End-User Software Engineering in K-12 by Leveraging Existing

Keywords:

Abstract:

Curricular Activities

Ilenia Fronza and Claus Pahl
Free University of Bozen-Bolzano, Piazza Domenicani 3, 39100, Bolzano, Italy

End-User Software Engineering, K-12, High School.

In recent years, an increasing number of people (called “end-users”) have started to perform a range of activi-
ties related to software development, such as coding with domain-specific languages. The research in the area
of End-User Software Engineering (EUSE) aims at improving the quality of end-user-produced software by
paying attention to the entire software life cycle. The increasing number of activities dedicated to the diffusion
of coding in K-12 motivates the need of EUSE also in this environment. Students indeed will probably need to
produce software in their future careers (even if not professionally), and the quality of their software may be
crucial. In this work, we describe a didactic module in which the activities usually carried out in the existing
study programme are exploited to introduce software engineering principles. The module does not shift the
students’ attention from their main objectives and does not introduce additional lectures on software engineer-
ing topics. We describe the results of a first edition of the module that involved 17 students in a trilingual
international high school. The results are promising and allow us to formulate hypotheses for further work,
such as extending our approach to other activities and observe if and when students will develop a “software

engineering mindset”, even without developing software.

1 INTRODUCTION

The gap between end-users and professional software
developers has narrowed noticeably: an increasing
number of people not only use software, but also par-
ticipate in the development process in order to solve
different types of problems. The evolution of the me-
aning of the term end-user well represents this phe-
nomenon. Indeed, the term end-user has been initi-
ally introduced as antonym of “professional develo-
per”, in order to distinguish those who use software
systems in their daily activities from those who create
software systems professionally. Today, the term end-
user encompasses a wide range of software-related
activities (Burnett and Myers, 2014), such as software
development with domain-specific languages (Ye and
Fischer, 2007).

The disadvantage of this phenomenon is the over-
all low quality of end-user-produced software. The
research field of End-User Software Engineering
(EUSE) addresses this issue by looking beyond the
“creation” part of software, and paying attention to
the rest of the software life cycle (Burnett, 2009).

In the last decade, computational thinking has
been recognized as part of the key skills that must be

Fronza, |. and Pahl, C.
End-User Software Engineering in K-12 by Leveraging Existing Curricular Activities.
DOI: 10.5220/0006846702490255

acquired by all students, regardless of the degree and
course of study (Wing, 2006). For this reason, activi-
ties are increasingly often proposed in K-12 to streng-
then computational thinking skills, in all disciplines
and also in non-vocational schools, where students
are less inclined to Science, Technology, Engineering
and Mathematics (STEM). The aim is to prepare stu-
dents for the characteristics of the current labour mar-
ket: information technology plays an important role,
independent of the chosen career, therefore being able
to creatively use technology to solve problems (rather
than being passive users) could make a difference. If
these activities in K-12 will achieve their objectives,
we can expect more and more end-users to be enga-
ged in non-professional programming activities in the
future (Fronza et al., 2014).

For this reason, it is important to equip students
with the necessary means to improve software qua-
lity: in their future career, developing (although not
professionally) reliable software could be crucial.
This means that EUSE, which aims at bringing the
benefits of a Software Engineering (SE) approach to
end-users, finds an application also in K-12 to im-
prove the quality of students’ software. Moreover,
students can benefit from the application of SE prin-

249

In Proceedings of the 13th International Conference on Software Technologies (ICSOFT 2018), pages 249-255

ISBN: 978-989-758-320-9

Copyright © 2018 by SCITEPRESS — Science and Technology Publications, Lda. All rights reserved

ICSOFT 2018 - 13th International Conference on Software Technologies

ciples in other fields: for example, the ability to work
in an iterative and incremental way can be considered
transversal to many disciplines, and also to everyday
life.

Nevertheless, bringing SE principles to end-users
(and therefore also in K-12) sets a number of challen-
ges to EUSE’s researchers (Chimalakonda and Nori,
2013). For example, end-users often do not under-
stand the usefulness of learning SE principles, and are
focused exclusively on their specific objective (i.e.,
solving a specific problem). In this regard, the EUSE
approach is to respect end-users goals and working
habits, without aiming to transform them into profes-
sional software engineers with ad-hoc courses (Bur-
nett and Myers, 2014).

