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Accurate point cloud registration techniques such as Iterative Closest Point matching have been developed to
produce large scale 3D maps of the environment. Typically they iteratively register point clouds captured from
adjacent sensor scans resulting in point clouds which are largely consistent. However, merging two seperate
point cloud maps constructed at different times can lead to significant inconsistencies between the point clouds.
Existing point based registration techniques can be sensitive to local minima caused by such inconsistencies.
Feature based approaches can overcome local minimum but are typically less accurate, and can still suffer
from correspondence errors. We introduce Large Scale Persistent Features (LSPFs), sub regions of point
clouds that have orthogonal planar regions that are consistent and persist over a large spatial area. Each LSPF
is used to calculate an individual transformation estimate using traditional registration techniques. Sampling
Consensus is then used to select the best transform which is used for registration, avoiding local minima. LSPF
registration is applied to simulated point cloud maps with known inconsistencies and shown to perform with
more accuracy and lower computation time than other popular approaches. In addition, real world registration
results are presented which demonstrate LSPF registration between MMS maps and low cost sensor maps

captured 6 months apart.

1 INTRODUCTION

Accurate registration of two or more point clouds is
required to produce large scale 3D maps of the en-
vironment (Pyvanainen et al., 2012)(Shiratori et al.,
2015). Point matching based cloud registration
techniques, such as Iterative Closest Point (ICP)(Besl
and McKay, 1992) typically asumme that point cloud
data is captured from spatially and temporally close
view points, such as consecutive scans of a LIDAR
sensor mounted on a moving vehicle (Lu and Milios,
1997). Under this assumption the environment surfa-
ces which the point cloud represents do not drastically
change between view points and are generally con-
sistent. However, in some applications, such as mer-
ging two seperately constructed maps, the assumption
of temporal and spatial proximity in point cloud cap-
ture is invalid. In particular, a large temporal distance
between point cloud capture can result in significant
changes in the environment due to factors such as
seasonal variance in vegetation or new construction.
This can lead to large inconsistencies (with a non-
random distribution) between the point clouds which
can cause the registration process to incorrectly con-
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verge in local minima. (Thompson et al., 2016) report
inconsistencies when merging maps made from low
cost sensors (Yokozuka et al., 2015) with high resolu-
tion (Tao and Li, 2007) maps captured months apart.

Feature based registration approaches can over-
come local minimum but are typically less accurate,
can suffer from correspondence errors, and gene-
rally require a subsequent fine grained alignment step.
This work proposes Large Scale Persistent Features
(LSPF) based registration which seeks to overcome
local minima problems while still producing the accu-
rate alignment results typical of point cloud matching
methods. LSPF are sub regions of point clouds that
consist of orthogonal planar regions that persist over
a large spatial area. A number of LSPF are detected
in the target point cloud and individual alignment is
performed on each LSPF and their associated point
cloud sub-region. Sampling Consensus is then used
to select the registration transform which has the most
support. In this way, sub-regions which are inconsis-
tent with the majority of the map can be ignored and
local minima in the registration process avoided.

The LSPF registration process is shown to be sig-
nificantly faster than simple ICP matching, even when
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including the cost of feature detection. Simulation re-
sults show that LSPF registration can more accurately
register point clouds with inconsistencies than other
approaches. Real world registration results are pre-
sented which demonstrate LSPF registration between
MMS maps and low cost sensor based maps captured
6 months apart.

The rest of the paper is organised as fol-
lows: Section 2 describes related work in this field.
Section 3 describes LSPFs, how they are detected
in point clouds, and how they are used for registra-
tion. Section 4 describes a simulated environment
with known inconsistencies, and presents registration
results evaluating accuracy and computation time for
LSPF registration in comparison with other popular
approaches. Section 5 then presents some registration
results from a real world environment, and also the
results from an online data set. Finally Section 6 con-
cludes with some dicussion and introduces avenues
for further work.

