
Investigating Order Information in API-Usage Patterns:
A Benchmark and Empirical Study

Ervina Çergani1, Sebastian Proksch2, Sarah Nadi3 and Mira Mezini1
1Software Technology Group, Technische Universität Darmstadt, Darmstadt, Germany

2Software Evolution and Architecture Lab, University of Zürich, Zürich, Switzerland
3Department of Computing Science, University of Alberta, Alberta, Canada

Keywords: API Usage Pattern Types, Code Repositories, Events Mining, Empirical Evaluation, Benchmark.

Abstract: Many approaches have been proposed for learning Application Programming Interface (API) usage patterns
from code repositories. Depending on the underlying technique, the mined patterns may (1) be strictly sequen-
tial, (2) consider partial order between method calls, or (3) not consider order information. Understanding the
trade-offs between these pattern types with respect to real code is important in many applications (e.g. code
recommendation or misuse detection). In this work, we present a benchmark consisting of an episode mining
algorithm that can be configured to learn all three types of patterns mentioned above. Running our benchmark
on an existing dataset of 360 C# code repositories, we empirically study the resulting API usage patterns per
pattern type. Our results show practical evidence that not only do partial-order patterns represent a generalized
super set of sequential-order patterns, partial-order mining also finds additional patterns missed by sequence
mining, which are used by a larger number of developers across code repositories. Additionally, our study
empirically quantifies the importance of the order information encoded in sequential and partial-order patterns
for representing correct co-occurrences of code elements in real code. Furthermore, our benchmark can be
used by other researchers to explore additional properties of API patterns.

1 INTRODUCTION

Application Programming Interfaces (APIs) provide
effective means for code reuse. Client developers of
an API must be aware on how to correctly use it in or-
der to avoid errors. An API usage pattern encodes a
set of API methods that are frequently used together,
optionally complemented by constraints like the order
in which methods must be called. API patterns are
used as the basis for various applications such as API
documentation generation (Montandon et al., 2013),
automated code completion (Nguyen et al., 2012),
bug or anomaly detection (Wasylkowski et al., 2007),
and code search (Zhong et al., 2009a).

Many techniques have been proposed to learn
three kinds of patterns from code repositories (Robil-
lard et al., 2013): (1) No-order patterns are unordered
sets of frequently used methods (e.g.,(Negara et al.,
2014; Nguyen et al., 2016)) and encode that calls
of methods, say a, b, and c, frequently co-occur in
code, but do not include information about the order
of calls. (2) Sequential-order patterns (e.g., (Pradel
et al., 2010; Raychev et al., 2014)) additionally en-

code facts such as that a has to be called before b, and
b before c. (3) partial-order patterns (e.g., (Nguyen
et al., 2012)) are modelled as graphs and can encode
e.g., that a must be called first, but how b or c are
called afterwards is irrelevant.

However, so far, we lack systematic studies of the
tradeoffs between the different types of patterns in
representing source code in practice. A comparison
of different pattern types with regards to some pre-
defined metrics is challenging, because each appro-
ach in the literature uses a different learning technique
with configurations specific to its data set (e.g., fre-
quency threshold), a different representation for usage
examples and patterns, and might even be specifically
tied to a particular programming language or input
form (e.g., source code vs. bytecode).

In this paper, we address this challenge and pre-
sent, to the best of our knowledge, the first empirical
comparison of API pattern types to investigate their
effectiveness in representing API usages in the wild.
The different pattern types we compare, consider con-
straints of different nature between method calls, and
thus understanding what exactly they are able to mine

Çergani, E., Proksch, S., Nadi, S. and Mezini, M.
Investigating Order Information in API-Usage Patterns: A Benchmark and Empirical Study.
DOI: 10.5220/0006839000570068
In Proceedings of the 13th International Conference on Software Technologies (ICSOFT 2018), pages 57-68
ISBN: 978-989-758-320-9
Copyright © 2018 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

57



in a concrete setting constitutes an interesting and re-
levant subject in many software engineering applicati-
ons (e.g. code recommendation or misuse detection).
To provide a fair setting, we use a common data set
of 360 open-source Github C# repositories with over
68M lines of code (Proksch et al., 2016) and adopt
an established mining algorithm that can be customi-
zed to mine all three types of patterns, episode mi-
ning (Achar et al., 2012). Episode mining is a well-
known machine learning technique used to discover
partially ordered sets of events from a stream, cal-
led episodes (patterns in our terminology). In our
setting, events are method declarations or invocations
(cf. Section 3.2). We can mine all three pattern types
by adjusting certain parameters of the episode mining
algorithm. With this experimental setup in place, we
can produce sequential, partial and no-order patterns
using the same mining algorithm and same data set.
Our experimental setup is publicly available as a ben-
chmark1, and can be used by other researchers to per-
form similar empirical studies.

In this first study, we compare pattern types in
terms of three metrics: (1) Expressiveness quantifies
the richness of the language corresponding to a pat-
tern type whose grammar rules are the mined pat-
terns. We measure expressiveness as the number of
words (i.e., derived sequences of method calls) in the
language. This measure indicates how well the mi-
ned patterns abstract over the variety of concrete API
usages observed in source code. Conceptually, one
would expect that less structure patterns encode a ri-
cher language. The question is, though, to what extent
do the differences in expressiveness between pattern
types materialize in the wild. (2) Consistency quan-
tifies the extent to which the words in the language
defined by the mined patterns are actually found in
the code. This is to judge how truthful the mined API
usage patterns represent actual API usage constraints
implicitly encoded in source code. From a practi-
cal perspective, this metric gives us insights about
the relevance of the order information encoded in se-
quential and partial-order patterns. (3) Generaliza-
bility measures whether the usages a pattern encodes
are specific to a single code context or if they gene-
ralize to multiple contexts. In language terminology,
this metric indicates whether the learned model is ap-
plicable across domains/projects or whether we learn
domain-specific languages (models). This is impor-
tant to understand the applicability of the information
encoded in the learned patterns.
The contributions of this paper are as follows:
1. We identify a general episode mining algorithm to

1http://www.st.informatik.tu-darmstadt.de/artifacts/
patternTypes/

fairly compare different pattern types and adapt it
to the domain of mining code patterns.