In this work, we describe a didactic module in
which we leverage the activities usually carried out
in the existing study programme to bring SE prin-
ciples inside the classroom. The module does not
shift students’ attention from their main objectives
and does not introduce additional lectures on soft-
ware engineering. This aspect is of paramount im-
portance in non-vocational schools. In these schools,
infact, on one hand one wants to create a mindset that
could improve the quality of any software produced
in the future; on the other hand, additional lectures on
SE would not be perceived as “useful”, especially by
those students who are less inclined to STEM.

We describe the results of the first edition of the
module that involved 17 students in a trilingual in-
ternational high school in the city of Bolzano (Italy).
The results are promising and allow us to formulate
hypotheses for further work, such as extending our
approach to other activities and observing if and when
students will develop a “software engineering mind-
set”, even without developing software.

Section 2 describes the state of the art of EUSE
in primary and secondary schools; Section 3 descri-
bes the rationale of the proposed didactic module, and
Section 4 details its structure. Section 5 describes
the first edition of the module, and Section 6 shows
its results. Section 7 discusses our results and draws
conclusions from this work, also proposing possible
directions for future work.

2 EUSE IN K-12: STATE OF THE
ART

The field of End-User Software Engineering is quite
recent (Burnett, 2009), and only a few existing stu-
dies in the field are dedicated to the specific case of
primary and secondary schools.

Meerbaum and Hazzan presented a mentoring

250

methodology on Agile for high schools (Meerbaum-
Salant and Hazzan, 2010).

In 2015, Fronza et al. designed and implemented
a course, in which the phases of the software develop-
ment process are leveraged to promote computational
thinking learning (Fronza et al., 2015).

The work of Bollin et al. underlined the need and
feasibility of teaching SE principles in K-12. Ac-
cording to the authors, SE can be a valuable means
to exercise a set of skills that are needed nowadays.
These capabilities include: group dynamics, psycho-
logy, communication skills, logic, planning, model-
ling, and computational thinking as an ability to solve
problems (Bollin et al., 2016).

In 2016, Kastl et al. achieved greater flexibility
in software development projects in three secondary
schools in Germany, by applying Agile methods in
class (Kastl et al., 2016). Fronza et al., in 2017, fo-
cused on teaching SE to end-users, by proposing a
framework in which a series of Agile practices have
been adapted to the context of middle schools to teach
computational thinking (Fronza et al., 2017).

Teixeira Monteiro et al. have analyzed how the
technology used in their programme can introduce SE
elements in the software created by the participants
(Monteiro et al., 2016).

In this work we describe a didactic module that we
have designed to bring Software Engineering princi-
ples inside the classroom in the first year of a non-
vocational high school. In order to respect end-users
goals and working habits, the module fosters software
engineering concepts by focusing only on the process
side and we do not introduce additional lectures on
software engineering.

3 RATIONALE OF THE
DIDACTIC MODULE

One of the challenges in the End-User Software Engi-
neering (EUSE) research field is to identify the most
suitable software development process for each speci-
fic type of end-user (Chimalakonda and Nori, 2013).
In this regard, Burnett and Myers recommend to re-
spect end-users’ goals and working style, which is
preferably opportunistic and incremental (Burnett and
Myers, 2014), collaborative (Costabile et al., 2008),
and by trial-and-error phases (Burnett and Myers,
2014).

This description brings back to mind the phi-
losophy of Agile software development, which favors
a flexible, iterative approach, and focuses more on the
product than on the production of unnecessary docu-
mentation.

End-User Software Engineering in K-12 by Leveraging Existing Curricular Activities

Recently, the idea of introducing Agile in the edu-
cational context has attracted researchers’ and edu-
cators’ attention, and some works have been produ-
ced to report some experiences in this direction (see
Section 2). However, these works confront an en-
vironment (school and university) in which the wa-
terfall development model has been for a long time
the most adopted (and taught) development strategy
(Kropp and Meier, 2013; Kastl et al., 2016). Adop-
ting an Agile approach, in fact, would require a con-
siderable effort to switch to an environment in which
the process by which students arrive at the product is
taken into consideration even more than the final pro-
duct itself (Steghofer et al., 2016).

