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Abstract: We present DECA (Database Evolution in Cloud Applications), a framework that facilitates fast, robust, and
agile database evolution in cloud applications. Successful business requires to react to changing wishes and
requirements of customers instantly. In today’s realities, this often boils down to adding new features or
fixing bugs in a software system. We focus on cloud application platforms that allow seamless development
and deployment of applications by operating both the old and the new version in parallel for the time of
development/deployment. This does not work if a common database is involved, since they cannot co-exist
in multiple versions. To overcome this limitation, we apply current advances in the field of agile database
evolution. DECA equips developers with an intuitive Database Evolution Language to create a new co-existing
schema version for development and testing. Meanwhile, users can continuously use the old version. With
the click of a button, we migrate the database to the new version and move all the users without unpredictable
downtime and without the risk of corrupting our data. So, DECA speeds up the evolution of information

systems to the pace of modern business.

1 INTRODUCTION

Business success largely depends on the ability to
quickly adapt to the ever-changing needs and wis-
hes of customers. In our age of digitalization, almost
all businesses are permeated by IT systems and the
pace of evolving the software system determines the
pace of evolving and adapting the business. The soft-
ware technology community applies agile develop-
ment methods for easy and robust evolution of appli-
cations. Modern cloud application platforms facilitate
the seamless testing and deployment of new versions:
Both the old and the new version run in parallel for a
while, so developers can work with the new version
while users are still using the old one. Once the new
version is approved, users can be migrated with the
click of a button. This reduces the overall downtime
and the risk of faulty changes.

However, established platforms, such as Cloud
Foundry (www.cloudfoundry.org), explicitly exclude
database applications, since the database as single-
point-of-truth cannot co-exist both in the old and in
the new version at the same time. Whenever we
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evolve the schema of the database, we have to evolve
all the currently existing data and all applications that
access the schema as well. Without platform support,
this has to be done manually by implementing a data
migration procedure, writing adapters for not yet up-
dated users, etc. This makes the database evolution
very time-consuming, expensive, and error-prone and
thereby a limiting factor for the fast and continuous
evolution of businesses.

Thanks to new research results on database evolu-
tion, this assumption is not necessarily true anymore.
There are tools and concepts that foster agile database
evolution and co-existing schema versions within one
database (Rahm and Bernstein, 2006). We recently
introduced INVERDA, a tool that allows developers
to easily create new schema versions by evolving ex-
isting ones with a simple descriptive language inter-
face. The new schema version then truly co-exists
with other previously created schema versions.

In this paper, we present DECA (Database Evo-
lution in Cloud Applications)—a framework that ap-
plies INVERDA for the deployment of database appli-
cations in cloud platforms. We tailor INVERDA to the
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specific requirements of cloud platforms and evaluate
its feasibility in this special but very important area.
Our contributions are:

e Architectural Blueprint for Database Evolu-
tion in Cloud Applications. We propose an ar-
chitecture to integrate seamless database evolu-
tion into existing tools. Applying results from
the literature, we guarantee that no data will
be corrupted during the evolution and migration.
(Section 3)

o Extensive Evaluation. We analyze the perfor-
mance characteristics to equip developers with a
guideline for the use of row- or column-stores and
we highlight the necessity of statement-wise trig-
gers to gain a significant speed up. (Section 4)

In a word, DECA now facilitates agile and seamless
database evolution for cloud application platforms to
keep the pace with ever-changing business decisions.
Outline: In Section 2, we discuss modern cloud ap-
plication development and detail on current advances
in database evolution. In Section 3, we apply the ad-
vances in database evolution for agile cloud deploy-
ment: We present the design of DECA and show how
to integrate it in a common cloud platform with a
relational database. After an extensive evaluation in
Section 4, we conclude the work in Section 5.

