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Abstract: Many recent studies have experimented the software fault prediction models to predict the number of software
faults using statistical and traditional machine learning techniques. However, it is observed that the perfor-
mance of traditional software fault prediction models vary from dataset to dataset. In addition, the performance
of the traditional models degrade for inter release prediction. To address these issues, we have proposed li-
near homogeneous ensemble methods based on two variations of extreme learning machine, Differentiable
Extreme Learning Machine Ensemble (DELME) and Non-differentiable Extreme Learning Machine Ensem-
ble (NELME), to predict the number of software faults. We have used seventeen PROMISE datasets and five
eclipse datasets to validate these software fault prediction models. We have performed two types of predicti-
ons, within project defect prediction and inter release prediction, to validate our proposed fault prediction
model. The experimental result shows consistently better performance across all datasets.

1 INTRODUCTION

Software fault is an error in a software system that
causes a software system to behave abnormally or
to provide an unexpected result. Earlier prediction
of software faults help the software quality assu-
rance team to allocate the limited number of resour-
ces, before releasing of a software (Ostrand et al.,
2005; Menzies et al., 2007). Most of the resear-
chers have successfully experimented the software
fault prediction models to predict faulty or non-faulty
modules in a software project using different types
of classification techniques (He et al., 2012; Bowes
et al., 2017; Li et al., 2016). In this paper, we have
used regression techniques to predict the number of
software faults in the release of a software.

Most of the earlier works have successfully de-
ployed statistical and traditional machine learning
techniques to build the software fault prediction mo-
dels. These classification learning techniques incor-
porate logistic regression (James et al., 2013), arti-
ficial neural network (Schmidhuber, 2015), support
vector machine (Ben-Hur et al., 2001), decision tree
(Quinlan, 1987), etc. Other regression techniques in-
cluding Poisson regression (Lambert, 1992), decision
tree regression (Quinlan et al., 1992), negative bino-
mial regression (Greene, 2003), etc., have also been
applied successfully to predict the number of software

faults and fault densities in a software project. Some
researchers have also used different types of ensem-
ble techniques such as bagging, boosting and stacking
approach to predict the number of software faults (Ra-
thore and Kumar, 2017b; Rathore and Kumar, 2017c)
and classify the faulty or non-faulty modules (Li et al.,
2016) in a software project.

Recently, most of the researchers have success-
fully deployed extreme learning machine for both
classification and regression purpose in a wide appli-
cation area (Huang et al., 2012; Huang et al., 2015;
Rong et al., 2008). Following are some key features
that motivated to use extreme learning machine for
our experiment : (1) it is a faster technique in terms of
computation time, (2) it produces better accuracy due
to minimum norm output weight optimization met-
hod, (3) it has good generalization capability and (4)
it can find the position of global minima with more
accuracy (Huang et al., 2006b). Due to this reasons,
we will present the extreme learning machine (ELM)
based ensemble in this paper.

Following are the contributions of this paper:

1. Extreme learning machine has not been explored
till now to predict the number of software faults.

2. We have proposed linear homogeneous ensem-
ble models for two variations of ELM, Diffe-
rentiable Extreme Learning Machine Ensemble
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(DELME) and Non-differentiable Extreme Lear-
ning Machine Ensemble (NELME), to predict the
number of software faults.

3. We have deployed proposed ensemble models for
both within project defect prediction and inter re-
lease prediction. The experimental results shows
that the proposed ensemble models have consis-
tent accuracy for both prediction scenario across
all datasets.

It is intended to answer following research questi-
ons from this work:
RQ 1. Is ELM based ensemble model prediction more
accurate than single predictor?
RQ 2. How does differentiable activation function ba-
sed ensemble model perform as compared to the non-
differentiable activation function based ensemble mo-
del for prediction of number of faults ?
RQ 3. Can we use differentiable and non-
differentiable function as activation function in
ELM to build ensemble model for prediction of
number of faults?