2 RELATED WORK

The Iterative Closest Point (ICP) algorithm (Besl and
McKay, 1992) is a popular technique to align refe-
rence and input point clouds in a common frame of
reference. In it, corresponding points pairs between
the point clouds are indentified by closest Euclidean
distance, and then a rigid transformation is calculated
which minimises the distance between the correspon-
ding points. The estimated transform is then applied
to the input cloud to align it with the reference cloud.
This process of first matching corresponding points
and then aligning the clouds is repeated until the alig-
nment is sufficiently accurate to meet some conver-
gence criterion.

ICP can produce accurate alignment results but
can be sensitive to local minimum in the convergence
basin. (Besl and McKay, 1992) state that a global mi-
nima can be reached if individual instances of ICP are
applied within each local convergence basin, though
note the computational challenges this implies. One
source of local minimima is due to the interaction
between the distribution of points on the underlying
surfaces and the choice of correspondence matching
metric. Variants of ICP such as Point-to-Plane ICP
(Chen and Medioni, 1991), and Generalised ICP (Se-
gal et al., 2009) improve stability and speed of conver-
gence by using more sophisticated matching metrics.

Another, more pernicious source of local minima
is inconsistency between the point clouds due to noise
in sensor data, or differences in the underlying surfa-
ces. To overcome this, various methods to indentify

Figure 1: Registration using multiple sub-regions of point
clouds.

inconsistent correspondence points have been propo-
sed such as Trimmed ICP (Chetverikov et al., 2002),
or RANSAC based correspondence rejection (Holz
etal., 2015). In these methods, correspondence points
determined to be inconsistent are discarded as outliers
before alignment is performed. (Gelfand et al., 2003)
propose filtering points based on their stability in the
registration task. Only points whose local area covari-
ance matrix suggests good alignment information are
used in the registration process. These methods can
be computationally expensive and are still susceptible
to large non-random inconsistencies.

Feature based registration methods identify key
points in the data on which correspondence mat-
ching and outlier removal are performed. This re-
duced correspondence set can be used to calculate a
rough initial alignment which avoids local minima. A
fine grained point based registration can then applied.
(Holz et al., 2015) describe various feature descrip-
tors which encode information at keypoints (Harris
and Stephens, 1988) about the local surface curva-
ture and point distribution to improve correspondence
matching. FPHF (Rusu et al., 2009) calculate des-
criptors at different scales to measure persistence of
features over spatial extent. Feature descriptor mat-
ching however can still suffer from data association
errors in both highly structured and unstructured en-
vironments.

(Weber et al., 2010) proposes sharp features which
use Gauss maps of local surface curvature to identify
regions in point clouds with strong peaks in curavture
space. This work proposes Large Scale Persistent Fe-
atures which extend the notion of sharp features to
include checking local consistency and persistence
over larger regions. Local point cloud sub-regions
around features are registered individually using ex-
isting point based techniques, avoiding both feature
decriptor based correspondence errors and the influ-
ence of non-local minima. This idea is illustrated
in Figure 1, with multiple sub-regions of the point
clouds (shown in cricles) each being aligned indvi-
dually. Consensus Sampling is then applied to the set
of alignment transformations generated by the LSPFs
and the most consistent transformation is used to re-
gister the point clouds.
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3 LARGE SCALE PERSISTENT
FEATURES

LSPFs attempt to identify sub regions of the point
cloud whose underlying surfaces provide strong cues
for registration, and are also likely to be persistent
spatially and temporally. It is assumed regions that
have mulitple (ideally orthogonal) planar components
whose structure remains consistent over a large area
satisfy these requirements. LSPF achieve this by
analysing the Normal Density Distribution (NDD) of
each sampled sub region. Structural consistency over
space is determined by the degree to which the NDD
of a sub-region remains stable as the size of the re-
gion is varied. Strong peaks in the NDD represent
planar surfaces and the distance between peaks can
determine the relative angle between planar compo-
nents. Initially a point is randomly sampled from the
cloud. This represents the center of a potential LSPF.

