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Abstract: Performance is a critical property of a program. While there exist refactorings that have the potential to
significantly increase the performance of a program, it is hard to decide which refactorings effectively yield
improvements. In this paper, we present a novel approach for the automated detection and selection of refacto-
rings that are promising candidates to improve performance. Our key idea is to provide a heuristics that utilizes
software properties determined by both static code analyses and dynamic software analyses to compile a list
of concrete refactorings sorted by their assessed potential to improve performance. The expected performance
improvement of a concrete refactoring depends on two factors: the execution frequency of the respective piece
of code, and the effectiveness of the refactoring itself. To assess the latter, namely the general effectiveness of
a given set of refactorings, we have implemented a set of micro benchmarks and measured the effect of each
refactoring on computation time and memory consumption. We demonstrate the practical applicability of our
overall approach with experimental results.

1 INTRODUCTION

Performance issues are a common reason why soft-
ware needs refactoring. However, due to the vari-
ety of possible causes for performance issues, fin-
ding an appropriate refactoring is a complicated task.
To tackle this problem, antipattern detection as well
as measurement-based performance engineering have
been proposed. Antipattern detection is a static ana-
lysis that aims at detecting code flaws and violations
against good practice (Louridas, 2006). While an-
tipattern detection often succeeds in detecting criti-
cal code sections that cause performance bottlenecks,
it tends to yield a great number of proposed refac-
torings of which only a very small fraction can be
considered relevant for performance. To resolve all
proposed issues is therefore neither efficient nor fea-
sible. Additionally, a bad performing piece of code
that gets only rarely called usually is not the cause
of severe performance problems. Measurement-based
performance engineering relies on dynamic analysis
techniques that are applied when the program un-
der development is running (Woodside et al., 2007).
Those analyses generate huge amounts of heterogene-
ous data like response times, function call durations,
stack traces, memory footprints or hardware counters.
To find the important chunks of information that help

solving performance issues takes time and also requi-
res skill and experience. Hence, manually searching
for an appropriate refactoring is an expensive task.

In this paper, we present a novel approach for the
automated selection of refactorings that are promising
candidates to improve performance. The key idea of
our approach is to use both static and dynamic ana-
lyses and combine the results to generate a heuris-
tics that determines those refactorings that are most
promising with respect to performance. Our major
contributions are twofold: First, to quantify the ex-
pected effect of a refactoring, we present a novel ra-
ting function that incorporates the analysis data from
both static and dynamic analysis, and thus enables us
to heuristically assess the effectiveness of concrete re-
factorings. The output is a list of proposed refacto-
rings sorted by their potential to yield a strong posi-
tive effect on performance. The reasoning behind our
heuristics is to assess which portions of source code
get executed frequently, such that a refactoring there
pays off more than anywhere else. We combine this
with a factor that provides an estimate for the gene-
ral effectiveness of a given refactoring, independent
of its position in the code. Second, we present an
evaluation of the general effectiveness of a given set
of refactorings that are generally assumed to improve
performance, independent of their use in a concrete
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program. To achieve this, we have implemented mi-
cro benchmarks and measured their effectiveness with
respect to the execution time and memory consump-
tion. We use the results from our micro benchmarks
together with static and dynamic code properties in
our ranking function to provide a heuristics that au-
tomatically assesses the expected effect of a concrete
refactoring in a given program.

To demonstrate the practical applicability of our
approach, we present the results from two experi-
ments. In the first experiment, we have intentionally
manipulated a given example program such that it
contains typical antipatterns and investigate the im-
pact on performance and how high the rule violations
are rated by our heuristics. In the second experiment,
we apply our rating function to a given program, im-
plement the top rated refactorings and examine the
performance improvement.

The rest of this paper is structured as follows: In
Section 2, we introduce the preliminaries that are ne-
cessary to understand the remainder of this paper. In
Section 3, we discuss related work. In Section 4, we
present our approach for the automated selection of
refactorings. In Section 5, we present our micro ben-
chmark results as well as our case studies and experi-
mental results. We conclude in Section 6.

2 BACKGROUND

In this section, we introduce the preliminaries that are
necessary to understand the remainder of this paper,
namely software antipatterns and refactorings.