2. We define three metrics on which we base on the
comparison between the different pattern types:
expressiveness, consistency and generalizability.

3. We perform an empirical study that compares the
three pattern types based on the defined metrics.
The implications we find from our results help in
building better applications based on API usages.

4. We provide a public benchmark that can be used
by other researchers to evaluate additional metrics
for API usage pattern types.

2 RELATED WORK

Here, we present existing API usage mining techni-
ques and representations, and discuss other studies
that have investigated API usages in practice.

2.1 API Usage Representations

API usage representations can be divided into three
types: no-order, sequential-order, and partial-order.
No-Order Patterns. The simplest form of lear-
ning API usage patterns is to look at frequent co-
occurrences of code elements, while ignoring the or-
der these code elements occur in. Frequent item-set
mining is an example in this category and variations
of it have been commonly used (Michail, 2000; Ne-
gara et al., 2014; Nguyen et al., 2016).
Sequential-order Patterns. To take code semantics
into account, many API usage representations consi-
der order information. For example, calling the con-
structor of an API type must happen before calling
any of its methods. The patterns mined by sequence
mining encode strict sequential order between code
elements in a pattern. Existing approaches are ba-
sed on, but not limited to, using information from
the API’s source code (Acharya and Xie, 2009; Wa-
sylkowski et al., 2007), API documentation (Zhong
et al., 2009b), program control-flow structure (Ra-
manathan et al., 2007), and program execution tra-
ces (Gabel and Su, 2008; Pradel et al., 2010). Statis-
tical models have also been used to predict the next
code element (e.g. method call), given a current con-
text (e.g., sequences of already seen method calls).
Examples include n-gram language models (Raychev
et al., 2014) or statistical generative models (Pham
et al., 2016). Additionally after identifying sequen-
ces, some techniques rely on clustering to build pat-
tern abstractions (Wang et al., 2013; Buse and Wei-
mer, 2012; Zhong et al., 2009a).

ICSOFT 2018 - 13th International Conference on Software Technologies

58



Partial-order Patterns. This pattern type allows
more flexibility in representing code semantics, e.g.,
that code elements b and c must occur after code
element a, but that their order (b before or after c)
is not relevant. Graph-based techniques like Gra-
Lan (Nguyen and Nguyen, 2015), GraPacc (Nguyen
et al., 2012), and JSMiner (Nguyen et al., 2014) re-
present source code in a graph to identify frequent
sub-graph patterns. Automata-based techniques or Fi-
nite State Machine (FSM) represent code as a set of
states (e.g. method calls) and a transition function be-
tween the states. The framework by (Acharya et al.,
2007) extract API usage patterns directly from client
code. This framework is based on FSMs for genera-
ting execution traces along different program paths.
In their terminology, partial-order expresses choices
between alternative code elements. In our termi-
nology, a partial-order pattern includes strict and/or
unordered pairs of code elements.

2.2 Empirical Studies of API Usages

Researchers have extracted API usages through mi-
ning software repositories and studied the characteris-
tics of these usages or used them in various applicati-
ons. Usage patterns are explored in (Ma et al., 2006)
from the Java Standard API with an early version of
the Qualitas Corpus which contains 39 open source
Java applications. A study on a larger corpus (5,000
projects) on usages of both core Java and third-party
API libraries is performed in (Qiu et al., 2016). The
diversity of API usages in object-oriented software is
empirically analyzed in (Mendez et al., 2013). In their
context, diversity is defined as the different statically
observable combinations of method calls on the same
project. Multiple dimensions of API usages are ex-
plored in (De Roover et al., 2013), such as the scope
of projects and APIs, the metrics of API usages (e.g.,
number of project classes extending API classes), the
API’s metadata, and project versus API-centric views.

The empirical study on API usages presented
in (Zhong and Mei, 2018), focuses on how different
types of APIs are used. Our work is mainly concerned
with API patterns instead of single usages. Most pre-
vious work focuses on comparing one learning techni-
que with other learning techniques that mine the same
pattern type. For example, the framework presented
in (Pradel et al., 2010) is used to evaluate three mining
approaches that learn all sequences of API method
calls. Instead, we focus on understanding the trade-
offs between different pattern types.

The work in (Robillard et al., 2013) provides a
more comprehensive survey on API property infe-
rence and discusses over 60 techniques developed for

mining frequent API usage patterns. Overall, existing
studies focus on different aspects of API usages, but
do not analyze the differences between API usage pat-
tern types. Our work fills this gap and investigates the
trade-offs between different API usage pattern types
in practice with respect to three metrics: expressive-
ness, consistency, and generalizability.

3 EPISODE MINING FOR API
PATTERNS

We briefly overview the episode mining algorithm
and then explain how we use it to mine patterns from
open-source C# GitHub repositories, in three steps:
(a) generate an event stream by transforming source-
code into a stream of events, (b) apply episode mining
algorithm to mine API usage patterns, and (c) filter
the resulting partial-order patterns.

3.1 Episode Mining Algorithm

To support the detection of sequential-order, partial-
order, and no-order patterns in source code, we use
the episode mining algorithm (Achar et al., 2012) for
the following reasons. First, it facilitates the compa-
rison of different pattern types, since it provides one
configuration parameter for each type. The other op-
tion would be to use different learning algorithms, one
per pattern type. In this case, ensuring the same ba-
seline for the empirical comparisons will be difficult,
since each algorithm might use different configurati-
ons and input formats. Second, it is a general pur-
pose machine learning algorithm, which has perfor-
med well in other applications: text mining (Achar
and Sastry, 2015), positional data (Haase and Brefeld,
2014), multi-neuronal spike data (Achar et al., 2012).
Third, the implementation of the episode mining al-
gorithm (Achar et al., 2012) is publicly available.