3.1 Normal Density Distribution

Given a candidate feature point, the NDD of the sur-
rounding area is calculated. Points within a given ra-
dius (2m) are randomly sampled. For each of the se-
lected points we use nearest neighbour search to find
all points within a radius (0.3m) and randomly sam-
ple triples of points within. The triples are used to
calulate normals (vectors perpendicular to the plane
defined by the three points) of the selected points.

Each normal is plotted on a unit sphere to give an
Extended Gauss Map of the local surface. The Gauss
Map for a candidate feature point on a single planar
surface is shown in Figure 2 a). The grey points show
the normals on the unit sphere centered on the can-
didate feature point (large red sphere), with normals
concentrated at opposite points on a line perpedicular
to the plane. To calculate the density of the normal
distribution over the unit shere, we first discretise the
sphere using a Fibonnaci Lattice (N = 10000). For
each point in the Lattice, we then count the number
of normals which lie within a given radius, giving the
normal density distribution of the candidate LSPF. Fi-
gures 2 b) and c) show the NDD for features contai-
ning one and two planar surfaces respectively. Red
points show the whole point cloud map, green points
lie within the radius of the candidate LSPF, while
the NDD is drawn on the unit sphere centered on the
LSPF, with dark regions being more dense.

3.2 Centering of LSPFs

Because it is assumed persistent features maintain a
consistent NDD while varying the size of the feature,
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Figure 2: LSPF detection: a) Gauss map of local surface
normals, b) Normal Density Distribution (NDD) for one and
¢) two planes, and d) NDD clustering for corner of a cube.

surface discontinues (edges or corners) must be cente-
red within the LSPF. To achieve this, when sampling
normals, the distance of the plane defined by the nor-
mal to the candidate feature point is calculated. By
averaging the resulting vectors, a vector which shifts
the center of the feature to the point of maximal sur-
face discontinuity is calculated. Iteratively shifting
the feature center by this vector (multipled by a gain
factor) moves the LSPF to the center of the local sur-
face discontinuities, supressing non-maximal feature
detection.

3.3 Growing Feature Regions

Once a feature is centered, the area covered by the
feature is grown to test the persistence of the feature
over space. By comparing the evolution of the NDD
as the feature region grows, the consistency of the un-
derlying surface structure can be evaluated. In this
work we grow the feature radius by 0.2m each step,
continuously sampling normals from the expanding
regions and updating the NDD of the feature. Change
in NDD is determined by the Sum of Absolute Dif-
ferences between the normalised NDD of the initial
region and that of the expanded region. When this
difference reaches a threshold (experimentally deter-
mined), growth is terminated.

3.4 Clustering Normals

Once a LSPF has been centered and grown, the do-
minant planes in the underlying surface are identified
by clustering peaks in the NDD. Using the density of
normals discretised by the Fibonacci Lattice, the Den-
sity Based Spatial Clustering with Noise (DBSCAN)
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algorithm is applied. Detected clusters are merged ac-
cording to the angle between cluster centroids, mer-
ging those whose centroids are less than a threshold
angular distance apart, as well as clusters lying on
opposite sides of the unit sphere. The centroids and
density of the remaining clusters form part of the re-
presentation of the LSPF. Figure 2 d) shows an exam-
ple of clusters detected on the corner of a surface with
3 planes.

3.5 LSPF Coverage

Due to the computational expense in caculating
LSPFs, an exhaustive evaluation of possible features
over the entire point cloud is impractical. Instead,
a sampling based approach is used. Random points
are iteratively selected and if the point does not lie
within the area covered by an existing feature, the
above LSPF detection method is applied. A measure
of the ratio between points sampled that lead to new
features and those that lie within previously identified
features, is used as the termination condition of the
sampling loop. In this way, sampling continues until
95 percent of sampled points lie within regions cove-
red by LSPF’s.