2 RELATED WORK

Evolving applications as quickly and as robustly
as possible is an omnipresent challenge in soft-
ware development. To this end, cloud application
platforms such as Cloud Foundry implement Blue-
Green Deployment (https://docs.cloudfoundry.org/
devguide/deploy-apps/blue-green.html) to reduce the
risk and downtime during the continuous develop-
ment of cloud applications. Figure 1 shows the
general process. The currently running application
version (1) is called the blue version. While the
new/modified green version is developed, the blue re-
mains live and active (evolution phase). Once the
green version is ready, it is deployed and thoroughly
tested (2). Once the testing is done, we migrate all
users to the green version (migration phase). Now,
the requests are routed to the green version so that we
can take the old blue version offline (3). However, this
approach is not applicable for database application as
it will lead to data discrepancy between the green and
the blue database version.

To evolve existing applications in an easy, con-
trolled, and robust manner, modern agile software de-
velopment heavily relies on Refactorings (Ambler
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and Lines, 2012; Fowler and Beck, 1999). Scott
Ambler (Ambler and Sadalage, 2006) adapts this
approach to the evolution of a production database
by proposing more than 100 Database Refactorings
ranging from simple renamings over changing con-
straints all the way to exchanging algorithms and re-
factoring single columns to lookup tables. One es-
sential characteristic of these refactorings is that most
of them couple the evolution of both the schema and
the data in consistent and easy-to-use operations. The
overall goal is to make database development just as
agile as software development by changing the game
from big upfront modeling to an incremental continu-
ous evolution of the database based on refactorings.

Database researchers pick up on this refactorings-
based principle and propose structured Database
Evolution Languages (DELs). DELs provide a set
of Schema Maodification Operations (SMOs) which
are refactorings on the database schema. SMOs cou-
ple the evolution of both the schema and the data with
intuitive and consistent evolution operations, e.g., par-
titioning or joining existing tables. SMOs are way
more compact than comparable SQL scripts (Curino
et al., 2013; Herrmann et al., 2017). Since manual
schema evolution is a heavy, error prone and expen-
sive operation, it is beneficial to have operations like
SMOs which can do the required task in a clean and
consistent manner without the risk of corrupting data.
One of the most advanced SMO-based DELs, we are
aware of, is PRISM (Curino et al., 2009) that inclu-
des eleven SMOs that allow to describe most practi-
cal database evolution scenarios (Curino et al., 2008).
PRISM++, which extends PRISM, includes Integrity
Constraint Modification Operations (ICMOs) that al-
low to create and drop both value and primary key and
foreign key constraints with the same charm and sim-
plicity as SMOs (Curino and Zaniolo, 2010; Curino
et al.,, 2013). Further, PRISM++ facilitates update
rewriting. This enables developers to automatically
adapt applications working on an old schema version
to correctly access the data of a new SMO-evolved
schema version.

BiDEL is a more recent extension of PRISM that
allows to create, drop, and rename both tables and
columns as well as splitting and merging tables both
vertically and horizontally. BiDEL is shown to be re-
lationally complete (Herrmann et al., 2015) and bi-
directional. The latter facilitates co-existing schema
version with a system called INVERDA (Herrmann
et al., 2017). INVERDA automatically makes mul-
tiple schema versions accessible in one database—
write operations in one version are immediately vi-
sible in all other schema versions as well. Further,
INVERDA guarantees data independence: No mat-
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Figure 1: Blue-green deployment of a cloud application.

ter which schema version is physically materialized,
every single schema version behaves like a regular
single-schema database. Since not all evolutions are
information-preserving, INVERDA manages auxili-
ary information to keep the otherwise lost informa-
tion. This functionality is exactly the missing piece of
the puzzle to implement blue-green deployment of da-
tabase applications. Our contribution is to show and
evaluate the feasibility of INVERDA’s approach for
the seamless evolution of cloud applications.

In comparison to manually evolving a database
with standard SQL, an SMO-based DEL is way ea-
sier to learn and to use. However, it still requires
a technical understanding of the database evolution
process. Therefore, the CRIUS project provides sim-
ple database evolution where non-technical users are
equipped with an intuitive graphical user interface to
easily extend a running database (Qian et al., 2010).
The database evolution is restricted to adding tables
and columns which at least allows to grow the data-
base with the application and prevents from common
mistakes. Another interesting compromise between
expressiveness and user-friendliness is model-driven
database evolution with MeDEA (Dominguez et al.,
2008). MeDEA equips developers with an editor to
specify schema changes in an Entity-Relationship di-
agram and the respective changes are automatically
mapped to the underlying relational database model.
Integrating those approaches in our tool is promising
future work. We focus only on the recent literature
for database evolution here, but we point the inte-
rested reader to bibliographies from Roddick (Rod-
dick, 1992) and from Rahm et al. (Rahm and Bern-
stein, 2006).