The term episode is used to describe a partially
ordered set of events. Frequent episodes can be
found in an event stream through an Apriori-like al-
gorithm (Agrawal et al., 1993). Such an algorithm
exploits principles of dynamic programming to com-
bine already frequent episodes into larger ones (Man-
nila et al., 1997). The algorithm alternates episode
candidates generation and counting phases so that in-
frequent episodes are discarded due to the downward
closure lemma (Achar et al., 2012). The counting
phase tracks the occurrence of episodes in the event
stream using Finite State Automaton (FSA). More
specifically, at the k-th iteration, the algorithm ge-
nerates all possible episodes with k events by self-
joining frequent episodes from the previous iteration

Investigating Order Information in API-Usage Patterns: A Benchmark and Empirical Study

59



consisting of k− 1 events each. The resulting episo-
des are episode candidates that need to be verified in
the subsequent counting phase. A given episode is
frequent if it occurs often enough in the event stream.
A user-defined frequency threshold defines the mini-
mum number of occurrences for an episode to be fre-
quent. An entropy threshold determines whether there
is sufficient evidence that two events occur in either
order or not. All frequent episodes that fulfill the mi-
nimum frequency and entropy threshold are outputted
by the algorithm in a given iteration k, and all infre-
quent episodes are simply discarded. The next itera-
tion begins with generating episodes of size k+1. The
entropy threshold is specific to partial-order patterns.
It has a value between 0 and 1, inclusive. A value of
0 means that no order will be mined, resulting in no-
order patterns. A value of 1 means a strict ordering of
events, resulting in sequential-order patterns. Values
between 0 and 1 result in partial-order patterns, with
varying levels of strictness. We mine the three pattern
types by adjusting the configuration parameter of the
episode mining algorithm: NOC for No-Order Con-
figuration, SOC for Sequential-Order Configuration,
and POC for Partial-Order Configuration. More de-
tails about the algorithm can be found in the work by
Achar et al. (Achar et al., 2012).

3.2 Mining API Usage Patterns

Event Stream Generation. In our context, an event
is any method declaration or method invocation. To
transform a repository of source code into the stream
representation expected by the episode mining algo-
rithm, we iterate over all source files and traverse each
Abstract Syntax Tree (AST) depth-first. Whenever
we encounter a method declaration or method invoca-
tion node in the AST, we emit a corresponding event
to a stream. We use a fully-qualified naming scheme
for methods to avoid ambiguous references. The fol-
lowing is how we deal with the two types of nodes we
are interested in:

• Method Invocation is the fundamental information
that represents an API usage, for which we want
to learn patterns. While a resolved AST might
point to a concrete method declaration, we gene-
ralize this reference to the method that has ori-
ginally introduced the signature of the referenced
method, i.e., a method that was originally decla-
red in an interface or an abstract base class. The
reason is that the original declaration defines the
contract that all derived classes should adhere to,
according to Liskov’s substitution principle (Mar-
tin, 2003). Assuming that this principle is univer-
sally followed, we can reduce noise in the dataset

by storing the original reference.

• Method Declarations represent the start of an en-
closing method context that groups the contained
method calls. We emit two different kind of events
for the encountered method declaration. Super
Context: If a method overrides another one, we
include a reference to the overridden method, i.e.,
the encountered method overrides a method in an
abstract base class. This serves as context infor-
mation that might be important for the meaning
of a pattern. First Context: Following the same
reasoning as for super context, we include a refe-
rence to the method that was declared in an inter-
face that originally introduced the current method
signature, which could be further up the type hier-
archy of the current class.

We apply heuristics to optimize the event stream ge-
neration. (1) We filter duplicated source code, e.g.,
projects that include the same source files in multi-
ple solutions or that add their references through nes-
ted submodules in the version control system. (2)
We ignore auto-generated source code (e.g., UI clas-
ses generated from XML templates), since they do
not reflect human written code. (3) We ignore met-
hods of project-specific APIs (i.e., declared within the
same project) to avoid learning project-specific pat-
terns. Our goal is to learn general patterns that have
the potential to be re-used across contexts. (4) We ig-
nore references in the data set that point to unresolved
types or type elements. These cases indicate transfor-
mation errors of the original dataset, that were caused
by -for example- an incomplete class path. (5) We do
not process empty methods, nor include their method
declarations in the event stream.
Learning API Usage Patterns. We feed the genera-
ted event stream to the episode mining algorithm after
fixing the threshold values: frequency and entropy (as
evaluated in Section 4.2).
Filtering Partial-order Patterns. While SOC and
NOC generate episode candidates that are either se-
quences or sets of events respectively, POC might
generate episode candidates from all three types,
since it contains the sequential and no-order types
as special cases. In case all the episode candida-
tes in POC are considered frequent episodes during
the counting phase, then all of them are outputted
by the algorithm. This implies that in every itera-
tion (i.e, pattern size), POC might output redundant
patterns containing the same set of events but dif-
fer in the order information. For illustration, assume
that POC generates episode candidates in iteration 3
by combing the following patterns from iteration 2:
a → b and a → c. The episode candidates in itera-
tion 3 will be: a → b → c and a → c → b as se-

ICSOFT 2018 - 13th International Conference on Software Technologies

60



quences, and a → (b, c) as partial-order, all possible
orderings between the two newly connected events b
and c. The partial-order episode a → (b, c) repre-
sents both a → b → c and a → c → b. However,
if all three episode candidates turn out to be frequent
in the subsequent counting phase, the two other se-
quences will also be carried over to the next iteration.
These redundant patterns are meaningless for source
code representation though and we filter them out in
each iteration.

4 EVALUATION SETUP

This section describes the data set we use, presents
the analyses of the frequency and entropy thresholds
used with the episode mining algorithm, and defines
the metrics for patterns comparison.

4.1 Data Set

We use an established dataset that consists of a cu-
rated collection of 2,857 C# solutions extracted from
360 GitHub repositories (Proksch et al., 2016) with
a total of 68M lines of source code covering a wide
range of applications and project sizes that provide
many examples for API usages. The data set uses
a specialized AST-like representation of source code
with fully-qualified type references and elements.
This relieves us from the burden of compiling it to
get resolved typing information and makes it easier to
transform the source code into the event stream.2

We find 138K type declarations in the dataset that
extend a base class or implement an interface. These
type declarations contain 610K method declarations.
Out of these, 50K (first context plus super context)
override or implement a method declaration introdu-
ced in a dependency. The same dependency can be
used in other projects, so focusing on these reusa-
ble methods provides valuable context information
for the API usage. We find 2M method invocations
across all method bodies of the data set.

4.2 Frequency and Entropy Thresholds

The episode mining algorithm uses two thresholds:
frequency and entropy. The threshold values directly
impact the number of patterns learned: higher thres-
hold values means stronger evidence in the source
code that a given pattern occurs. In this section, we
empirically evaluate the effects of the threshold va-
lues on the number of patterns learned by the three

2We use the visitors in the dataset for the transformation.