The rest of paper is organized as follows. Section
2 describes the related works of the software fault
prediction. Section 3 explains about proposed li-
near homogeneous ensemble model to predict soft-
ware faults. Section 4 describes the experimental se-
tup for proposed model. Section 5 presents the de-
tail experimental analysis and results of the proposed
model along with its comparative analysis. Section 6
presents threats to validity followed by conclusion in
section 7.

2 RELATED WORKS

Many researchers have deployed statistical and tra-
ditional machine learning techniques to predict the
number of software faults in last two decades. We
have explained some related works on software fault
prediction in terms to predict the number of software
faults and the use of ensemble models for software
fault prediction.

Rathore et al. (Rathore and Kumar, 2017b) propo-
sed two types of linear and non-linear heterogeneous
ensemble models to predict the number of software
faults. Fifteen PROMISE datasets had been used to
perform the experiments. The experiment conducted
for two scenarios of prediction, inter release and intra
release prediction. From the experimental results, it
is observed that the presented ensemble models per-
form better than single predictor based software fault
prediction models.

Li et al. (Li et al., 2016) proposed a three way

decision based ensemble classifier to classify the soft-
ware modules being faulty or non-faulty and also rank
the software faulty modules. The ensemble model
was compared with traditional two way decision ba-
sed classifier over NASA datasets. The experimental
results found that the proposed ensemble model pro-
vides higher prediction accuracy and lower decision
cost as compared to two way decision classifier. In
addition, the proposed ensemble model performs bet-
ter as compared to the traditional classifier for ranking
of software faulty modules.

Laradji et al. (Laradji et al., 2015) developed an
ensemble classifier to classify the software modules
into faulty or non-faulty modules using some selected
features. The work suggested that greedy forward fe-
ature selection method outperformed on testing data-
sets. The experimental results found that the proposed
ensemble model achieved higher AUC performance
measure as compared to other conventional models.

Rathore et al. (Rathore and Kumar, 2017c) pro-
posed a heterogeneous ensemble model based on li-
near and non-linear combinational rule for prediction
of number of software faults. Eleven PROMISE data-
sets and seven eclipse datasets had been used to per-
form the experiments. The experimental results found
that the ensemble model had better prediction accu-
racy than single predictor across all datasets.

Graves et al. (Graves et al., 2000) proposed a
software fault prediction model using generalized li-
near regression for prediction of software faults. The
experiment has been performed using different types
of change metrics collected from large switching sy-
stem project dataset. The experimental results sug-
gested that the proposed model produced poor pre-
diction accuracy due to size of the module and other
complexity metrics. The model performed well when
the combination of different metrics are used.

Ostrand et al. (Ostrand et al., 2005) developed a
software fault prediction model using negative bino-
mial regression for prediction of software faults. Da-
tasets from two large industrial projects had been used
to perform the software fault prediction model. From
the experimental results, it is found that the accuracy
of negative binomial regression model was consistent
across all industrial datasets.

Huang et al. (Huang et al., 2006b) developed an
efficient learning technique called extreme learning
machine for both classification and regression purpo-
ses. The experimental results found that the learning
speed of extreme learning machine is relatively faster
and it had better generalization performance than gra-
dient based learning algorithm. In addition, this lear-
ning technique can used both differentiable and non-
differentiable function as activation function. Howe-
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ver, these classification models have not been explo-
red prediction of number of software faults.

Generally, gradient based learning algorithm like
back propagation neural network takes more compu-
tational time to find the training error. If we will
use gradient based learning algorithm as base lear-
ner in the ensemble, then the computation time will
be again more. Thus, we have used extreme lear-
ning machine as base learner in the proposed ensem-
ble model. In this work, we have proposed linear ho-
mogeneous ensemble model to generate Differentia-
ble Extreme Learning Machine Ensemble (DELME)
and Non-differentiable Extreme Learning Machine
Ensemble (NELME) using extreme learning machine
to predict the number of software faults.