Summary. There is plenty of related work for the
agile and seamless evolution of application code. Da-
tabase evolution is an emerging topic in research and
there are promising solutions that use SMO-based
DELs to make the database evolution faster and more
robust. To our best knowledge, there are no existing
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solutions that apply those results for the seamless evo-
lution of database applications in cloud platforms.

3 DESIGN CONCEPTS

DECA adapts the principle of seamless evolution of
applications with blue-green deployment to the evolu-
tion of databases in cloud application platforms. Re-
cent advances in database evolution research allow to
easily create new schema versions; developers me-
rely write declarative and intuitive evolution scripts
with Database Evolution Languages (DELs), such as
PRISM++ or BiDEL (Curino et al., 2013; Herrmann
et al., 2017), consisting of Schema Modification Ope-
rations (SMOs). INVERDA builds upon these langua-
ges and automatically generates co-existing schema
versions within the database—InVerDa verifiably en-
sures that no data is lost in any schema version by ma-
naging auxiliary information automatically without
any developer being involved (Herrmann et al., 2017).
We take this powerful result and use it to let the da-
tabase schema co-exist in both the old and the new
version during the evolution and migration of a cloud
application. The design concepts presented in this
section are generic so they can be adapted for all com-
mon database systems—we also highlight specific re-
quirements and nice-to-haves such as statement-wise
instead-of triggers.

DECA is a database evolution and migration tool
for cloud application platforms. We obtain two limi-
tations from the common blue-green deployment in
these platforms: First, DECA is single-branch, so we
evolve exactly one source schema version to one tar-
get schema version. Second, the evolution moves for-
ward only, i.e., after the migration, we do not support
the blue version anymore.

In the following, we describe the process of the
seamless database evolution with DECA in a cloud
platform in Section 3.1. Upon this, we detail the user
interfaces in Section 3.2 and present our system inte-
gration in Section 3.3.

3.1 The DECA Process

DECA generally adapts blue-green deployment from
cloud application platforms to database evolution and
has two phases: In the first phase, the new green
schema version is already fully accessible but the data
remains physically in the original blue schema ver-
sion and all applications continue working on the old
blue version. Merely the developers and test users
can already access the new green schema version to
develop and evaluate new features, bug-fixes, etc. In
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Figure 2: Blue-Green database evolution and migration process.

the second phase, the data is physically migrated to
the new green schema version. After completion, the
new green version can be accessed by all applications
and we take the old blue schema version offline.

Please consider an exemplary human resource
software as shown in Figure 2, which is deployed in a
cloud application platform such as Cloud Foundry. In
the initial situation (1), there is a simple table for the
employee details as shown in the blue access schema
on the left side of the figure. User applications access
this blue schema version on the upper access schema
layer just as any other regular database. The access
schemas are implemented with updatable views—the
data is persisted in tables in the data schema layer.
We will evolve and eventually migrate this database.

Evolution Phase. Developers evolve the application
and the database schema to create a new green ver-
sion by executing DEL-scripts. Assume new featu-
res require to add the two new columns “Department”
and “Grade”. Developers express this intended evolu-
tion merely by executing two ADD COLUMN SMOs
as shown in the upper middle of Figure 2. While the
first ADD COLUMN SMO produces the intermedi-
ate schema version GREEN_1, the second ADD CO-
LUMN SMO results in GREEN_2. During testing,
the team decides to normalize the Employees table
and split away the Department column while crea-
ting a new foreign key—this results in the GREEN_3
schema version. For better readability, the team rena-
mes the Department column into Name to finally end
up in the GREEN access schema.

