,
NY, USA, 1-12.

Apel S., Batory D., Kästner C., and Saake G. 2013.
Feature-oriented Software Product Lines. Springer-
Verlag, Berlin Heidelberg.

Asadi M., Gröner G., Mohabbati B., and Gasevic D. 2016.
Goal-oriented modeling and verification of feature-
oriented product liens. Softw Syst Model 15: 257.

Borba, C. Silva C. 2009. A comparison of goal-oriented
approaches to model software product lines variability.
In: LNCS, vol. 5833, pp. 184-253, Springer-Verlag.

Cohn, M. (2004). User Stories Applied for Agile Software
Development. Boston: Pearson Education Inc.

da Silva, I. F., Neto, P., O'Leary, P., de Almeida, E., and
de Lemos, S. R.. 2011. Agile Software product lines: a
systematic mapping study. 41(8) 2011, pp. 899–920.

Dalpiaz, F., Franch, X., and Horkoff, J. 2016. iStar 2.0
Language Guide, cs.SE 2016, arXiv: 1605.07767v3,
https://arxiv.org/pdf/1605.07767v3.pdf (accessed on
17-09-2017).

Ernst, N. A., Borgida, A., Mylopoulos, J., Jureta, I. J.
2012. Agile requirements evolution via paraconsistent
reasoning. In: Proceedings of CAiSE’12, pp. 382–397.
Springer, Berlin.

Haidar, H., Kolp, M., and Wautelet. Y. 2017a. Agile
Product Line Engineering: The AgiFPL Method. In
Proceedings of the 12th International Conference on
Software Technologies – Vol. 1: ICSOFT, 275-285,
Madrid, Spain.

Haidar, H., Kolp, M., Wautelet, Y. 2017b. Goal-oriented
requirement engineering for agile software product
lines: an overview. LouRIM Working Paper Series,
2017/02, http://hdl.handle.net/2078.1/185846.

Jaqueira A., Lucena M., Alencar F. M. R., Castro J., and
Aranha E. 2013. Using i* Models to Enrich User
Stories. In the proceedings of the 6th International i*
workshop, pp. 55-60.

Leffingwell, D. 2011. Agile Software Requirements.
Addison-Wesley Professional.

O’Regan G. 2013. Z Formal Specification Language. In:
Mathematics in Computing. Springer, London.

Pohl, K., Böckle, G., and van der Linden, F. J. 2010.
Software Product Line Engineering: Foundations,
Principles and Techniques. Springer Publishing
Company, Inc.

Wautelet Y., Heng S., Kolp M., Mirbel I. 2014. Unifying
and Extending User Story Models. In: CAiSE 2014.
vol 8484. Springer, Cham.

Yu E., Giorgini P., Maiden N., Mylopoulos J. (eds.). 2011.
Social Modeling for Requirements Engineering. MIT,
Cambridge, MA.

Formalizing Agile Software Product Lines with a RE Metamodel

101