2,500

3,000

3,500

4,000

4,500

5,000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
um

be
r o

f P
at

te
rn

s

Entropy Thresholds

Frequency = 200
Frequency = 210
Frequency = 220
Frequency = 230
Frequency = 240

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

4,500

5,000

150 650 1,150 1,650 2,150
N

um
be

r o
f P

at
te

rn
s

Frequency Thresholds

SOC(entropy = 1.0)

NOC(entropy = 0.0)

POC(entropy = 0.72)

Figure 1: Frequency and entropy threshold analyses.

configurations (NOC, SOC, POC), and select the
ones to use for the empirical evaluations presented in
Section 5.

Entropy Threshold. Since this threshold is speci-
fic to POC, we first focus on analyzing the number
of patterns learned by POC for different entropy and
frequency thresholds. Our analyses reveal an increa-
sing number of patterns learned for different entropy
thresholds at every frequency level. This is expected,
since for entropy values near to 0.0, the algorithm le-
arns mainly unordered sets of events that abstract over
several usages. On the other hand, for entropy values
near to 1.0 the algorithm learns mainly sequences of
events, one for each frequent sequence. For simpli-
city, Figure 1a shows only a few frequency levels,
but similar curves are produced in other frequency
levels as well. We observe that for every examined
frequency level, POC learns a fairly stable number
of patterns in the entropy segment of [0.55,0.75]. A
stable number of patterns for different threshold va-
lues, means that the patterns are not much affected
by small fluctuations of the threshold values, making
them more preferable compared to an unstable set of
patterns that are easily affected by small changes in
the threshold values. Our data analyses within this
segment reveals that the minimal variation in number
of patterns occur for values of 0.71− 0.72. Hence,
we use the entropy threshold of 0.72 in our next ana-
lysis for the frequency threshold and in our empirical
evaluations in Section 5.

Investigating Order Information in API-Usage Patterns: A Benchmark and Empirical Study

61



Frequency Threshold. Our analyses in Figure 1b
show that SOC and POC learn comparable number of
patterns for different frequency values, while NOC le-
arns less patterns in every frequency level compared
to the two others. This is due to the order informa-
tion: while SOC and POC may learn multiple pat-
terns for the same set of events, NOC simplifies to a
single pattern. We select a frequency value that gives
a good trade-off between the total number of patterns
learned per configuration and comparable number of
patterns learned across configurations. Our analyses
reveal that this is achieved at the frequency threshold
of 345, which we use in the rest of our evaluations. A
comparable number of patterns across configurations
avoids bias towards one configuration.

4.3 Metrics for Pattern Comparison

We define the following metrics to quantify different
properties of the mined patterns in our experiments.

Expressiveness. Using a formal language termino-
logy, an API usage pattern can be seen as a grammar
rule of a language over an alphabet of method decla-
ration/invocation (events). The more words the sub-
language it defines has, the more expressive a pattern
is. A sequential-order pattern (a→ b→ c) when seen
as a grammar rule defines a language with a single
word {abc}. A partial-order pattern (a→ (b,c)) de-
fines a language with two words, {abc, acb}. A no-
oder pattern (a,b,c) defines a language with six words
{abc, acb, bac, bca, cab, cba}. The expressiveness of
a pattern type is determined by the number of patterns
(grammar rules) it defines, and how well these pat-
terns abstract over the variety of concrete API usages
observed in source code.

To investigate how the three configurations (SOC,
POC, and NOC) compare to each other in terms of ex-
pressiveness, we calculate three metrics for each con-
figuration pair (c1, c2): (a) exact(c1,c2) is the num-
ber of patterns that are exactly the same in c1 and c2;
(b) subsumed(c1,c2) = (x,y) is a pair that represents
the number of patterns x learned by c1 that subsume
y patterns learned by c2. We say that a pattern p1
subsumes a pattern p2 iff they relate the same set of
events and all words defined by p2 are also defined
by p1, e.g. the grammar rule of a no-order pattern
(a,b,c) subsumes both the grammar rules (a→ (b,c))
and (a→ b→ c) from the partial and sequential-order
patterns respectively; (c) new(c1,c2) is the number of
patterns learned by c1 that include events for which
c2 does not learn any pattern.

Consistency. The three pattern types differ in the
extent to which they preserve code structure. While
no-order patterns cannot represent any structure,
sequential-order patterns can encode an absolute or-
der of events, and partial-order patterns can even re-
present complex control flow that is imposed by con-
trol structures like if. We establish the consistency
metric as a way to quantify how important the order
information encoded by sequential-order and partial-
order patterns is in practice. The metric takes values
in ]0.0,1.0], and for a given pattern p is defined as:

consistency(p) =
Occs(p)

OccsSet(p)
(1)

where Occs(p) is the number occurrences of p, and
OccsSet(p) is the number of co-occurrence of events
in p regardless of their order. A high consistency
emphasizes the importance of the encoded order. A
low consistency means that in most cases, the re-
spective code elements occur in an order different to
the one encoded in the pattern, suggesting that the
structural information encoded by the pattern is irre-
levant.

Generalizability. Finding instances of a pattern in
multiple contexts indicates that the pattern represents
an abstraction over a set of similar API usages, e.g.,
used by multiple developers. On the other hand, a
very local pattern might suggest that it does not ge-
neralize beyond a specific context, e.g., it might only
be used by a specific developer. To quantify the ge-
neralizability of a pattern, we count the number of
contexts in which we can observe it at two different
levels of granularity that complement each other: (a)
The method declaration level measures whether in-
stances of a pattern are found within a single method
declaration (the latter refers to the highest declaration
in the type hierarchy that originally introduced the
current method signature) or across method declara-
tions (method-specific versus cross-method pattern).
(b) The code repository level measures whether in-
stances of a pattern are found in one or in multiple re-
positories (repository-specific versus cross-repository
pattern). Knowledge about the generalizability of pat-
terns is important for judging the versatility of the pat-
tern in later applications.