We are now in the state of development and tes-
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ting (2), where both the blue and the green schema
version are fully accessible. Users can still use the
old version, while the developers and testers can use
the new version just as usual. DECA uses the code ge-
neration of INVERDA (Herrmann et al., 2017) to cre-
ate the green access schema with views—any write
operation on these views is executed by instead-of
triggers that propagate the write operation back to
the blue data schema. Since not all information can
be stored in the blue data schema, DECA automati-
cally manages auxiliary tables that keep all the other-
wise lost information. Both the blue and the green
schema version are now guaranteed to behave like re-
gular single-schema databases even though the data is
still stored only in the blue schema version.

Migration Phase. Till now, users did not notice any
change as they continuously used the blue version.
When the developers and testers confirm that the new
green version works correctly, we enter the migration
phase by instructing DECA to change the physical
data schema to the green schema version. This is es-
sentially done with the click of a button. On the da-
tabase side, DECA creates tables in the data schema
according to the green schema version and populates
them with data by simply reading the data in the green
access schema. Afterwards, the data schema from the
blue version as well as the auxiliary data schema can
be cleared so that only the new green data schema re-
mains. The simultaneous migration of the application
is realized by common cloud application platforms
such as Cloud Foundry. After running the physical
migration we are in the final state (3) and users use
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Figure 3: SMOs of DECA’s DEL.

the new green version now—the data access schema
is called GREEN(migrated) then. At this state, the de-
ployment cycle is finished and DECA is ready to start
the next evolution in the same way.

Currently, the migration phase causes limited
availability of the application for a short period of
time, since copying the data from the blue to the green
data schema locks the data tables. Hence, data cannot
be written but can be still read. To achieve a zero-
downtime migration, we need proper copy mecha-
nisms that migrate the data silently without blocking
the operations and keep the already migrated data in
sync. Further, the amount of data to migrate can be re-
duced by combining SMOs and in-place migrations.
These opportunities are left for future research.
Summary. We follow the blue-green deployment
process: While the blue production version remains
accessible, developers create a new green schema ver-
sion that co-exists and allows independent develop-
ment and testing. Finally, we migrate to the green
schema version and drop the blue version.

3.2 DECA'’s Interfaces

Developers interact with DECA two times: once in
the evolution phase to create the new green schema
version and once to trigger the migration phase. In the
latter phase, data is copied from the blue data schema
to the green data schema—this process is fully au-
tomated and does not require any further interaction
on the developer’s side. During the evolution phase,
developers use the bidirectional SMO-based DECA-
DEL to describe the evolution of both the schema and
the data from the old blue to the new green version as
well as the propagation of write operations from the
new green back to the old blue version. The DECA-
DEL is equivalent to BiDEL (Herrmann et al., 2017).
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Figure 4: Generated views and triggers for example (Fig. 2).

Besides DECA-DEL’s relational completeness, this
guarantees that both the blue and the green schema
version behave like regular single-schema databases,
so we take this for granted.

The DECA-DEL is summarized in Figure 3. Ac-
cording to their counterparts in SQL-DDL, there are
SMOs to create, drop, and rename both tables and co-
lumns. Further, we can partition a table horizontally.
The partition criteria may overlap and must not neces-
sarily cover the whole relation. To ensure bidirectio-
nality the inverse SMO for merging two tables hori-
zontally also takes such partition criteria—this is re-
quired to propagate new records in the green schema
version back to the intended partition in the blue one.
Similarly, the last two SMOs allow to decompose or
join tables vertically. Either way, we need to specify
how records from the decomposed side are joined—
this may be according to the primary key, a specified
foreign key or any evaluable condition. Further, the
join can have inner or outer join semantics.
Summary. Developers have interfaces to trigger both
the evolution and the migration phase; for the evolu-
tion phase, DECA equips developers with a power-
ful SMO-based DEL to easily describe the evolution
from the blue to the green schema version.