3 LINEAR HOMOGENEOUS
ENSEMBLE MODEL FOR
SOFTWARE FAULT
PREDICTION

In this work, we have used extreme learning ma-
chine (Huang et al., 2006b) and homogeneous ensem-
ble techniques called bagging method (Quinlan et al.,
1996) to build two types of linear homogeneous en-
semble models for prediction of number of software
faults. The details about extreme learning machine
and proposed ensemble model are explained in the
following subsection.

3.1 Extreme Learning Machine

ELM is a Single-hidden Layer Feed forward Neural
network (SLFN). Huang et al. (Huang et al., 2006b)
proposed the basic algorithm of an extreme learning
machine. Given an arbitrary training sample (xi, ti),
where, i= 1, · · · ,N and the output function of an ELM
with n hidden layer is defined by Eq. (1)

fn(x) =
n

∑
i=1

βigi(x) = Gβ (1)

Where,

G =




g1(x1) . . . gn(x1)
g1(x2) . . . gn(x2)

... . . .
...

g1(xN) . . . gn(xN)


 and

β = [β1 β2 . . . βn]
T

Where, G is the hidden layer matrix with activa-
tion function g(x), β is the output weight matrix of an
ELM network and is defined by Eq. (2).

β = G†T (2)

Where, G† is the Moore-Penrose generalized in-
verse of matrix G and T = [t1 t2 . . . tN ]T . Singu-
lar Value Decomposition (SVD) method (Golub and
Reinsch, 1970) has been used to calculate the Moore-
Penrose generalized inverse for our experiment. Hu-
ang et al. (Huang et al., 2006b) suggested that
both differentiable and non-differentiable (threshold
function) functions can be used as activation functions
in the hidden layer of ELM. A differentiable function
is a continuous function whose derivative exists at
each point in its domain, otherwise, it is called non-
differentiable function. Further, Huang et al. (Hu-
ang et al., 2006a) proved that ELM can be directly
trained over threshold networks and it improves the
generalization performance better than other learning
algorithms. ELM of non-differentiable function takes
very less time to train the network than back propa-
gation and other learning algorithms. For our experi-
ment, we have used symmetric saturating linear trans-
fer function as threshold function and sigmoid trans-
fer function as differentiable function in the hidden
layer of ELM. Sigmoid and symmetric saturating li-
near transfer functions are defined by Eq. (3) and Eq.
(4) respectively.

g(x) =
1

1+ e−x (3)

g(x) =





−1, if x≤−1
x, if −1≤ x≤ 1
1, otherwise.

(4)

3.2 Proposed Ensemble Model

An overview of proposed ensemble model based on
bagging method for software fault prediction is shown
in Fig. 1. We have designed two ensemble models na-
mely Differentiable Extreme Learning Machine En-
semble (DELME) and Non-differentiable Extreme
Learning Machine Ensemble (NELME) to predict the
number of software faults. Both differentiable acti-
vation function based extreme learning machine and
non-differentiable activation function based extreme
learning machine have been used as base learner in
DELME and NELME ensemble models respectively.
The final prediction result of the ensemble model is
combined by mean rule.
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Figure 1: An overview of proposed ensemble model for software fault prediction.

4 EXPERIMENTAL SETUP

In this section, we will present experimental setups
required to validate the proposed software fault pre-
diction model.

4.1 Preprocessing of Software Fault
Datasets

We have used seventeen PROMISE (Menzies et al.,
2015) and five eclipse (D’Ambros et al., 2010) soft-
ware fault datasets for our experiment. Datasets con-
tain Object-Oriented (OO) metrics, wmc, dit, noc,
cbo, rfc, lcom, ca, ce, npm, lcom3, loc, dam, moa,
mfa, cam, ic, cbm, amc, max cc and avg cc as inde-
pendent variables and number of faults as dependent
variable. Most of the datasets contain imbalanced
value for number of software faults. Software fault
prediction models produce very poor prediction accu-
racy due to imbalanced nature of fault datasets. So,
we have used two stage data preprocessing method
to preprocess all datasets, before training of the soft-
ware fault prediction models. First, we have balan-
ced all datasets through SMOTER algorithm (Torgo
et al., 2013). Then, we have normalized all datasets
between a range [0,1] through min−max normaliza-
tion method (Patro and Sahu, 2015). The details of
software faults datasets are explained in Table 1.