This shift would provide, among its advanta-
ges, the chance of introducing SE principles even in
schools where students are less gifted at STEM sub-
jects. This would allow us to reach a larger number of
students, which is in turn important: in the current la-
bour market, indeed, there is a high probability to face
the need of creating software in a number of different
careers (Ye and Fischer, 2007).

The challenge is understanding how to leverage
existing curricular activities (that do not have soft-
ware development as a main objective) to foster SE,
without introducing specific lessons on the topic, thus
respecting the students’ objectives.

In this work we describe a didactic module that
we have designed to foster software engineering prin-
ciples in the first year of a non-vocational high school.
The proposed module covers six hours of curricu-
lar activity, and leverages activities that are usually
carried out in the existing study programme (and do
not include software development). Therefore, follo-
wing the EUSE guidelines (Burnett and Myers, 2014),
our module does not shift the students’ attention from
their main objective and does not introduce additional
lectures on software engineering.

3.1 Methodologies and Practices

Extreme Programming (XP) is an Agile methodology
that integrates practices related both to project mana-
gement and to development process, by focusing on
continuous communication and programming practi-
ces (Beck, 2000). Our didactic module adopts XP as
a methodology, for two main reasons:

e it doesn’t require end-users to radically change
their work habits (see the introductive part of this
section);

e it helps end-users to organize their process by in-
troducing a series of light practices.

The positive aspect of XP is that it provides a set
of principles and practices to guide the development

process. Depending on the specific context and ob-
jectives, only a limited set of practices might be se-
lected. However, it is important to take into account
the existence of hidden dependencies among these
practices. For example, the application of collective
ownership of the code in isolation can lead to a cha-
otic situation (Fronza et al., 2018), which can be mi-
tigated by adopting other practices, such as pair pro-
gramming.

In the specific case of our didactic module, which
focuses on the process aspect, it is suggested to ap-
ply together the following XP practices (Fronza et al.,
2018):

e On-site Customer: the customer is always present
during the development process to provide conti-
nuous and direct feedback.

o Testing: different types of testing strategies are
possible, such as acceptance testing (to allow con-
tinuous customer’s feedback), and test-first (to
test as soon as possible and thus minimize the cost
of long-term testing).

e User Stories: the objective of these informal pro-
totypes is to describe requirements in a language
that is understood both by the team and the custo-
mers.

e Small Releases: decomposition of software deve-
lopment activities in short iterations in order to
obtain timely and continuous feedback.

The next section illustrates how we have struc-
tured our didactic module in order to promote these
practices while performing one of the activities of the
existing syllabus, namely the creation of a set of sli-
des for a presentation. It should be noted that, for this
purpose, we do not move the students’ attention away
from their main objective, and we do not provide ad-
ditional lessons on SE.

4 STRUCTURE OF THE
DIDACTIC MODULE

The task of creating a set of slides for a presentation
(usually at the end of a project or activity) is often
considered a pure exercise of computer literacy; at the
end, the teacher evaluates the quality of the presen-
ted slides (i.e., the product), but the process needed
to create these slides is almost ignored. Being a very
common task, and trasversal to many disciplines, we
considered this task as a good candidate to be the fo-
cus of our didactic module.

251

ICSOFT 2018 - 13th International Conference on Software Technologies

The initial requirement needs to be deliberately
vague (e.g., “prepare a presentation about the topic
X", so as to require students (as in the case of soft-
ware engineering) to make an effort to understand the
problem and formulate a solution.

In total, this activity covers six hours (for example,
four blocks of 90 minutes). The remaining part of
this section details the structure of the module and the
assessment strategy.

4.1 First Part

The first part includes the following activities:

1. Creation of a mind map (paper based exercise) to
better organize ideas within the topic of the pre-
sentation (for example: what sub-topics can be
discussed in the presentation?), and to identify
their relevance, strength, and impact, as well as
to describe the relationships between ideas. This
activity requires 20 minutes, and the relevant XP
practice is user stories.