3.6 LSPF Suitability Measure

LSPFs represent persistent spatial structure in the en-
vironment. For the registration task, structures with
mutiple planar components that extend over a large
region are particularly useful. Here, we propose a me-
asure of how suitable a LSPF is for registration based
on density and orthogonality of the top three clusters.
The ratio of the sum of the density within the top three
clusters compared to the total sum of the density over
the entire Fibonacci Lattice give an indication of the
strength the top three features. Additionally, relati-
vely equal density among the top three clusters repre-
sents multiple planar components, while a single do-
minant density reflects a single plane. Formally, the
measure [ of the suitability of of LSPF for registration
is given by:
= D(C1) +D(C2) +D(C3) D(C)
L2 D(f1() D(G)
where, D(C;) is the density of cluster j, D(fI(7)) is
the density in the Fibbinoci Lattice i and w,o is a
weight proportional to the radius of the feature. And

o represents the orthognality between the cluster cen-
troids:

*oxw, (1)

o= (1 _(Vcl 'VCZ))*(I _(VCZ'VC3>)*(1 _<VC3 'Vcl))
(2)

where v, is the centroid vector of cluster i.

3.7 Registration with LSPFs

Given two point clouds (target and input) and an ini-
tial guess of the transformation between them, the ty-
pical registration task is to calculate the transforma-
tion that, when applied to the input cloud, optimally
aligns the two point clouds. To perform registration
with a set of LSPFs, a transformation estimation al-
gorithm is individually applied to the point cloud de-
fined by each LSPF (all using the same frame of re-
ference and the same initial transformation estimate).
For each LSPF, the registration process produces an
individual transformation estimate. A sampling con-
sensus algorithm then is applied to chose the transfor-
mation estimate with the most support. In this way,
LSPFs representing regions of the point clouds which
share a common transformation contribute to the re-
gistration task, while regions with features which re-
present inconsistencies can be avoided.

In this work, we apply the well known Iterative
Closest Point registration method to estimate trans-
formations between LSPF regions, although any point
cloud based method could be used.

4 SIMULATION RESULTS

In this section we present registration results when ap-
plying LSPFs to simulated point cloud data, to con-
firm the ability of the approach to avoid errors in the
registration of point cloud data with inconsistencies.
A simple, highly structured cloud is used to allow the
introduction of inconsistency along the axis of con-
vergence of the registration process. The performance
of LSPF registration is compared to that of registra-
tion using simple ICP, Point-to-Plane ICP (ICP-PTP),
ICP with RANSAC based correspondence rejection,
and FPFH feature based Initial Aligment Samping
Consensus (IA-SAC) with subsequent fine grained
ICP alignment. We use the PCL library (Rusu and
Cousins, 2011) for implmentations of all compared
methods.

4.1 Simulated Environment

The simulation environment reference point cloud
simply consists of a rectangular ground plane with
four boxes placed on the ground plane in the four cor-
ners, and an additional box in the center. The dis-
tribution of cloud data is generated using blue noise
sampling over given rectangular planar regions, with
noise in the distance to plane applied as well. The
resolution of point data is approximately 0.1m. The
input cloud is generated in the same way, with the
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Figure 3: Inconsistency in simulated environment: left) re-
ference map (red), the central object is moved along axis
shown by arrows to introduce inconsistencies; right) the re-
ference map overlain with an inconsistent map (green).

central box being shifted along the x axis to produce
an inconsistency between the point clouds. The refe-
rence ground plane is extended for 2 meters to protect
against overlapping errors in the registration task. Fi-
gure 3 shows the simulated clouds: a) the reference
cloud with arrows showing the axis of the shift app-
plied to the central box; b) the same reference cloud
(red), an inconsistent input cloud (green) overlayed
on top. Finally an offset is applied to the input cloud
to misalign the point clouds for registration.