5 STUDY RESULTS

This section presents the results of our empirical
study. All experiments are performed with a fre-
quency threshold of 345. For POC, we use an entropy

ICSOFT 2018 - 13th International Conference on Software Technologies

62



threshold of 0.72 (cf. Section 4.2). First, we show sta-
tistics about the learned patterns, and then study them
along the dimensions presented in Section 4.3.

5.1 Pattern Statistics

Here we analyze the learned patterns in terms of their
size and number of API types they encode.

Pattern size refers to the number of events in a pat-
tern. Our approach learns patterns with up to 7 events
in each configuration. The number of patterns lear-
ned decreases for larger pattern sizes with the same
ratio in each configuration. Almost all mined patterns
(97%) involve 5 events or less. The result matches the
intuition that it is less probable that many developers
write large code snippets in exactly the same way.

API types within a pattern reflects the number of
API types a pattern encodes interactions for. In all the
patterns learned, 75% involve interactions between
events from multiple API types (across configurati-
ons). Only 28% of the patterns with 2 - 4 events in-
volve interactions between events from a single API
type. All patterns with 5 or more events involve mul-
tiple API types. The maximum number of API types
involved within a pattern is 5 types, where patterns
involving two API types make the majority (40%).

5.2 Expressiveness

Table 1 shows the expressiveness metric results. For
each configuration pair (c1,c2), Total shows the total
number of patterns learned by (c1,c2) respectively.
POC vs. SOC. These configurations learn 858 equal
patterns, which implies that out of 1,234 patterns le-
arned by POC, 70% are sequences and only 30% of
them include partial-order between events.

Observation 5.1
Most of the API usage patterns define in the wild
strict-order between events (70%), while the other
30% abstract over different API usage variants.

Furthermore, subsumed(POC, SOC) is (260;346),
i.e., 260 partial-order patterns learned by POC sub-
sume 346 sequences learned by SOC. The 260 partial-
order patterns encode 572 different sequences, i.e.,
the 346 sequences mined by SOC plus 226 others.
Recall that multiple sequential-order patterns can be
represented by a single partial-order pattern.

Finally, new(POC, SOC) is 116, meaning that for
the events included in 116 partial-order patterns, there
are no sequences learned by SOC. The 116 partial-
order patterns encode 308 sequences of events that in-
dividually do not occur often enough in source code.
For this reason, SOC does not mine them. On the

Table 1: Expressiveness results per configuration pair.

(POC, SOC) (NOC, POC) (NOC, SOC)

exact 858 248 0
subsumed (260;346) (716;986) (853;1204)
new 116 17 128

Total (1,234;1,204) (981; 1,234) (981;1,204)

other hand, POC represents different variants of se-
quences for the same set of events in a single pattern,
which increases the partial-order pattern occurrence
and makes it match the frequency threshold.

From these results, we can conclude that all pat-
terns learned by POC represent a superset of the pat-
terns learned by SOC.

Observation 5.2
The API usage specifications encoded by partial-
order patterns fully represent the specifications en-
coded by sequential-order patterns. Furthermore,
they learn 116 additional patterns of events for
which sequence mining cannot learn any sequence.

NOC vs. POC. As shown in Table 1, exact(NOC,
POC) = 248, which means that 20% of the patterns
learned by POC are exactly the same as the ones lear-
ned by NOC. Recall that no-order patterns are mined
in POC when the involved events occur often enough
in either order.
Observation 5.3
In 20% of the cases, partial-order patterns encode
events that occur in either order in the wild.

Furthermore, subsumed(NOC, POC) is (716;
986), i.e., 716 no-order patterns learned by NOC sub-
sume 986 patterns learned by POC. Note that one no-
order pattern simplifies several partial-order patterns
that misses order information.

Finally, new(NOC, POC) is 17, i.e.,17 patterns
learned by NOC include events for which POC does
not learn any pattern. These patterns are missed
by POC because either: (a) none of the sequences
between the events occur frequently enough, recall
that sequences are a special case of partial-order
patterns, and/or (b) there is not enough evidence in
the source code that events occur frequently enough
in either order (specified by entropy threshold).

From these results we can conclude that no-order
patterns represent a superset of partial-order patterns.

NOC vs. SOC. Table 1 shows that NOC and
SOC learn 0 equal patterns, which is obviously the
case, since NOC learns only set of events and SOC le-
arns only strict-order sequences, i.e., there cannot be
any overlap between the patterns learned by these two
configurations. We find that subsumed(NOC, SOC) is

Investigating Order Information in API-Usage Patterns: A Benchmark and Empirical Study

63



(853; 1,204). In other words, all sequential-order pat-
terns can be subsumed by 853 no-order patterns. Note
that multiple sequential-order patterns can be simpli-
fied into a single no-order pattern by removing order
constraints.

Finally, new(NOC, SOC) is 128, i.e., for 128 pat-
terns learned by NOC there are no sequences mined
by SOC. None of the sequences between these events
occurs frequently enough in the source code.

Observation 5.4
No-order patterns match all sequential-order pat-
terns; furthermore, the no-order configuration le-
arns 128 additional patterns for which sequential-
order configuration could not learn any sequences.

Analysis of the Results. To recap, sequence mi-
ning misses sequences of events which are captured
by partial and no-order patterns. To understand what
code structures they represent, we explored mined
patterns and found examples that explain this pheno-
menon in the source code of Graphical User Interfaces
(GUI). Using a GUI component typically requires to
call its constructor first, but the order in which pro-
perties like color or size are configured is irrelevant.
A miner thus finds many UI code examples with high
variation and low support of each individual example.
This reveals two disadvantages of the sequential-order
miners. First, if the individual support for each vari-
ant of the GUI component usage is high enough, then
redundant patterns will be identified, one sequence for
each variant. Second, if the target threshold is not met
by one or more sequence variants, the corresponding
sequence pattern will be missed. In the same situa-
tion, each variant would count as support for patterns
with more abstract representation such as partial and
no-order, which thus may pass the threshold more ea-
sily. When compared with each other, partial-order
patterns can preserve order information, which is mis-
sed by no-order patterns.