2.1 Software Antipatterns

Software design patterns describe good solutions to
recurring problems in an abstract and reusable way.
A software antipattern is very similar, only that it des-
cribes a bad, unfavored solution (Long, 2001). The
motivation to write those down is to prevent their use
and to provide appropriate refactorings into better de-
signs. An example for an antipattern described in
(Smith and Williams, 2002) is The Ramp, where tasks
have an increasing execution time due to a growing
list that has to be searched but is never cleaned up.

Performance antipatterns are the class of patterns
that lead to bad performance. As an example for a
performance antipattern in the programming language
Java, consider Listing 1. In this example, strings
are concatenated with the ’+’ operator. The reason
why using the + operator as shown is considered an
antipattern is based on the internal implementation
in Java. The + operator is natively overloaded for

String, although in Java operator overloading in ge-
neral is not possible. However, this piece of syntactic
sugar brings along a disadvantage concerning perfor-
mance. Because objects of String are immutable,
the additional characters cannot simply be appended.
Instead, internally a Java StringBuilder object is al-
located, concatenates the strings in its char buffer and
returns the new immutable string. If such procedure
is repeated in a loop as shown in Listing 1, each itera-
tion allocates and dismisses a StringBuilder and an
intermediate string. It is veiled from the programmer
that there lies an inefficiency in the simple + syntax.

Listing 1: Example Performance Antipattern.

1 S t r i n g [ ] p = { ” These ” , ” a r e ” , ”
s e p a r a t e ” , ” p a r t s ” } ;

2 S t r i n g s t r = p [ 0 ] ;
3 f o r ( i n t i = 1 ; i < p . l e n g t h ; ++ i )

{
4 s t r = s t r + ” ” + p [ i ] ;
5 }

2.2 Software Refactorings

A software refactoring is a change in source code that
keeps the external behavior of a software unaffected
but yet improves the internal design or other non-
functional properties (Fowler and Beck, 1999). Ex-
amples for refactorings are splitting up large classes
into multiple units, increasing encapsulation of clas-
ses or replacing inefficient operations. Refactoring is
a structured process with specified steps and a defined
goal. Due to the structured procedure, refactorings are
an elegant way of improving software.

A refactoring may be a large scale operation that
affects several units and takes much effort to fully im-
plement. In this paper, we focus on micro refacto-
rings (Owen, 2016), which affect only a few lines of
code and are realizable in a short time or even au-
tomatically. Concerning performance, micro refacto-
rings can have noticeable benefits, especially in often
called functions or inside frequently executed loops.
Therefore, micro refactorings have the potential of an
excellent cost-benefit ratio.

The proposed performance refactoring for the ex-
ample in Listing 1 is to allocate only one String-
Builder outside the loop and use it instead of the +
operator, such that no temporary objects accumulate.

3 RELATED WORK

In (Tsantalis et al., 2006; Washizaki et al., 2009),
the authors present approaches to automatically detect

ICSOFT 2018 - 13th International Conference on Software Technologies

34



software design patterns based on static information
extracted from Java bytecode. However, they focus
on the detection of classical design patterns (Gamma
et al., 1995) and are not concerned with their effect on
performance. Similarly, in (Wierda et al., 2007), the
authors examine class relations in a formal concept
analysis to detect repeating patterns without the need
of prior pattern knowledge. The analysis is expen-
sive, though, and is not feasible for a large code base.
Additionally, the impact of the detected patterns on
performance is not considered.

According to the survey on design pattern de-
tection presented in (Rasool and Streitfdert, 2011),
the majority of published approaches combines struc-
tural and behavioral analyses of the software. Alt-
hough behavioral analyses are not necessarily imple-
mented as dynamic analyses, for example, the appro-
ach introduced in (Heuzeroth et al., 2003) uses static
and dynamic analyses similar to how we use them:
The static analysis provides a set of design pattern
candidates, which is narrowed down in a dynamic
analysis. For each design pattern they prepare a set
of rules concerning the interaction of classes and dis-
card every candidate that violates any of the rules. In
(Wendehals, 2003), the authors search both abstract
syntax graphs and call graphs for design patterns and
rate each candidate. The combination of both ratings
helps to determine actual design patterns. Although
both approaches combine static and dynamic analy-
ses, they again only detect patterns and are not con-
cerned with their effect on performance.