3.3 System Integration

DECA is an independent component adjacent to a
DBMS. DECA is not a part of the DBMS but gene-
rates and deploys database artifacts that are then exe-
cuted in the database to evolve, test, and migrate it.
As can be seen in Figure 2, we separate the database
into an access schema layer and a data schema layer.
The access schema layer consist of one or two schema
versions which comprise of views and triggers and
the data schema layer consists of persistent data in
the form of tables. The application interacts with the
access schema instead of the data schema. This de-
coupling avoids directly modifying the data schema
and to achieve concurrently active access schemas.
Figure 4 shows the access schema and the data
schema for the example in Figure 2 with the generated
views and triggers. The green access schema version
is implemented with a sequence of views starting at

201



DATA 2018 - 7th International Conference on Data Science, Technology and Applications

the blue data schema. The views are made updatable
with instead-of triggers that propagate write operati-
ons also from the green to the blue schema version.
Since SMOs may add information capacity during the
evolution, we use auxiliary tables to prevent informa-
tion loss. Consider our example, where we add a new
column named Salary to the employees table. Since
this column does not exist in the blue version, we cre-
ate an auxiliary table which stores the data of the new
column. The view in the green schema version now
joins the blue data table and the auxiliary table. Write
operations on the green schema version are propaga-
ted by an instead-of trigger back to both the data table
and the auxiliary table.

For each view, we define three instead-of triggers,

i.e., for inserts, updates, and deletes. In most data-
base systems, these triggers are row-wise triggers by
default, i.e., they would execute one row at a time.
This causes a significant propagation overhead when
multiple records are updated at a time. Unfortuna-
tely, many DBMSes do not support statement-wise
instead-of triggers. However, we show that it would
be worth it to implement statement-wise instead-of
triggers as they can significantly speed up the pro-
pagation of write operations from the green access
schema to the blue data schema, as we evaluate in
Section 4. To explore the benefits, we simulate their
behavior via stored procedures that take the argu-
ments of the write operation as parameters. Revisi-
ting our example from Figure 2, assume we want to
delete several employees because some departments
of the company got sold or we increase the salary of
all employees by 10%. When we execute such write
operations on the green schema version before the mi-
gration, triggers are used to propagate them from the
green access schema through the SMOs back to the
blue data schema. With row-wise triggers, this would
cause one trigger call on each intermediate version
for each single affected employee. A statement-wise
instead-of trigger could instead fire one delete opera-
tion on the blue data schema as well as on each af-
fected auxiliary table. Since all these executions are
done on a bulk of records at a time, it is very fast com-
pared to the row-wise execution.
Summary. DECA generates the co-existing green
schema version with views and triggers upon the blue
data schema. Especially write operations of multiple
records benefit from statement-wise triggers.

4 EVALUATION

DECA easily realizes complex evolutions and migra-
tions of the database in cloud applications. We shor-
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ten the downtime and made the migration process
more predictable. A new green version co-exists with
the old blue version to allow extensive testing—when
the developers are sure that the new version works
correctly, we instruct DECA to physically migrate the
database with the click of a button. Developers spe-
cify the evolution as sequences of intuitive SMOs that
allow to generate the co-existing green schema ver-
sion without changing the data schema and without
restricting the availability of the blue schema version.
There is no hand-written data propagation between
schema version, hence we eliminate a common source
of failures. The same holds for the migration code,
which is completely generated from the SMO-based
evolution script. There is no hand-written code invol-
ved that could fail or delay the migration.

Beyond this functional contribution, we now pre-
sent an extensive evaluation of DECA. We analyze the
overhead caused by DECA to show that it is reasona-
ble. Further, we focus on the impact of row/column
stores and the use of row- or statement-wise triggers
to further reduce this overhead. In Section 4.1, we
evaluate our introductory example in detail. After-
wards, we zoom into the effect of single SMOs in
Section 4.2.

4.1 Exemplary Scenario

We evaluate the exemplary evolution and migration
from Figure 2 on Page 4 to analyze DECA'’s benefits.
Setup: We load the employees table with 150,000
sample records and evaluate both read and write ope-
rations on both the blue and the green schema ver-
sion as well as on the intermediate schema versions
as shown in Figure 4 to analyze the impact of the
evolution’s length on the performance overhead. In
Section 4.1.1, we measure the read/write performance
for batch sizes of 100 and 1000 records in both a row-
and a column-store with common row-wise triggers.
In Section 4.1.2, we evaluate statement-wise triggers
as a promising alternative that can significantly speed
up the propagation of write operations between the
schema versions. Finally, we analyze the time for exe-
cuting the actual migration of the data schema from
blue to green in Section 4.1.3. All experiments are
conducted in the SAP HANA in-memory DBMS on
a Linux workstation with 2x6 Core Intel Xeon CPU
(3.5GHz) and 96GB main memory.