2. Revision of mind maps, together with teachers.
This activity requires 15 minutes, and fosters the
following XP practices: on-site customer, small
releases.

3. Searching the necessary information (e.g., online)
in order to expand the topics in the mind map.
This activity requires 20 minutes, and the relevant
XP practice is small releases.

The second and the third step are repeated twice
(i.e., two iterations are performed).

4.2 Second Part

The second part includes the following activities:

1. Preparation of a set of slides about at least two of
the topics in the mind map. This activity requires
15 minutes, and the relevant XP practice is small
releases.

2. Teachers’ feedback. This activity requires 10 mi-
nutes, and the relevant XP practices are on-site cu-
stomer and testing.

3. Continuing the preparation of the set of slides.
This activity requires 20 minutes, and the relevant
XP practice is small releases.

4. Teachers’ feedback for 10 minutes. The relevant
XP practices are on-site customer and testing.

The third and the fourth step are repeated twice
(i.e., two iterations are performed).

252

4.3 Third Part

This part is entirely dedicated to teacher’s feedback.
Students are asked to present a “working prototype”
in order to receive the last feedback before the presen-
tation (during the fourth part). The teacher explains
the assessment criteria (see Section 4.5) and provides
specific feedback for each criterion. The relevant XP
practices are on-site customer and testing.

4.4 Fourth Part

At the end of the activity, each student presents her/his
set of slides in front of the class. The conformance
with the initial requirements and mind map are chec-
ked. Therefore, relevant XP practices are user stories
and festing. Moreover, the presentation provides an
opportunity for peer feedback.

4.5 Assessment Criteria

For the evaluation of the final product (i.e., the set of
slides), we consider the following three criteria:

1. structure: general organization of the slides;

2. content: correctness and completeness of the re-
ported information;

3. citation of sources: this aspect is considered very
relevant in K-12, in order to teach students the im-
portance of giving credit to the creators of the ori-
ginal material.

Even if our didactic module focuses on the pro-
cess of preparation of slides, one single didactic mo-
dule does not allow us to assess the development of a
“software engineering mindset”. For this reason, for
the process side, we limit our assessment to observing
students’ behaviour. These observations, indeed, will
serve to the creation of an assessment framework for
the process part in our future modules.

5 FIRST EDITION OF THE
DIDACTIC MODULE

We have performed a first case study in a trilingual in-
ternational high school in the city of Bolzano (Italy).
For the CS field, this non-vocational high school in-
cludes in its curriculum:

e two hours per week of ICT in the first and second
year, where students learn to evaluate, choose, and
use different tools in order to solve a problem;

End-User Software Engineering in K-12 by Leveraging Existing Curricular Activities

e two hours per week of Computer Science in the
third, fourth and fifth year. At the final exam, stu-
dents must show the ability to analyze and inter-
pret data from different sources in order to explain
a socio-economic event. Computer science lectu-
res teach programming to achieve this goal.

Therefore, according to the classification provided
by Ye and Fischer (Ye and Fischer, 2007), the students
of this type of school are going to be end-users who
program with a language specific to their application
domain. This category, in the range introduced by Ye
and Fischer, approaches the professional software de-
veloper; thus, there is a clear need to introduce soft-
ware engineering principles into this school curricu-
lum.

In our long-term vision, the peculiarity of this high
school allows us to verify how fostering software en-
gineering concepts by focusing only on the process
side (which means, in the first two years) can benefit
the students when they start programming (which me-
ans, during the third, fourth, and fifth year). For this
reason, we have involved in our case study the first-
year students (17 students - 12 F, 5 M), during the ICT
lectures.

In the first year’s ICT programme, one of the first
topics in the syllabus is the “definition of informa-
tion and communication technologies”. In the per-
spective of learning-by-doing, in agreement with the
ICT teacher, we have proposed the following activity:
“prepare a presentation about ICT”. The module was
organized in four weekly blocks of 90 minutes, and
students worked individually.

6 RESULTS

At the end of the didactic module, all the 17 stu-
dents presented their set of slides about ICT, which
all fulfilled the initial requirements. The number of
ICT-related topics included in the presentations varied
from student to student, ranging from a minimum of
two topics to a maximum of four. The most covered
topics in the presentations are listed in Table 1.