Table 1: An overview of Software fault datasets (Menzies
et al., 2015; D’Ambros et al., 2010).

Datasets # Features # Modules Defect Rate
Ant 1.5 20 293 12.26 %
Ant 1.7 20 745 28.67 %

Camel 1.2 20 608 55.1 %
Camel 1.4 20 872 19.94 %
Lucene 2.0 20 195 87.5 %
Lucene 2.2 20 247 139.8 %

Prop V4 20 3022 9.57 %
Prop V40 20 4053 12.99 %
Prop V85 20 3077 44.52 %

Prop V121 20 2998 16.51 %
Xalan 2.4 20 723 17.94 %
Xalan 2.6 20 885 86.7 %
Xerces 1.3 20 453 17.96 %
Jedit 4.0 20 306 32.46 %
Jedit 4.1 20 312 33.9 %
Jedit 4.2 20 367 15.04 %
Jedit 4.3 20 492 2.28 %
Eclipse 15 997 20.04 %
Equinox 15 324 66.15 %
Lucene 15 691 10.2 %
Mylyn 15 1862 15.15 %

Pde 15 1497 16.22 %

4.2 Performance Measures

For our experiment, we have used four performance
measures to validate the proposed ensemble model
for software fault prediction. These four performance
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measures such as average absolute error (Willmott
and Matsuura, 2005), average relative error (Willmott
and Matsuura, 2005), measure of completeness value
(Briand and Wüst, 2002) and prediction at level l va-
lue (MacDonell, 1997) and are defined as follows.

AAE =
1
k

k

∑
i=1
|(Y ′i −Yi)| (5)

ARE =
1
k

k

∑
i=1

|(Y ′i −Yi)|
(Yi +1)

(6)

Where, k is the total number of samples, Yi is the
actual number of defects and Y

′
i is the predicted num-

ber of defects. Sometimes, the ARE value provides
infinity value, when the number of bugs are zero in
the module. Thus, we have added 1 in the denomi-
nator of Eq. (6) to avoid the infinity values of ARE
performance measure (Gao and Khoshgoftaar, 2007).

MoC value =
Predicted number o f f aults

Actual number o f f aults
(7)

MoC value measures completeness of the soft-
ware fault prediction model. Nearly 100% complete-
ness value of the software fault prediction model pro-
vides best model.

Pred(l) value =
k
n

(8)

Where, k is the number of software modules whose
value must be less or equal to l and n is the total num-
ber of software modules. Pred(l) value calculates the
portion of number of software modules that are under
the threshold value of average relative errors. MacDo-
nell et al. (MacDonell, 1997) suggested that the thres-
hold value should be less than or equal to 30%. So, we
have set the threshold value to 0.3 for our experiment.

4.3 Tools and Techniques Used

We have used R studio to implement the proposed
ensemble model and other comparative models such
as extreme learning machine (Huang et al., 2006b)
and back propagation neural network (Kanmani et al.,
2007). For comparative analysis, we have imple-
mented Differentiable activation function based ELM
(D ELM), Non- differentiable activation function ba-
sed ELM (N ELM) and Back propagation neural net-
work (BPNN) along with Differentiable ELM based
ensemble (DELME) and Non-differentiable ELM ba-
sed ensemble (NELME). For balancing the imbalan-
ced datasets, we have used Weka tool to implement
the SMOTOR algorithm. We have chosen five hid-
den nodes and sigmoid transfer function as activation

function in the hidden layer for back propagation neu-
ral network. We have conducted two tailed Fried-
man’s test (Higgins, 2003) to know the significance
of the proposed model and other comparative models.

5 EXPERIMENTAL RESULTS
AND ANALYSIS

In this section, we present experimental results and
analysis of the proposed model and comparative mo-
dels for both within project defect prediction and inter
release prediction. We have used 10 fold cross valida-
tion method to perform the experiments. Each dataset
is divided into 10 equal parts. One part is used for va-
lidation, another one part is used for test, and rest part
of the dataset is used for training dataset.