4.1.1 Propagation Overhead and Store Layout

The general expectation is that the propagation over-
head increases with a growing number of SMOs in
the evolution. To quantify this overhead, we compare
the use of DECA to not using it. An evolution done
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Figure 5: Comparing Row-store vs. column-store.

without DECA would require to manually implement
an evolution and migration program, e.g. in SQL,
which would ultimately result in GREEN(migrated).
Therefore, we consider the readings on the migrated
green schema version as the baseline for our mea-
surements. We represent all measurements as a fac-
tor of its respective baseline. For instance in Fi-
gure 5a we see that a SELECT with batch size 1000
on GREEN_2 in a row-store takes 2.25 the time of the
baseline, which is a SELECT with batch size 1000 on
GREEN(migrated) in a row-store. The batch size is
the number of rows selected, inserted, updated, or de-
leted by a single query. We use row-wise triggers for
these general experiments and will reduce the appa-
rently high overheads with statement-wise triggers in
the next section.

Figure 5a shows the propagation overhead for read
operation for both row- and column-stores. The main
observation is that the propagation overhead increases
from BLUE to GREEN for both batch sizes especially
in row-stores—in column-stores the effect is less do-
minant. As expected, the propagation time increases
with each SMO in the evolution.

Further, the time taken by a SELECT operation
in a column-store compared to row-stores is signifi-
cantly smaller. We attribute this to the heavily read-
optimized storage structures in column-stores. For
many SMOs, the propagation logic joins auxiliary ta-
bles with the data tables, which works perfectly with
the query processing patterns of column-stores.

We conduct the same evaluation for insert ope-
rations and present the results in Figure 5b. Again,
the propagation overhead increases for both row- and
column-stores when moving from BLUE schema to
GREEN schema. The complex decomposition with
a foreign key between GREEN_2 and GREEN_3 re-
quires the generation of new surrogate key values
and causes a steep rise in the propagation over-
head. Between GREEN_3 and GREEN the rise
is not that high as we merely rename a column.
In GREEN(migrated), the data schema matches the
green access schema; hence, the propagation is no
longer required and the performance goes back to nor-
mal. Comparing row- and column-store, we now see
that row-stores perform better for insert operations: In
the worst case scenario, the propagation overhead for
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inserts in a column-store is around factor 6.5 while it
is only factor 4.5 for row-stores.

Figures 5c and 5d show the propagation overhead
for update and delete operations. Again, the propa-
gation time increases with each SMO in the evolution
and drops down again after the migration. In com-
parison to the GREEN(migrated) schema version, the
worst case propagation overheads for both row- and
column-stores are two orders of magnitude higher.
Further, the worst case for an update operation in a
column-store is roughly 2.3 times higher than in a
row-store. Similarly, it is around 2 times higher for
a delete operation.

Finally, a word on the effect of the number of re-
cords on the propagation overhead. For an insert ope-
ration, the propagation overhead grows roughly the
same for 100 and 1000 records; however, the base-
line value for 1000 record is already 8.6 times higher.
Whereas, a select operation generally causes a higher
overhead with growing batch sizes—since the query
execution is often below millisecond, there might be a
measuring error attached. The update and delete ope-
rations show roughly similar overhead growths for the
two batch sizes since both operations require to find
the affected records before writing. While the blue
access schema allows deleting and updating the whole
batch with one single statement, the row-wise triggers
are fired for every affected row in the green version.
Summary. As expected, the propagation overhead in-
creases with the number of SMOs in the evolution.
Further, column-stores facilitate significantly faster
reading but row-stores allow faster writing. Hence,
the common advantages and disadvantages of row-
and column-stores also hold for the fixed data access
patterns determined by the used SMOs.