4.2 Registration with Inconsistencies

Average Registration Error with Inconsistency
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Figure 4: Error in alignment transformation estimate versus
distance of point cloud inconsistency: a) average error for
LSPF, ICP and ICP-PTP methods; b) error for each trial of
RANSAC and IA-SAC methods.
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For each trial, simulated reference and input point
clouds (10m x 10m) were generated with an inconsis-
tency x; of —1.0m to 1.0m along the x axis in steps of
0.1m being introduced to the central box. The entire
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Table 1: Registration computation time for simulated incon-
sistent point clouds.

Method Ave. Comp. Time (S)  (Parallel)
ICP 5.19

PTP 1.11

TIA-SAC 23.19

RANSAC 62.75

LSPF 11.76 (5.05)
LSPF-A 8.07 (3.60)

input cloud was further offset by 1.0m on the same
axis for misalignment. Experiments were run on ma-
chine with an Intel Quad Core i7 64 bit processor.

LSPF detection was applied to the reference cloud
and a LSPF set generated. Then, LSPF, ICP, ICP-PTP,
RANSAC and TA-SAC registration methods were ap-
plied to the misaligned cloud sets, and the estimated
transformation and computation time of each method
was recorded. For each value of x; 10 trials were per-
formed. Figure 4 shows the translational error of the
estimated alignment transformation for each value of
x7. Figure 4 a) shows the average translational error
for each x; over the 10 trials for LSPF, ICP and ICP-
PTP methods. It can be seen that both ICP and ICP-
PTP methods have an error proportional to the size of
the inconsistency when —0.5 > x; < 0.5. LSPF, ho-
wever does not suffer such a decrease in performance.

The plot of error in individual trials in Figure 4
b) shows that the response for RANSAC and IA-SAC
methods are multi-modal; that is the registration pro-
cess converges into different minima depending on
randomness within the methods. While IA-SAC does
sometimes converge on the true minima (as well as
two other distinct minima), the subsequent ICP alig-
nment still suffers the same error as ICP and ICP-
PTP as noted above. In comparison, while the RAN-
SAC error is bi-modal, one minima roughly conver-
ging onto the value x;, the other minima converges
onto the true alignment, avoiding the errors seen in
the ICP and PTP methods.

The average computation time for each method,
over all trials, is shown in Table 1. RANSAC and IA-
SAC methods are computationally heavy due to sam-
pling and feature detection respectively, while ICP-
PTP is the fastest. Computation time for total LSPF
and for LSPF alignment only are given. A parallel
version of LSPF was also developed and computa-
tion times given. One feature of LSPF registration
is the ease of parallel processing, as multiple feature
detection and subsequent alignment processes can run
simultaneously with little synchronisation required.

4.3 Registration with Large Maps

While LSPF is the most accurate, it was shown to
be computationally heavy in comparison to ICP-PTP.
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Average Registration Error vs Map Size

0.2
+ x *
£0.15 " X ICcP
< A F A
e 0.1 x A | SPE-PTP
Wo.05 o 4
A
0 Py 4 ry I}
10 15 20 25 30 35 40
Map Size (m)
a)
Average Computation Time vs Map Size
35 —IcP
30 —lspr
2 — e
020 — LSPFSle'P(P)
E15
10
5 7/'>’ — ]
0
10 15 20 25 30 35 40
Map Size (m)
b)
LSPF Total vs Alignment Computation Time
12 —LSPF(P)
10 - = LSPF-Align(P)
™ — LSPF-PTP(P)
= ’ >

10 15 20 25 30 35 40
Map Size (m)

)
Figure 5: Registration performance for various map sizes:
a) Error in estimated transformations for each method, b)
Total computation time for each method as well as for paral-
lellised execution of LSPF based methods (P), and c) Total
and just alignment computation time for LSPF and LSPF-
PTP registration (parallel).

