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Abstract: Ultra-wideband has been widely used for accurate wireless indoor localization systems due to accurate 
ranging measurement capability. There are several methods for ranging-based localization systems: iterative 
methods, linear closed-form solutions, model-based filters, etc. These methods have their advantages and 
disadvantages. In this paper, the characteristics of these methods are analysed and a cubature Kalman filter-
based localization method is presented to improve the localization performance in various indoor 
environments. 

1 INTRODUCTION 

In the indoor space, location information is used as 
key information for robot control and distribution 
control as well as various location-based services. 
The location estimation technique can be divided 
into a sensor based and a communication based, and 
the communication based localization is performed 
using distance data, angle data, and signal strength 
data obtained through communication. In this paper, 
distance measurement based localization techniques 
are discussed (Kolodziej and Hjelm, 2006; Banani et 
al., 2013; Silva and Hancke, 2016). 

In order to measure the distance based on 
communication, time-of-arrival (ToA) technique is 
used when the nodes are synchronized with each 
other, and two-way-ranging (TWR) technique is 
used when the time synchronization is not achieved. 
Recently, accurate localization systems have been 
developed by using Ultra-Wideband (UWB) which 
can measure accurate distance easily by TWR 
technique. The UWB can acquire distance 
measurements with a resolution of 30cm or less by 
using microwave having a bandwidth of 500Mhz or 
more (Oh et al., 2009; Cho, 2014). In addition, the 
UWB signal has a higher obstacle transparency, 
which is higher than other signals in the indoor 
space. However, additional distance measurement 
errors due to multipath signals can not be avoided in 
indoor space (Lee and Scholtz, 2002; Lee et al., 
2013; Yan et al., 2013; Cho, 2014; Silva and Hancke, 

2016). In this environment, various localization 
algorithms show different performance. 

In this paper, various localization methods are 
summarized; iterative least squares (ILS) method, 
direct solution (DS) method, and difference of 
squared ranging measurements (DSRM) method. 
The advantages and disadvantages of each method 
are analyzed and a cubature Kalman filter (CKF)-
based localization filter is designed to avoid the 
disadvantages. The CKF-based localization filter 
enables state variable expansion to estiamte the 
channel-specific error and is left as a future study. 
After analyzig the properties of the methods in 
equation expansion, it is shown that the performance 
of the CKF-based localization method is superior to 
other methods in indoor environment through 
simulation results. 

2 WIRELESS LOCALIZATION 
METHODS 

For wireless localization, the following ranging 
measurement equation is most basic (Cho et al., 
2017). 

 

2 2( ) ( )i i M i M i ir x x y y b w       (1)
 

where ir  is the ranging measurement between an 

anchor node (AN) i and a mobile node (MN), 
[ ]T

i ix y  and [ ]T
M Mx y  are the locations of the AN 
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i and MN, respectively, bi is the non-Gaussian error, 
and wi is the white Gaussian noise. 

Various methods for estimating the location of 
MN based on this equation have been studied 
(Mendel, 1995; Biton et al., 1998; Arasaratnam and 
Haykin, 2009; Cho and Kim, 2013). In this section, 
the advantages and disadvantages of these methods 
are analysed and finally a location estimation filter 
based on the CKF is designed. 

2.1 Iterative Least Squares 

To linearize the nonlinear equation (1), in the ILS 
method, the first order Taylor series expansion of 
equation (1) is performed using the nominal point 
that is initially set. The linearized equation can be 
yield as following matrix form. 

 

R HX W   (2)
 

where 
 

[ ]T
M MX x y   (3a)
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In this equation, n is the number of the ANs, 
[ ]T

M Mx y  is the nominal point, and ir  is the 

calculated range using the nominal point as 
2 2( ) ( )i M i Mx x y y   . The nominal point error 

can be estimated as follows (Mendel, 1995): 
 

1ˆ ( )T TX H H H R  (4)
 

The location of the MN can be updated as 
 

ˆ ˆ
ˆ

MM

MM ILS

xx
X

yy

   
    
  

 (5)

 

This process is iterated until ˆ ˆTX X  is smaller than 
the threshold that is set previously. In this process, 
two main issues have to be considered: the large 
initial error of the nominal point may cause local 
minimum problem; the non-Gaussian error as well 
as the Gaussian noise cannot be taken into account. 
The former problem can be solved using the 

particular algorithm. However, it is difficult to 
overcome the latter problem and this causes 
unavoidable localization errors. 