4.1.2 Row-wise vs. Statement-wise Trigger

The propagation of write operations through sequen-
ces of SMOs is implemented with instead-of triggers.
We show that statement-wise triggers are more feasi-
ble than common row-wise triggers, since they cause
a significantly smaller propagation overhead. Figu-
res 6a to 6¢ show the propagation overhead for insert,
update, and delete operations respectively. Again,
GREEN(migrated) is taken as the baseline. For in-
stance, in Figure 6a the duration of inserting 100 re-
cords at GREEN_3 with row-wise triggers is 3.73 ti-
mes higher than at GREEN(migrated).

Figure 6a shows the performance comparison of
row-wise vs. statement-wise triggers for insert ope-
rations. In both the cases, as we move along the
SMOs in the evolution, the propagation overhead in-
creases. The worst case propagation overhead for
statement-wise trigger for batch size of 1000 is 1.23
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Figure 6: Comparing row-wise and statement-wise triggers.

times that of the baseline value. With row-wise trig-
ger, the propagation overhead is 4.28 times which is
still around 3.6 times higher than that of statement-
wise triggers. Hence, insert operations can greatly
benefit from statement-wise instead-of triggers.
Figures 6b and 6¢ show the same measurements
for update and delete operations. Similarly, the up-
date and delete operations show an increasing pro-
pagation overhead when moving along the sequence
of SMOs. The worst case propagation overhead with
row-wise triggers is two orders of magnitude more
than the baseline value for both the update and the
delete operation. The propagation overhead for upda-
ting the GREEN schema version with batch size 1000
is 208 times the baseline values—doing the same with
statement-wise triggers is only a factor of 2.9, which
is roughly 69 times below row-wise triggers. Similar
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behavior can be seen for the delete operation as well.
Summary. The comparison between a row-wise and
statement-wise trigger showed that the latter performs
significantly better. Instead of propagating the write
operation for every single affected record with row-
wise triggers, we merely propagate different write sta-
tements that can affect multiple records. Hence, we
deem statement-wise instead-of-triggers as essential
to reduce the propagation overhead of write operati-
ons on the green version to an acceptable level.

4.1.3 Migration Overhead via DECA

After the developers and testers confirm the new green
version, we use DECA to actually migrate the da-
tabase. At the same time, the cloud application
platform—Cloud Foundry for instance—moves all
users to the already deployed green version, so we
can turn off the former blue version. During the mi-
gration phase, there are many operations carried out
apart from the data migration. In order to understand
the actual impact of the database migration time, we
isolate the actual data migration. We compare the re-
sult to a simple table migration operation where the
same amount of data is copied from one table to anot-
her table with the same schema. We start our migra-
tion for 150,000 records and then move to 1,000,000
then 5,000,000 and finally to 10,000,000 records. For
each record set size, we run the migration five times,
exclude the highest and the lowest migration times,
and take the average of the rest.

Figure 7 shows the times taken for the migration
via DECA as a factor of the simple migration. For
DECA, we record a slightly higher migration time
because it needs to read the values via the sequence
of SMOs before writing them in the migrated data
schema. The migration time with DECA is close to
that of a naive migration and it scales nicely with the
number of records. The more records the higher the
cost for the actual data movement and the smaller the
impact of the data access propagation for reading.
Summary. The migration time with DECA is mainly
determined by the actual transfer of the data—the
overhead introduced by the migration through the se-
quence of SMOs is negligibly small.
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4.2 Single SMO Evolution

GREEN
£l R (migrated)