5.1 Within Project Defect Prediction

In within project defect prediction analysis, we have
used PROMISE and eclipse datasets to validate the
proposed ensemble model. Table 2 describes the per-
formance analysis of five software fault prediction
models for PROMISE datasets. Table 3 describes the
performance analysis of five software fault prediction
models for eclipse datasets. Measure of complete-
ness analysis of five software fault prediction models
for within project defect prediction on PROMISE and
eclipse datasets are shown in Fig. 2 and 3 respecti-
vely. From the performance analysis of within pro-
ject defect prediction, we concluded that in most of
the cases, both differentiable ELM based ensemble
(DELME) and non-differentiable ELM based ensem-
ble (NELME) performs best.

From Table 2 and 3 , it is observed that differen-
tiable ensemble (DELME) performs best prediction
accuracy in majority cases for PROMISE datasets and
non-differentiable ensemble (NELME) performs best
prediction accuracy in majority of cases for eclipse
datasets. From Fig. 2 and 3, it is observed that
the completeness of the proposed ensemble models
as well as single predictor models perform well for
within project defect prediction analysis.

5.2 Inter Release Prediction

In inter release prediction analysis, we have used
PROMISE datasets to validate the proposed ensem-
ble model. Table 4 describes the performance analy-
sis of five software fault prediction models. Measure
of completeness analysis of five software fault pre-
diction models for inter release prediction on PRO-
MISE datasets are shown in Fig. 4. From the per-
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Table 2: Performance measure analysis of five software fault prediction models for within project defect prediction over
PROMISE datasets. Bold face values are best prediction accuracy and italic face values are second best prediction accuracy.

PROMISE datasets BPNN D ELM N ELM DELME NELME
Ant 1.7 AAE 0.0661 0.0583 0.0575 0.056 0.0694

ARE 0.0575 0.0524 0.0509 0.0476 0.0633
Pred l 99.62 98.68 99.6 98.68 98.68

Camel 1.2 AAE 0.042 0.0392 0.0448 0.0354 0.0355
ARE 0.0347 0.0366 0.0398 0.0334 0.0333
Pred l 99.71 100 99.35 100 100

Camel 1.4 AAE 0.0542 0.0413 0.0369 0.0342 0.0347
ARE 0.0486 0.0373 0.0337 0.0307 0.0317
Pred l 99.41 99.2 99.66 100 100

Prop V40 AAE 0.0235 0.0402 0.0374 0.037 0.0285
ARE 0.021 0.0369 0.0342 0.0338 0.0271
Pred l 99.63 99.37 99.46 99.53 99.76

Prop V121 AAE 0.0386 0.0406 0.0272 0.0241 0.024
ARE 0.0354 0.0373 0.025 0.0214 0.0222
Pred l 99.86 99.76 99.47 99.67 99.67

Jedit 4.1 AAE 0.0544 0.0435 0.0578 0.0423 0.0453
ARE 0.0482 0.0393 0.0494 0.0395 0.0382
Pred l 98.5 99.39 98.17 100 100

Jedit 4.2 AAE 0.0623 0.0407 0.0429 0.0494 0.0238
ARE 0.0539 0.0368 0.0387 0.0427 0.0218
Pred l 99.5 99.21 99.73 97.43 100

Xerces 1.3 AAE 0.0311 0.0271 0.0198 0.0202 0.0134
ARE 0.0284 0.026 0.0189 0.0194 0.013
Pred l 99.72 99.05 99.58 100 100

formance analysis of inter release prediction, we con-
cluded that both differentiable ELM based ensemble
(DELME) and non-differentiable ELM based ensem-
ble (NELME) performs best for almost all the data-
sets.

From Table 4 and Fig. 4, it is observed that
DELME performs best prediction accuracy as com-
pared to NELME in majority of cases. The comple-
teness of the proposed ensemble model is also impro-
ved as compared to single predictor for inter release
prediction.