2.2 Direct Solution 

In the DS method, the measurement errors in the 
equation (1) are ignored, then the both sides of (1) 
are squared to remove the square root. The DS 
method yields a closed-form solution as follows 
(Biton et al., 1998): 

 

2ˆ ( 1) 4
ˆ 2

i i
M
i
M DS

x b b ac
L A B

ay

               
 (6)

 

where {1, 2}i , 
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[ 1 1]TB     (7d)

( )Ta LB LB  (7e)

(2 ) 1Tb LA LB   (7f)

( )Tc LA LA  (7g)
 

The DS method has two candidate solutions, and one 
of them is selected based on the measurement 
residual calculated as 

 

 2
2 2

1

ˆ ˆ( ) ( ) ( )
n

i i
j j M j M

j

e i r x x y y


       (8)

 

The reduction of the computational burden is the 
merit of the DS method in comparison to the ILS 
method. There is the red sea zone (RSZ) problem, 
however, caused according to the relations among 
the locations of the ANs and MN (Cho and Kim, 
2013). Also, the neglect of the measurement errors is 
the same as the ILS method. 

2.3 Difference of Squared Ranging 
Measurements 

The DSRM method, on the other hand, does not 
ignore the measurement errors. This method makes 
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the squared ranging measurements equations by 
squaring the both sides of the equation (1). One of 
the ANs is selected as a common node. Then, the 
DSRM equation is formulated by subtracting each 
squared ranging measurement equation of ANs from 
that of the common node as follows (Cho and Kim, 
2013): 
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where V contains the measurement errors. 
The location of the MN can be calculated as 
 

1 1 1
ˆ

( )
ˆ
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y
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where [ ]TZ E V V   can be calculated by assuming 

the non-Gaussian error is Gaussian noise. 
The important thing in this method can be 

confirmed in the process of calculating ,j C  as 
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where 
 

2 2 2 2
C C j jx y x y      (12a)

2 2( ) / 2j j C C j CB r b r b b b     (12b)

j j C CC b w b w   (12c)

2 2( ) / 2j j C C j CV r w r w w w     (12d)
 

The last three terms in this equation are related to 
the measurement errors, and there are several 
considerations: the size of the Gaussian noise is 
smaller than that of the non-Gaussian error; the non-
Gaussian error is always positive numbers; and the 
last term V is considered in the equation (9) by Q. 
Based on the first consideration, it can be guessed 
that C is too small. Also B is analysed as a relatively 
small number due to the second consideration. 
Therefore, the DSRM method can yield more 
accurate solutions than ILS and DS methods even in 
the case of the measurement error that is not 
Gaussian. 

2.4 Cubature Kalman Filter 

The measurement equation the equation (1) is 
nonlinear. So, nonlinear Kalman filters such as 
extended Kalman filter, unscented Kalman filter 
(UKF), CKF, etc. can be used in the wireless 
localization. For the system model of the Kalman 
filter, a constant velocity (CV) model or constant 
acceleration model can be selected in the light of the 
dynamics of the MN. In this paper, the localization 
filter is designed using the CKF with a CV model. 

CKF is the cubature rule-based approximate 
Bayesian filter, and the performance of the 3rd-
degreee CKF is similar to that of UKF (Arasaratnam 
and Haykin, 2009; Jia et al., 2013). If the CV model 
is defined in the 2-D coordinate frame, 2N cubature 
points ( , 1, 2, , 2i i N   , N is the system dimension, 

that is 4) are generated, and then time-propagated as 
follows: 
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where dt is the time interval of the measurement 
acquisition, and the indices 1, 2, 3, and 4 denote 
location and velocity of x and y axes, respectively. 

The time-propagated state vector and covariance 
matrix are calculated as follows: 
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where Q is the process noise covariance matrix. 
Then, measurement-update of the state vector 

and error covariance matrix is performed as 
 

ˆ ˆ ˆ( )k k k k kx x K y z     (16) 

T
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ˆˆ[ r ]T

i k i k n i ky r     (18b) 

and the other parameters can be obtained in 
(Arasaratnam and Haykin, 2009). 
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New cubature points are generated as 
 

,
ˆ[1]i k k i kS N x    (19)

 

where Sk can be calculated using the Cholesky 
factorization as T

k k kP S S . 

The Kalman filter estimates the state variables 
using the systems equations as well as the 
measurements. That is, the model-based localization 
filtering can yield more accurate location solutions 
than the model-free localization methods when the 
model reflects the movement of the MN as it is. So, 
the solution of the Kalman filter can have good 
features of a low-pass filter. Also, the effect of the 
non-Gaussian measurement errors can be 
diminished. 