5.3 Consistency

Based on the results in 5.2, one may conclude that no-
order patterns define a richer language compared to
the other two types. The question raises: Why should
one use expensive mining approaches (sequence or
partial mining), if we can learn a richer language from
source code using less computationally expensive mi-
ning approaches such as frequent item-set mining?
However, this would be a valid conclusion, only if the
words in the language mined by NOC are valid, i.e.,
the order between events in a pattern does not really
matter. To analyze this, we investigate the consistency
of the mined sequential and partial-order patterns with

co-occurrences of events in code.
Our results reveal high consistency in sequential

(avg. 0.9) and partial-order patterns (avg. 0.96). This
suggests that order information encoded in both se-
quential and partial-order patterns is crucial for the
correct co-occurrences of events in the wild, and sim-
plifying them into no-order patterns will result in lo-
sing important order information between events.

Observation 5.5
Partial and sequential-order mining learn impor-
tant order information regarding co-occurrences of
events within a pattern.

5.4 Generalizability

In this section, we present the generalizability me-
tric results on two granularity levels as explained in
Section 4.3: method declaration and code repository.
Method Declaration. Our results empirically show
that most of the patterns learned (98%) by each con-
figuration, are used across method declarations. If a
pattern occurs across method declarations, it means
that it generalizes to different implementation tasks.

Observation 5.6
Most of the patterns learned find applicability to a
large variety of implementation tasks.

Next we analyze if the patterns learned are used by
multiple developers, or if they represent specific co-
ding styles for a given repository and its developers.
Code Repository. Table 2 shows our results for diffe-
rent configurations and pattern sizes. The column Pat-
terns shows the total number of patterns, and the ab-
solute number and percentage of general patterns le-
arned by each configuration. The next columns show
the same information as Patterns, but for different pat-
tern sizes, where the last column (6+ events) shows
the information for patterns that have more then 6
events.

Our results show that the patterns learned by
POC and SOC have almost the same percentage of ge-
neralizability (48% vs. 47%), regardless of their size.
This means that more than half the patterns mined by
each configuration are learned from API usages from
the same repository. While such repository-specific
patterns are useful to the developers of that particu-
lar repository, they may reflect a very specific way of
using certain API types, which may not be useful to a
general set of developers.

As the table shows, NOC learns slightly more ge-
neral patterns (58%). However, recall that these more
generalizable patterns come at the cost of missing or-
der information between events.

ICSOFT 2018 - 13th International Conference on Software Technologies

64



Table 2: Code repository generalizability level for different configurations and pattern sizes.

Patterns 2 events 3 events 4 events 5 events 6+ events

Config Total General Total General Total General Total General Total General Total General

POC 1,234 594 (48%) 573 472 (82%) 283 106 (38%) 212 15 (7%) 122 1 (1%) 44 0 (0%)
SOC 1,204 561 (47%) 562 458 (82%) 270 92 (34%) 206 10 (5%) 122 1 (1%) 44 0 (0%)
NOC 981 572 (58%) 528 445 (84%) 226 108 (48%) 132 17 (13%) 70 2 (3%) 25 0 (0%)

Observation 5.7
No-order patterns tend to be more generalizable
(58%) compared to sequential and partial-order
patterns (47% and 48%), which tend to be over-
specified due to the order constraints they encode.

We analyzed the patterns learned exclusively by
POC (recall Table 1) and found that 114 out of 116
patterns are general patterns used across repositories.
To find out why most of the patterns learned exclusi-
vely by POC are general patterns, we check if there
is any relation between generalizability and pattern-
order. We find that strict-order patterns (exact(POC,
SOC)) are less generalizable (37%) compared to pat-
terns that contain partial-order between events (sub-
sumed - 62%, and new - 98%). This confirms our
hypothesis that there is a relation between generaliza-
bility and pattern-order. Furthermore, most of the pat-
terns (90%) learned exclusively by POC include met-
hod calls only from the standard library, which further
explains their re-usability across repositories.

Table 2 shows that across configurations, the per-
centage of general patterns learned is higher for smal-
ler patterns, and significantly decreases for bigger pat-
terns. Furthermore, for patterns with 6-events and
more, we learn only repository-specific patterns. Spe-
cifically, around 70% of general patterns (independent
of the configuration) are 2 and 3-event patterns. Most
of the patterns with 4-events or more are repository-
specific patterns. This makes sense since the proba-
bility that multiple developers with different coding
styles and different application domains writing a si-
milar and long piece of code is very low.

Observation 5.8
Small code patterns of 2 and 3 events are more ge-
neralizable compared to larger code patterns of 4 or
more events that mainly encode constraints of API
usages from a single repository.

We further analyzed the repository-specific pat-
terns and found that 93% of them are learned from
testing code, and they include API types that refer to
an old version of a common assembly that is used in
no other repository. Filtering out testing code may
help mining algorithms learn only general patterns.
An empirical validation of this hypothesis, however,

needs to be performed in the future.
Remark: For the sake of completeness, we experi-
mented with other threshold values (frequency and
entropy), and analyzed the generalizability of the pat-
terns across repositories. The results we received
did not show higher generalizability ratios in neither
of the pattern types, compared to the ones presented
above. This confirms the correctness of the threshold
values selected as presented in section 4.2.

6 IMPLICATIONS

Based on the pattern statistics (Section 5.1) and re-
sults in Section 5, we derive the following:

Implication 1 (derived from Section 5.1) . Mining
techniques based on frequency occurrence of source
code in code bases are unlikely to learn large code
patterns (more than 7 method calls using our concrete
parameters), since it is less probable that developers
write large code snippets exactly in the same way. If
the main goal is to learn large code patterns, then ot-
her techniques need to be considered.

Implication 2 (derived from Section 5.1) . Code ana-
lyses techniques should consider interactions between
objects of different API types, while extracting facts
from source code. Even though these analyses are ex-
pensive since data-flow dependencies need to be con-
sidered, they are important in mining relevant patterns
from source code.

Implication 3 (derived from Observations 5.1
and 5.5) . While covering a good amount of usa-
ges seen in source code, sequential-order mining may
lead to false positives in applications such as misuse
detection. For example, if the pattern is a→ (b,c),
but a strict-order pattern has only learned a→ b→ c
and the code written by the developer is a→ c→ b.
On the other hand, while no-order mining might seem
to learn a larger variety of API usages in source code,
it might result in false negatives in such applications.
Following the same example, the developer might
have written b→ a→ c, and a no-order pattern cannot

Investigating Order Information in API-Usage Patterns: A Benchmark and Empirical Study

65



detect that b and c should occur strictly after a. We
can conclude that, partial-order mining learns better
API usage patterns for such applications.