5.3 Performance of Statistical Test

We have performed two tailed Friedman’s statistical
test to know whether software fault prediction mo-
dels under study are performing significantly diffe-
rent or not. Table 5 describes the Friedman’s test
analysis of within project defect prediction for both
PROMISE and eclipse datasets. Table 6 describes the
Friedman’s test analysis of inter release prediction for
PROMISE datasets. It is evident from Table 5 and 6
with p−values of less than 0.5 indicating significant
level.

We will discuss some research questions that were

defined for our proposed work.
RQ 1. Is ELM based ensemble model prediction more
accurate than single predictor?

It is evident from Table 2, 3 and 4 that our propo-
sed ensemble models show best prediction accuracy
across all datasets in both cases, within project defect
prediction and inter release prediction. The proposed
ensemble models outperform as compared to single
predictors in both prediction scenarios.
RQ 2. How does differentiable activation function ba-
sed ensemble model perform as compared to non-
differentiable activation function based ensemble mo-
del for prediction of number of faults ?

From Table 2, 3 and 4, it is observed that there is
no significant difference between two ensemble mo-
dels in terms of prediction accuracy. The measure of
completeness analysis of both ensemble models are
mostly similar for both prediction scenarios.
RQ 3. Can we use differentiable and non-
differentiable function as activation function in
ELM to build ensemble model for prediction of
number of faults?

Yes, we can use both differentiable and non-
differentiable function as activation functions in ELM
to build ensemble models for prediction of number of
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Table 3: Performance measure analysis of five software fault prediction models for within project defect prediction over
eclipse datasets. Bold face values are best prediction accuracy and italic face values are second best prediction accuracy.

Eclipse datasets BPNN D ELM N ELM DELME NELME
Eclipse AAE 0.0697 0.0558 0.0484 0.0445 0.0496

ARE 0.0604 0.0479 0.0429 0.0386 0.0448
Pred l 99.26 98.72 98.81 100 98.03

Equinox AAE 0.0539 0.0469 0.0425 0.0413 0.0283
ARE 0.0479 0.0425 0.0379 0.0359 0.0262
Pred l 99.22 98.88 99.72 100 100

Lucene AAE 0.0567 0.029 0.0272 0.0265 0.0344
ARE 0.0571 0.029 0.0244 0.0251 0.0303
Pred l 99.75 99.59 99.72 100 98.64

Mylyn AAE 0.0456 0.033 0.0406 0.0315 0.0251
ARE 0.0419 0.0309 0.0379 0.0291 0.0237
Pred l 99.84 99.54 98.67 100 100

Pde AAE 0.0242 0.0192 0.0231 0.0126 0.0109
ARE 0.0231 0.0161 0.0214 0.0121 0.0106
Pred l 99.92 99.54 98.63 99.01 100

Figure 2: Measure of completeness analysis of five software fault prediction models for within project defect prediction over
PROMISE datasets.

Figure 3: Measure of completeness analysis of five software
fault prediction models for within project defect prediction
over eclipse datasets.

faults. From Table 2, 3 and 4, it is observed that both
proposed ensemble models provide similar prediction
accuracy in both prediction scenarios.

6 THREATS TO VALIDITY

In this section, we have described some possible thre-
ats that might affect our prediction results.

Figure 4: Measure of completeness analysis of five soft-
ware fault prediction models for inter release prediction
over PROMISE datasets.

Internal Validity. In this work, we have used li-
near homogeneous technique called bagging method
to build the software fault prediction model for pre-
diction of number of software faults. Other types
of ensemble techniques such as linear and nonlinear
homogeneous ensemble methods, etc. may gene-
rate different prediction accuracy. Many researchers
have used object oriented metrics (Rathore and Ku-
mar, 2017a; Rathore and Kumar, 2017b; Rathore and
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Table 4: Performance measure analysis of eight software fault prediction models for inter release prediction over PROMISE
datasets. Bold face values are best prediction accuracy and italic face values are second best prediction accuracy.