This is because of the cost of feature detection in
LSPF and the relatively slow convergence of the ICP
algorithm used to align each LSPF region. Because
point matching based registration of point clouds tend
to increase exponentially with the amount of points
in the clouds, it is expected feature based approach
such as LSPF will scale better with map size. Here we
compare registration accuracy and computation time
for LSPF, ICP, ICP-PTP and LSPF-PTP (LSPF regis-
tration using ICP-PTP to align each feature region) for
maps with increasing ground plane sizes. The map si-
zes used and their approximate point cloud size are
given in Table 2.

Figure 5 a) shows the translational error of each
method for map sizes between 10m x 10m and 40m x
40m. The error for ICP and PTP increases linearly
with respect to map size. LSPF and LSPF-PTP er-
ror remains approximately 1/10"* of ICP error, until

Table 2: Map size and approximate point cloud size. Label
column shows how map size is denoted in figures.

Map Size (mxm) | Label | Point Cloud Size
10x 10 10 59,000
15x 15 15 125,000
20 x 20 20 213,000
25 x 25 25 325,000
30 x 30 30 463,000
35 %35 35 622,000
40 x 40 40 806,000

Figure 6: Places of overlap between captured MMS and
LCSM maps.

map size 35 when they start to increase, but are still
much lower than other methods (LSPF-PTP is less
than 1/3" the error at map size 40).

Figure 5 b) shows the average computation time of
LSPF, LSPE-PTP (and parallel versions of the two),
ICP and ICP-PTP methods for various map sizes. ICP
computation time increases exponentially and rapidly
rises out of view of the plot. LSPF and LSPF-PTP
computation time remains steady even for larger map
sizes. ICP-PTP computation starts of low but rises
gradually as map size increases, passing both LSPF
and LSPF-PTP. Parallel computation times for LSPF-
PTP are about one third ICP-PTP by map size 40.
Figure 5 c) shows LSPF total and alignment compu-
tation times. Alignment time remains less than one
quarter of total time for all map sizes.

5 REAL WORLD RESULTS

In this section we present registration results when ap-
plying LSPFs to real world point cloud data and com-
pare the performance with that of point-to-plane ICP
registration.

5.1 Real World Environment

A large 3D point cloud map of the AIST Tsukuba
Central Campus was constructed using a MMS map-
ping system. A low cost sensor based mapping sy-
stem (Yokozuka et al., 2015) captured paths within
the same environment, but months apart in time, ha-
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Figure 7: Real world experiment: MMS point clouds for place a) A, b) B and ¢) C. Inconsistencies between MMS (red) and
LCSM (yellow) point clouds: d) vegetation change in place A, e) inconsistent building surfaces in LCSM map in place B, f)

parked cars and leafy trees in place C.

Figure 8: LSPF registration of ASL data sets: a) gazebo in summer, and b) winter, c) the aligned clouds from below.

ving some overlap with the MMS map at three places
(see Figure 6). MMS point clouds are accurate and
very dense. Here they have been subsampled down to
0.1m, but still remain approximately double the den-
sity than that of the Low Cost Sensor Map (LCSM)
clouds. Point clouds taken from the maps at the three
reference places are different in environment structure
and each have inconsistencies between the MMS and
LCSM data (see Figure 7):

e Place A: large open area with car park, vegetation
and buildings. Vegetation growth and parked cars
provide inconsistencies between clouds.

e Place B: Narrower road, with large buildings
and many leafy trees. Internal inconsistencies in
LCSM on building faces and ground plane.

e Place C: Narrow road area wisth large leafy trees
and parked cars, minimal structured buildings.

Given the structure of the environment it would be
expected that registration using LSPF would be most
helpful at place A. Indeed, given the structural incon-
sistencies in buildings in place B, and paucity of per-
sistent built structures in C, we would expect a degra-
dation of performance from A to C.
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5.2 Real World Registration

Table 3 shows the map and point cloud sizes for the
MMS (reference) and LCSM (input) maps at each of
the locations. LSPF detection was performed on the
MMS clouds and then LSPF registration was used to
align input clouds. Table 4 presents the estimated
error in registration for map locations A, B and C,
as well as the computation time (total, detection and

Table 3: Real world MMS (Ref.) and LCSM (Input) map
and point cloud size.