Implication 4 (derived from Observation 5.2) .
Partial-order mining might be more appropriate for le-
arning API usage patterns in applications such as code
recommendation since multiple sequences can be re-
presented by a single partial-order pattern, decreasing
the total number of patterns that need to be part of the
model. In sequence mining, multiple patterns need to
be recommended to the developer for the same set of
events and might even risk missing valid sequences
if they do not occur frequently enough in the training
source code.

Implication 5 (derived from Observation 5.5) . Be-
fore deciding which mining approach to use in a spe-
cific application, developers need to know their trade-
offs in terms of order information and computation
complexity. Sequential and partial-order mining are
computationally expensive approaches but learn im-
portant order information about the co-occurrence of
events in a pattern, while no-order mining approaches
do not require expensive computations but on the ot-
her hand do not learn any order information about the
co-occurrence of events in a pattern.

Implication 6 (derived from Observation 5.8) . If
the main goal is to learn large code patterns (4 -
7 events), then recommenders should focus on a
repository-specific mining approach and produce ca-
tered recommendations to the repository’s developers.
However, if the goal is to learn general patterns that
can be used by many developers, then researchers
should know that they might end up mining small pat-
terns (2 and 3 events).

7 THREATS TO VALIDITY

Internal Validity. We generate the event stream ba-
sed on static analyses, not on dynamic execution tra-
ces. Even though this may not represent valid execu-
tion traces, it does represent how the code is written
by developers. In this paper, we focus on learning
code patterns to represent source code as it is writ-
ten in code editors. Also, our event stream considers
only intra-procedural analysis since we are interested
to learn patterns that occur within methods. Using
inter-procedural analysis might affect our results.

The episode mining algorithm learns only in-
jective episodes, where all events are distinct, i.e.,

the algorithm does not handle multiple occurrences
of the same event in a pattern. For example, met-
hod invocations: IEnumerator.MoveNext() or String-
Builder.Append() are usually called multiple times in
the code. The patterns we learn contain a single in-
stance of such events. While this is a limitation, it is
also an advantage in terms of pattern generalizability.
Specifically, the mined pattern would not have a strict
number of occurrences that would lead to mismatches
between it and another valid code snippet that has a
different number of occurrences.

The algorithm relies on user-defined parameters:
frequency-threshold, entropy-threshold. While the
configuration parameter depends on the type of pat-
terns one is interested in, deciding on adequate fre-
quency and entropy thresholds is not an easy task,
which affect the results. We mitigate this threat by
empirically evaluating the thresholds and choosing
the best combination of frequency and entropy thres-
holds for the given data set (cf. section 4.2).

The episode mining algorithm is available only
in a sequential (non-parallelized) implementation,
hence is inefficient. However, this paper does not ad-
vocate using episode mining per se, but rather uses it
as a baseline for comparing different configurations.
This limitation can be improved by parallelizing the
algorithm’s implementation.

External Validity. In this paper, we do not learn
patterns for project-specific API types. Extracting
code patterns for project-specific API types can still
be achieved using the episode-mining algorithm we
use. Comparing project-specific patterns between dif-
ferent types of projects is an interesting task for future
work.

We learn code patterns only for method declarati-
ons and invocations, excluding all other code structu-
res such as loops, conditions, exceptions etc. This is
because the focus of this paper is on comparing dif-
ferent code pattern types (sequential, partial, and no-
order), instead of specifically learning complex pat-
terns that include all code structures. Since learning
code patterns while considering other code structures
is important for supporting certain development tasks,
we plan to enrich the code patterns that we learn with
additional code structures. This requires modifying
our event stream generation, which is an engineering
task rather than a conceptual limitation.

Finally, we analyze the trade-offs between diffe-
rent pattern types using the same set of code reposito-
ries written in the same programming language. We
also use a single learning algorithm that we configure
to produce different pattern types. We use an establis-
hed data set of 360 repositories that have over 68M

ICSOFT 2018 - 13th International Conference on Software Technologies

66



lines of source code to ensure that we analyze large
amounts of code and different coding styles. Howe-
ver, we cannot generalize our results beyond our cur-
rent dataset and learning algorithm.

8 CONCLUSIONS

In this paper, we present the first benchmark for ana-
lyzing the trade-offs between three pattern types (se-
quential, partial and no-order) with respect to real
code. Our approach consists of three steps: the trans-
formation of source-code into a stream of events, the
adaptation of an event mining algorithm to the special
context of pattern mining for software engineering,
and filtering of the resulting patterns.

Our empirical investigation shows that there are
different types of patterns learned in code reposito-
ries. While there are tradeoffs between pattern types
in terms of expressiveness, consistency and generali-
zability, they are comparable in terms of the patterns
size and number of API types. Our results empiri-
cally show that the sweet spot are partial-order pat-
terns, which are a superset of sequential-order pat-
terns, without losing valuable information like no-
order patterns. Partial-order mining finds additional
patterns that are missed by sequence mining, which
generalize across repositories. Compared to no-order
mining, partial-order learns a smaller percentage of
cross-repository patterns (58% vs. 48%), due to the
order constraints between events within a pattern.
Evaluation results show that all three configurations
end-up learning only repository-specific patterns for
pattern sizes with 6-events or more. Furthermore, our
results empirically show the consistency of order in-
formation in sequential and partial-order patterns: on
average 90% and 96% respectively.

Our findings are useful indications for researchers
who work with code patterns in applications such as
code recommendation and misuse detection.

ACKNOWLEDGEMENTS

This work has been supported by the European Re-
search Council with grant No. 321217, and by the
German Science Foundation (DFG) in the context of
the CROSSING Collaborative Research Center (SFB
#1119, project E1). The authors want to thank Raajay
Viswanathan for the technical support with the epi-
sode mining algorithm, and Ulf Brefeld for the useful
suggestions on the analyses of the data presented on
this paper. The authors take full responsibility for the
content of the paper.

REFERENCES

Achar, A., Laxman, S., Viswanathan, R., and Sastry, P.
(2012). Discovering injective episodes with general
partial orders. Data Mining and Knowledge Disco-
very, pages 67–108.

Achar, A. and Sastry, P. (2015). Statistical significance
of episodes with general partial orders. Information
Sciences, pages 175–200.