PROMISE datasets BPNN D ELM N ELM DELME NELME
Ant 1.5 - Ant 1.7 AAE 0.1225 0.1111 0.0964 0.0636 0.0682

ARE 0.1062 0.1037 0.0899 0.0567 0.0606
Pred l 90.8 96.84 98.81 98.55 98.94

Prop v4 - Prop v40 AAE 0.0734 0.0413 0.0455 0.0398 0.0396
ARE 0.0637 0.038 0.042 0.0365 0.0363
Pred l 98.41 99.46 99.25 99.53 99.39

Prop v4 - Prop v85 AAE 0.0314 0.029 0.0306 0.0261 0.0289
ARE 0.0292 0.027 0.0286 0.0244 0.0271
Pred l 99.74 99.68 99.58 99.82 99.63

Camel 1.2 - Camel 1.4 AAE 0.061 0.0597 0.037 0.0363 0.0354
ARE 0.0525 0.0514 0.0335 0.0328 0.0319
Pred l 99.27 99.2 99.32 99.66 99.66

Jedit 4.3 - Jedit 4.0 AAE 0.0983 0.0935 0.0602 0.0528 0.0655
ARE 0.0837 0.0792 0.0515 0.0468 0.0553
Pred l 92.1 96.26 97.19 98.75 98.13

Xalan 2.5 - Xalan 2.6 AAE 0.0768 0.0761 0.0761 0.0775 0.078
ARE 0.0683 0.0669 0.0668 0.0691 0.0687
Pred l 99.09 99.32 99.32 99.54 98.64

Lucene 2.0 - Lucene 2.2 AAE 0.0344 0.0416 0.0347 0.0317 0.032
ARE 0.0316 0.0383 0.0328 0.0296 0.0291
Pred l 99.59 99.19 99.19 100 99.59

Table 5: Friedman’s statistical test analysis for within pro-
ject defect Prediction.

Promise datasets (α = 0.05)
χ2 value df p-value

AAE 10.1 4 0.038
ARE 10 4 0.04

Eclipse datasets (α = 0.05)
χ2 value df p-value

AAE 14.24 4 0.0065
ARE 13.28 4 0.0099

Table 6: Friedman’s statistical test analysis for inter release
Prediction.

Promise datasets (α = 0.05)
χ2 value df p-value

AAE 12.57 4 0.013
ARE 11.08 4 0.025

Kumar, 2017c; Laradji et al., 2015; Nam et al., 2017)
as independent variables to train the fault prediction
model. We have used object oriented metrics of PRO-
MISE datasets to validate the proposed ensemble mo-
dels. Other software metrics can be used for pre-
diction of number of software faults.
External Validity. The experiments have been per-
formed over publicly available open source datasets.
Some industrial software fault datasets may contain

different types of defect pattern and that new types of
defect pattern may affect our prediction analysis. To
resolve this issue, we have developed ensemble mo-
dels using both differentiable and non-differentiable
activation functions of extreme learning machine.
Conclusion Validity. We have used Min Max nor-
malization algorithm to normalize the software fault
datasets. For balancing the imbalanced datasets, we
have used SMOTER algorithm to balance all imbalan-
ced datasets. Other types of normalization techniques
and preprocessing algorithms can be used to prepro-
cess the datasets.

7 CONCLUSION

In this paper, we have proposed linear homogeneous
ensemble models using extreme learning machine for
prediction of number of software faults. For better
prediction accuracy, we have used two stage data pre-
processing to preprocess the datasets, before training
the software fault prediction models. Seventeen PRO-
MISE datasets and five eclipse datasets have been
used to validate the proposed ensemble model. We
have used two types of activation functions, diffe-
rentiable function and non-differentiable function, for
extreme learning machine to build the ensemble mo-
del. From the experimental results and analysis, it is
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observed that ensemble using differentiable function
based ELM as well as non- differentiable function ba-
sed ELM outperform as compared to other methods
across all datasets for both prediction scenarios within
project defect prediction as well as inter release pre-
diction. Overall, the proposed ensemble models have
consistent prediction accuracy across all datasets for
both prediction scenarios.
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