Map | Radius(m) | Ref. Cloud. | Input Cloud
A 50 1,812,000 1,016,000
B 50 4,447,000 4,442,000
C 25 619,000 194,000

Table 4: Real world MMS and LCSM registration results.

Map Method Time(s)[Det., Align] | Err(m)
A PTP-ICP 113.73 0.1424
LSPF-PTP | 50.71 [45.55, 5.16] 0.0308

B PTP-ICP | 207.47 0.1504
LSPF-PTP | 55.99 [46.98, 9.01] 0.0336

C PTP-ICP 13.86 0.1201
LSPF-PTP | 21.73 [18.45, 3.28] 0.7575
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alignment). For comparison, results using ICP-PTP,
the best of the alternative methods in the simulation
results, are also presented. Ground truth is assigned
by manually aligning point clouds so reported error
should be treated with some caution.

Registration in places A and B using LSPFs was
both more accurate and required less computation
time than PTP-ICP. The presence of structured buil-
dings allows for LSPF based registration to overcome
the inconsistencies within the point clouds. The large
amount of vegetation however, causes the LSPF de-
tection time to increase, as more features are nee-
ded to successfully sample the unstructured elements
of the point clouds. Alignment time however is
very quick, approximately 5% that of PTP-ICP. Note,
LSPF times are using parallel computation.

Registration using LSPF in place C, however, fails
to converge on the correct transform. The lack of
structured buildings and the large amount of inconsis-
tencies (trees, parked cars), makes it difficult to find
features with a consistent registration transform.

5.3 Registration of an Open Data Set

Although many data sets are available to test registra-
tion algorithms, they typically consist of data scans
captured by moving a vehicle through an environ-
ment. ASL (Pomerleau et al., 2012) publish a data
set that contains point clouds built from scans captu-
red at different times of the year. The point cloud is of
a gazebo covered with vines and surrounding by large
trees. The authours describes this as a semi-structured
environment with seasonal changes. Example images
from a) summer and b) winter point clouds are shown
in Figure 8. The initial misalignment between the two
point clouds is approximately 1m.

Here we apply LSPF registration to align the sum-
mer and winter data sets. Although no ground truth
exists to quantitatively evaluate the alignment, Fi-
gure 8 ¢) shows the aligned clouds from below, where
it can be seen that the structured areas of the point
clouds such as the corners of the gazebo and the ed-
ges of the paths are closely aligned.

6 CONCLUSIONS

This paper presented a method for registration of
large scale inconsistent point cloud maps using Large
Scale Persistent Features. Feature detection was de-
tailed and a measure for evaluating features for re-
gistration based on number and orthogonality of nor-
mal density clusters was proposed. Simulated point
clouds of structured environments with inconsistent

regions were constructed to evaluate registration per-
formance. LSPF registration performance on simu-
lated point clouds was more accurate and faster than
other registration techniques for larger point cloud si-
zes. Real world MMS and LCS maps were merged,
with LSPF registration performing better for struc-
tured enivironments containing inconsistencies than
ICP point-to-plane, although the reverse was true for
unstructured environments. This result was expected
as LSPFs are specifically designed to detect large
structured regions that persist spatially and tempo-
rally. LSPF detection time also grows in unstructured
environments, as more samples are needed to cover
the distribution of unstructured point clouds.

Future work is to apply LSPF to a larger data set
of point clouds. Existing data sets tend to have point
cloud data captured from spatially and temporally
proximal locations, or are limited in extent such as
the ASL data set, so a large scale data set with signi-
ficant inconsistencies between point clouds should be
constructed. Also, the LSPF detection process shoud
be optimised for speed as for large point clouds de-
tection computation time far exceeds alignment time.
Finally, the winner take all consensus sampling within
the set of LSPF estimated transforms can lead to in-
correct registration in unstructured environments. An
approach aggregating a number of transforms might
alleviate this problem.
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