As detailed in Section 4.5, for product assessment
we used three criteria: structure, content, and citation
of sources. As shown in Figure 1, the structure of
12 presentations was sufficiently good, while 5 pre-
sentations were almost sufficient because of some is-
sues, such as the absence of the title in some slides or
the excessive presence of text. Six presentations had
fully sufficient content and two were insufficient (i.e.,
the content was just superficially mentioned). Only
three presentations did not cite the sources of infor-
mation. In general, the final evaluation of the presen-

tations was better than the evaluation obtained during
the third lesson.

Regarding the process, it should be noted that the
students did not understand the iterative model im-
mediately. The majority of students, in fact, at the
first request to submit a first result after 20 minutes
tried to complete the entire assignment, without un-
derstanding that it was enough to submit a first ver-
sion on which they could then have feedback to con-
tinue the rest of the work. Following the guidelines
of the End-User Software Engineering field, we did
not interrupt our activities to provide additional expla-
nations; instead, we tried to let the students perceive
(during the first iterations) the advantage of having
feedback on their prototypes. After a first phase of
“adjustment”, we noticed that our students started to
organize their activities in order to be able to present,
during the next meeting with the teachers, the parts
on which they needed more support. We consider this
as an indicator that students started understanding the
difference between a moment of evaluation and a mo-
ment of feedback.

If the iteration frequency appeared initially as so-
mething “stressful”, at a later stage the students star-
ted asking for each task: “what time do we have to
show a first prototype?”. Finally, the iterative model
has allowed even the slowest students to conclude the
didactic module with a minimal, but still sufficient,
presentation (i.e., two sub-topics).

The perceived usefulness of mind maps (imple-
mentation of user stories practice) emerged during a
discussion with the students at the end of the acti-
vities. Students perceived mind maps as a support
tool to avoid “getting lost on the Internet in the large
amount of information” that they could find there.
Therefore, the design phase of the presentation hel-
ped them to be more focused, while allowing them
to change the design at a later stage to introduce new
ideas.

Table 1: Topics covered in the presentations about ICT.

Topic Number % of pre-
of presen- | sentations
tations

ICT definition 12 70.6

Areas of application 11 64.7

Examples of applicati- 8 47.1

ons in the educational

environment

Historical notes 6 353

ICT objectives 5 29.4

Positive / negative as- 5 29.4

pects

253

ICSOFT 2018 - 13th International Conference on Software Technologies

Number of presentations

Structure Content

Evaluation criteria

B Insufficient
Almost sufficient

B Sufficient

Sources

Figure 1: Assessment of the final product.

7 DISCUSSION AND
CONCLUSION

In this work, we describe a didactic module in which
we leverage a typical activity of the existing study
programme (i.e., preparing a set of slide) in order to
foster software engineering principles. The module
does not shift the students’ attention from their main
objective and does not introduce additional lectures
on software engineering. Paying attention to this last
characteristic is of paramount importance, especially
in non-vocational schools: in these schools, indeed,
the goal is to foster a mindset that could be fundamen-
tal in the future career of students, who at the moment
would not perceive additional lectures on SE as use-
ful.

We performed a first classroom-based experimen-
tation of this didactic module in a first class of an
international trilingual high school. The first results
show that, although no additional explanations were
provided, students have adapted rather quickly to the
new organization of the work process, by taking ad-
vantage of the frequent iterations and of the obtained
feedback.

In the short term, we plan to design other modu-
les that we will experiment with the same group of
students. This will allow us to observe if and when
students will develop a “software engineering mind-
set”, even without developing software. The results
of this effort could confirm the benefits of working
in the EUSE perspective in different disciplines, in-
cluding non-STEM ones. Moreover, further experi-
ments would help in developing an assessment pro-

254

tocol for the process aspect, which is now only eva-
luated through observations. In future modules, we
plan to include teamwork activities, which benefits
the most of an XP approach, and to support them with
specific practices (e.g., stand-up meeting).

In the long term, our goal is to verify how foste-
ring software engineering concepts by focusing only
on the process side can be beneficial to students when
they start programming. Results in this direction
would demonstrate the effectiveness of the activities
carried out in creating a mindset to be applied also in
the creation of software.