Acharya, M. and Xie, T. (2009). Mining API error-handling
specifications from source code. In International Con-
ference on Fundamental Approaches to Software En-
gineering, pages 370–384.

Acharya, M., Xie, T., Pei, J., and Xu, J. (2007). Mining
API patterns as partial orders from source code: from
usage scenarios to specifications. In European Soft-
ware Engineering Conference and the ACM SIGSOFT
Symposium on The Foundations of Software Engineer-
ing, pages 25–34.

Agrawal, R., Imieliński, T., and Swami, A. (1993). Mining
association rules between sets of items in large data-
bases. In ACM SIGMOD, pages 207–216.

Buse, R. P. and Weimer, W. (2012). Synthesizing api usage
examples. In Proceedings of the 34th International
Conference on Software Engineering, pages 782–792.
IEEE Press.

De Roover, C., Lammel, R., and Pek, E. (2013). Multi-
dimensional exploration of api usage. In Program
Comprehension (ICPC), 2013 IEEE 21st Internatio-
nal Conference on, pages 152–161. IEEE.

Gabel, M. and Su, Z. (2008). Javert: fully automatic mining
of general temporal properties from dynamic traces.
In ACM SIGSOFT International Symposium on Foun-
dations of Software Engineering, pages 339–349.

Haase, J. and Brefeld, U. (2014). Mining positional data
streams. In International Workshop on New Frontiers
in Mining Complex Patterns, pages 102–116.

Ma, H., Amor, R., and Tempero, E. (2006). Usage patterns
of the java standard api. In Software Engineering Con-
ference, 2006, pages 342–352.

Mannila, H., Toivonen, H., and Inkeri Verkamo, A. (1997).
Discovery of frequent episodes in event sequences.
Data Mining and Knowledge Discovery, pages 259–
289.

Martin, R. C. (2003). Agile software development: princi-
ples, patterns, and practices. Prentice Hall PTR.

Mendez, D., Baudry, B., and Monperrus, M. (2013). Em-
pirical evidence of large-scale diversity in API usage
of object-oriented software. In Source Code Analysis
and Manipulation, pages 43–52.

Michail, A. (2000). Data mining library reuse patterns using
generalized association rules. In International Confe-
rence on Software Engineering, pages 167–176.

Montandon, J. E., Borges, H., Felix, D., and Valente, M. T.
(2013). Documenting APIs with examples: Lessons
learned with the APIMiner platform. In WCRE, pages
401–408.

Negara, S., Codoban, M., Dig, D., and Johnson, R. E.
(2014). Mining fine-grained code changes to detect

Investigating Order Information in API-Usage Patterns: A Benchmark and Empirical Study

67



unknown change patterns. In International Confe-
rence on Software Engineering, pages 803–813.

Nguyen, A. T., Hilton, M., Codoban, M., Nguyen, H. A.,
Mast, L., Rademacher, E., Nguyen, T. N., and Dig, D.
(2016). Api code recommendation using statistical le-
arning from fine-grained changes. In ACM SIGSOFT
International Symposium on Foundations of Software
Engineering, pages 511–522.

Nguyen, A. T. and Nguyen, T. N. (2015). Graph-based
statistical language model for code. In International
Conference on Software Engineering, pages 858–868.

Nguyen, A. T., Nguyen, T. T., Nguyen, H. A., Tam-
rawi, A., Nguyen, H. V., Al-Kofahi, J., and Nguyen,
T. N. (2012). Graph-based pattern-oriented, context-
sensitive source code completion. In International
Conference on Software Engineering, pages 69–79.

Nguyen, H. V., Nguyen, H. A., Nguyen, A. T., and Nguyen,
T. N. (2014). Mining interprocedural, data-oriented
usage patterns in javascript web applications. In Inter-
national Conference on Software Engineering, pages
791–802.

Pham, H. V., Vu, P. M., Nguyen, T. T., et al. (2016). Lear-
ning API usages from bytecode: a statistical approach.
In International Conference on Software Engineering,
pages 416–427.

Pradel, M., Bichsel, P., and Gross, T. R. (2010). A frame-
work for the evaluation of specification miners based
on finite state machines. In IEEE International Con-
ference on Software Maintenance, pages 1–10.

Proksch, S., Amann, S., Nadi, S., and Mezini, M. (2016).
A dataset of simplified syntax trees for c#. In Interna-
tional Conference on Mining Software Repositories,
pages 476–479.

Qiu, D., Li, B., and Leung, H. (2016). Understanding the
api usage in java. Information and Software Techno-
logy, pages 81–100.

Ramanathan, M. K., Grama, A., and Jagannathan, S.
(2007). Path-sensitive inference of function prece-
dence protocols. In International Conference on Soft-
ware Engineering, pages 240–250.

Raychev, V., Vechev, M., and Yahav, E. (2014). Code com-
pletion with statistical language models. In ACM SIG-
PLAN Notices, pages 419–428.

Robillard, M. P., Bodden, E., Kawrykow, D., Mezini, M.,
and Ratchford, T. (2013). Automated API property
inference techniques. IEEE Transactions on Software
Engineering, pages 613–637.

Wang, J., Dang, Y., Zhang, H., Chen, K., Xie, T., and
Zhang, D. (2013). Mining succinct and high-coverage
api usage patterns from source code. In Proceedings
of the 10th Working Conference on Mining Software
Repositories, pages 319–328. IEEE Press.

Wasylkowski, A., Zeller, A., and Lindig, C. (2007). De-
tecting object usage anomalies. In European Software
Engineering Conference and the ACM SIGSOFT Sym-
posium on The Foundations of Software Engineering,
pages 35–44.

Zhong, H. and Mei, H. (2018). An empirical study on API
usages. IEEE Transaction on Software Engineering.

Zhong, H., Xie, T., Zhang, L., Pei, J., and Mei, H. (2009a).
MAPO: Mining and recommending API usage pat-
terns. In European Conference on Object-Oriented
Programming, pages 318–343.

Zhong, H., Zhang, L., Xie, T., and Mei, H. (2009b). In-
ferring resource specifications from natural language
API documentation. In International Conference on
Automated Software Engineering, pages 307–318.

ICSOFT 2018 - 13th International Conference on Software Technologies

68