3 SIMULATION ANALYSIS 

To analyse the performance of the several model-
free and model-based localization methods, some 
simulations are performed. In these simulations, it is 
assumed that the wireless communication infra used 
for localization is the UWB, so the noise of the 
ranging measurements is set to 2(0, (0.3 ) )N m . In 

addition, the non-Gaussian error denoted in (1) is 
defined as 2| (0,(1.5 ) ) |N m . The size of the test area 

is set to 20 m  15 m, and four ANs are installed in 
the area for the first simulation. 

Figure 1 shows the comparative results of the 
localization methods. In this figure, four circles in 
the corners of the test area denote the ANs. Based on 
the error statistics, 1000 ranging measurements are 
generated each in the 24 fixed reference locations. 
The location of the MN is calculated using the 
individual localization method and, then, the 
location error is calculated. In this figure, the sized 
of the circles denote the comparative mean values of 
the location errors. 

From the outcome of this simulation results, it 
can be stated that (i) the performance of the DS 
method may be degraded according to the test 
location due to the RSZ problem as can be seen in 
the top right of figure 1(b); (ii) among the model-
free methods, the DSRM method has better 
localization performance than the DS and ILS 
methods because the non-Gaussian errors can be 
somewhat diminished in the DSRM method; and (iii) 
the location solution of the CKF is more accurate 
than the model-free methods because it uses the 
dynamic model of a MN as well as the ranging 

measurement. The location errors at each test 
location are summarized in Table 1. 

 

 
(a) ILS method 

 
(b) DS method 

 
(c) DSRM method 

 
(d) CKF 

Figure 1: Simulation 1 – comparative localization errors 
according to the localization methods. 
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Table 1: Summary of Simulation 1 (1000 Samples). 

Errors 
Localization Methods 

DS ILS DSRM CKF 

Mean [m] 2.559 1.248 1.071 0.723 

Std. [m] 1.035 0.794 0.609 0.274 
 

 
(a) an example of the localization (2 m, 2 m) 

 
(b) localization errors (2 m, 2 m) 

 
(c) an example of the localization (5 m, 2.5 m) 

 
(d) localization errors (5 m, 2.5 m) 

Figure 2: Simulation 2 – comparative results according to 
the localization methods in the small area. 

Another simulation is performed and the results 
are shown in Figure 2. In this simulation, the small 
test area is set to 8 m  3 m and three ANs are 
installed in the test area denoted in Figure 2(a) and 
2(c). Figure 2(a) and 2(b) are the results of the 
localization of the MN located in (2 m, 2 m), where 
the RSZ problem does not occur (Case 1). Figure 2(c) 
and 2(d) are the results of the localization of the MN 
located in (5 m, 2.5 m) where the RSZ problem 
occurs (Case 2). 

In the Case 1, the results of the DS and ILS 
methods are similar, and that of the DSRM is 
improved. The CKF yields more accurate and stable 
solutions irrespective of the measurement error as 
well as noise. In the Case 2, the performance of the 
DS method is degraded due to the RSZ problem. In 
this case, the results of the DS and ILS methods may 
be out of the test area. The simulation results are 
summarized in Table 2. 

Table 2: Summary of Simulation 2 (1000 Samples). 

Test 
Loc. 

Localization Methods 

DS ILS DSRM CKF 

Mean Value of the Location Errors [m] 

Standard Deviation of the Location Errors [m] 

2, 2 
0.771 0.814 0.586 0.463 

0.436 0.510 0.358 0.069 

5, 2.5 
1.451 0.858 0.636 0.527 

0.597 0.498 0.417 0.189 

4 CONCLUSIONS 

In this paper, several wireless localization methods 
using the ranging measurements are reviewed when 
the measurements include non-Gaussian errors as 
well as Gaussian noise. The measurement errors are 
considered as always positive. The localization 
methods analysed in this paper are ILS, DS, and 
DSRM methods for model-free methods, and CKF 
for model-based Kalman filtering. First, the 
characteristics of each method are analysed based on 
the expansion of the localization equations. Then, 
some simulations are carried out to verify the 
performance of the localization methods under the 
measurement error occurrence. The simulation 
results show that the relative location errors of the 
DSRM method compared with the DS and ILS 
methods are 41.8% and 85.8%, respectively. Also, 
the relative location errors of the CKF compared 
with the DS, ILS and DSRM methods are 28.2%, 
57.9% and 67.5%, respectively. Consequently, it can 
be concluded that the DSRM method can yield 
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comparatively more accurate location solution 
among the model-free localization methods when 
the ranging measurements contain non-Gaussian 
errors with positive numbers In addition, the model-
based Kalman filtering can enhance the localization 
performance compared with the model-free 
methods. 
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