REFERENCES

Beck, K. (2000). Extreme programming explained: em-
brace change. addison-wesley professional.

Bollin, A., Pasterk, S., Antonitsch, P., and Sabitzer, B.
(2016). Software engineering in primary and se-
condary schools-informatics education is more than
programming. In Software Engineering Education
and Training (CSEET), 2016 IEEE 29th International
Conference on, pages 132—136. IEEE.

Burnett, M. (2009). What is end-user software engineering
and why does it matter? In International Symposium
on End User Development, pages 15-28. Springer.

Burnett, M. M. and Myers, B. A. (2014). Future of end-user
software engineering: beyond the silos. In Procee-
dings of the on Future of Software Engineering, pages
201-211. ACM.

Chimalakonda, S. and Nori, K. V. (2013). What makes
it hard to teach software engineering to end users?
some directions from adaptive and personalized lear-
ning. In Software Engineering Education and Trai-

End-User Software Engineering in K-12 by Leveraging Existing Curricular Activities

ning (CSEE&T), 2013 IEEE 26th Conference on, pa-
ges 324-328. IEEE.

Costabile, M. F., Mussio, P., Parasiliti Provenza, L., and
Piccinno, A. (2008). End users as unwitting soft-
ware developers. In Proceedings of the 4th Interna-
tional Workshop on End-user Software Engineering,
WEUSE 08, pages 6—10, New York, NY, USA. ACM.

Fronza, 1., El Ioini, N., and Corral, L. (2015). Students want
to create apps: Leveraging computational thinking to
teach mobile software development. In Proceedings of
the 16th Annual Conference on Information Techno-
logy Education, SIGITE ’15, pages 21-26, New York,
NY, USA. ACM.

Fronza, 1., El Ioini, N., Corral, L., and Pahl, C. (2018). Agile
and Lean Concepts for Teaching and Learning, chap-
ter Bringing the benefits of Agile techniques inside the
classroom: a practical guide. Springer. To appear.

Fronza, 1., El Ioini, N., Janes, A., Sillitti, A., Succi, G.,
and Corral, L. (2014). If i had to vote on this labora-
tory, i would give nine: Introduction on computational
thinking in the lower secondary school: Results of the
experience. Mondo Digitale, 13(51):757-765.

Fronza, I., Ioini, N. E., and Corral, L. (2017). Tea-
ching computational thinking using agile software en-
gineering methods: A framework for middle schools.
ACM Transactions on Computing Education (TOCE),
17(4):19.

Kastl, P, Kiesmiiller, U., and Romeike, R. (2016). Starting
out with projects: Experiences with agile software de-
velopment in high schools. In Proceedings of the 11th
Workshop in Primary and Secondary Computing Edu-
cation, pages 60—65. ACM.

Kropp, M. and Meier, A. (2013). Teaching agile software
development at university level: Values, management,
and craftsmanship. In Software Engineering Educa-
tion and Training (CSEE&T), 2013 IEEE 26th Confe-
rence on, pages 179-188. IEEE.

Meerbaum-Salant, O. and Hazzan, O. (2010). An agile con-
structionist mentoring methodology for software pro-
jects in the high school. ACM Transactions on Com-
puting Education, 9(4):n4.

Monteiro, L. T., de Castro Salgado, L. C., Mota, M. P., Sam-
paio, A. L., and de Souza, C. S. (2016). Signifying
software engineering to computational thinking lear-
ners with agentsheets and polifacets. Harvard Busi-
ness Review.

Steghofer, J.-P., Knauss, E., Alégroth, E., Hammouda, I.,
Burden, H., and Ericsson, M. (2016). Teaching agile:
addressing the conflict between project delivery and
application of agile methods. In Proceedings of the
38th International Conference on Software Engineer-
ing Companion, pages 303-312. ACM.

Wing, J. M. (2006). Computational thinking. Comm. ACM,
49(3).

Ye, Y. and Fischer, G. (2007). Designing for participation in
socio-technical software systems. Universal Acess in
Human Computer Interaction. Coping with Diversity,
pages 312-321.

255