After the general evaluation of our exemplary scena-
rio, we now deep dive into the propagation overhead
of single SMOs and analyze them in isolation. The
knowledge about the different characteristics of the
different SMOs helps developers to design and plan
evolutions/migrations more profoundly.
Setup. We use a row-store with statement-wise trig-
gers. The general setup is shown in Figure 8. The
green version contains one or two simple tables that
are loaded with 150,000 sample records. We obtain
the green version by applying exactly one SMO at a
time. Again, we execute read and write operations
of 100 or 1000 records on the green schema version.
The baseline is the execution time with data being al-
ready migrated to the green data schema. Before the
migration, the operations take more time on the green
schema version, as they need to be propagated to the
blue data schema first. The factor of this measured
time compared to the baseline is the overhead that is
actually caused by the respective SMO. The overhead
for read operations is in the range below milliseconds
and thereby subject to measuring errors; hence, we
focus on the write operations here. E.g., in Figure
9a, propagating an insert operation with 100 records
through the ADD COLUMN SMO from the green to
the blue schema version takes 1.1 times as long as
executing it directly on the migrated green schema.
Figure 9a shows the overhead of propagating an
insert operation through the different SMOs. In gene-
ral, the overhead caused by insert operations are very
small—usually below 10%. Merely, the SMOs that
involve writing to multiple tables show higher propa-
gation overhead. Assume we join two tables from the
blue schema to one table in the green schema. Whe-
never we insert data to the joint view in the green
schema version, we need to write to the two data ta-
bles. Similarly, the partitioning and the decompo-
sition on a foreign key involve auxiliary tables that
cause a noticeable overhead. Another interesting ob-
servation is that the relative overhead decreases when
we write more records. We use a statement-wise trig-
ger: the time for transforming the statement from
the green to the blue version are independent of the
number of records. Hence this overhead is negligible
small compared to writing more and more records.
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Figures 9b and 9c¢ show the same evaluation for

update and delete operations respectively. Again,
SMOs that involve multiple joins or write operations
on multiple tables have a higher propagation over-
head. For instance, propagating an update through
a DECOMPOSE ON FK SMO involves executing a
join and updating both data tables and auxiliary ta-
bles. As a result, it is 3 times slower than the baseline
for batches of 100 records. Further, e.g., the propa-
gation of a delete operation through a JOIN ON PK
involves deleting records from both the tables in the
blue data schema, which causes a 5.9 times higher
execution time for 100 records.
Summary. Generally, the overhead for propagating
write operations through single SMO is very small.
Merely SMOs that involve multiple joins or writing
to multiple tables, can cause higher overheads. These
insights help developers to better plan resources for
development, testing, and migrations.
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S CONCLUSION

Reacting to changing wishes and requirements of cu-
stomers as fast as possible is crucial for economic
success. The pace of implementing business decisi-
ons is often limited by evolving the company’s IT-
system accordingly. We can quickly evolve applica-
tions with agile refactoring-based software develop-
ment methods and deploy them seamlessly with blue-
green deployment in cloud application platforms. Ho-
wever, this does only work as long as no database is
involved, which is rarely the case. Evolving both the
database schema and the data without corrupting the
data is still an error-prone and expensive challenge—
not to mention co-existing schema versions for the
blue-green deployment.

Our goal was to make the database evolution in
cloud application platforms just as simple and ro-
bust as the evolution of the application code. There-
fore, we discussed current advances of agile database
evolution in the literature in Section 2. Researchers
adapt the refactoring-based evolution from applica-
tion code to databases by equipping developers with
SMO-based DELs. SMOs carry enough information
to evolve and migrate the database automatically and
to let schema versions co-exist in a database—writes
in one version are immediately visible in all other ver-
sions and each schema version is guaranteed to be-
have like a regular single-schema database.

This is exactly, what we needed to extend the
seamless blue-green deployment of cloud applicati-
ons to the database layer. In Section 3, we presen-
ted an architectural blueprint of our tool DECA. De-
velopers write SMO-scripts to easily create a new
green schema version that co-exists with the blue pro-
duction version. This allows intensive development
and testing without limiting the availability of the ap-
plication. After testing, developers migrate the data-
base with a click of button, hence DECA eliminates
the risk of faulty evolutions and corrupted data during
both the evolution and the migration of the database.

Finally, we presented an extensive evaluation of
DECA in Section 4. There is an overhead for pro-
pagating read/write operations from the green access
schema to the blue data schema. However, we have
shown that this overhead can be reduced to a mini-
mum by using a row-store database with statement-
wise instead-of triggers. Developers can safely use
DECA to evolve and migrate the database very
quickly without the risk of corrupting the data and
with a reasonable performance overhead. In sum, the
blue-green deployment of cloud applications inclu-
ding a database now facilitates fast and solid imple-
mentations of spontaneous business decisions.
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