In (Bernardi et al., 2013), the authors detect design
patterns in a graph representation according to a meta
model. They develop a domain specific language that
allows precise definitions of patterns with inheritance
between them to ease the creation of variants. They
achieve a high detection precision but again, they are
not concerned with the effect on performance.

An approach to detect performance antipatterns
and suggest refactorings is proposed in (Arcelli et al.,
2012; Arcelli et al., 2015). However, they work on
software architectural models, while we focus on im-
plementations.

In (Cortellessa et al., 2010), the authors achieve a
rating of performance antipatterns based on their so
called guiltiness. The algorithm requires a complete
set of antipatterns and the set of performance requi-
rements for the system as input. Each antipattern and
requirement is associated to one or more system enti-
ties, e.g. a processor. Depending on to what extend a
requirement is not fulfilled the associated system en-
tities spread the guilt among all their associated an-
tipatterns while taking into account the antipattern’s
estimated impact on the respective system entity. Alt-

hough this approach succeeds in selecting the most
effective performance antipatterns, it requires an ex-
pensive modeling step to capture the component mo-
del.

In (Djoudi et al., 2005), the authors propose as-
sembly code optimization by means of static antipat-
tern detection and dynamic value profiling. They use
a knowledge database for assembly antipatterns that
have shown bad performance in micro benchmarks
and attempt to find those with a static analyzer. The
dynamic analysis benefits from very low instrumenta-
tion cost on the assembly level and captures data like
cache miss rate. Although this approach is closely re-
lated to ours in many ways, e.g. the focus on micro
refactorings, it utilizes the dynamic analysis as inde-
pendent addition instead of combining its yield with
the results from static analyses, and it does not target
a high-level programming language, which is often
preferrable for software evolution and maintenance.

In (Luo et al., 2017), the authors present a ma-
chine learning system that examines execution traces
of the software under test and calculates new input va-
lues for the next execution that are most promising to
uncover a performance bottleneck. Finally, an analy-
sis of the captured execution traces is carried out and
a ranked list with presumed performance bottlenecks
is compiled. Even though in our approach we utilize
very different techniques, the result, namely an orde-
red list of specific performance issues, is similar. Ho-
wever, they do not automatically propose a solution
to the detected performance issue.

In (Fontana and Zanoni, 2017), the authors use su-
pervised learning to train a model that finds antipat-
terns and rates their severity. This relieves them from
the necessity to formalize the antipatterns in order to
perform the detection. However, they rely on external
detection algorithms to support the generation of trai-
ning data, which is tedious work. Additionally, they
do not focus on performance and therefore propose
no measure to determine the impact of antipatterns on
performance.

To the best of our knowledge, no existing appro-
ach enables the automatic selection of refactorings
that are most promising to increase performance.

4 AUTOMATED SELECTION OF
REFACTORINGS

Static code analyses for antipattern detection issue too
many alleged defects in a not prioritized fashion, ren-
dering the information hard to work with efficiently.
Dynamic software analyses, on the other hand, yield
a lot of heterogeneous data which is not easy to inter-
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Figure 1: Automated Selection Approach.

pret and will not directly lead to a refactoring propo-
sition in the source code. Apparently, both techniques
have their individual disadvantages.

To overcome these problems, we propose an ap-
proach for the automated selection of refactorings that
utilizes software properties determined by both sta-
tic code analyses and dynamic software analyses. By
combining the best out of both worlds into one heuris-
tics, we compile a list of concrete refactorings sorted
by their assessed potential to improve performance.

Our key idea is that with the help of dynamically
retrieved runtime information we rank statically de-
tected antipatterns by their importance regarding the
expected impact on performance. By connecting run-
time data with specific antipatterns in the code, we
derive a precise recommendation which refactorings
are most promising to improve the performance.

Figure 1 shows our overall approach. In the top
left, a static analysis takes the software source code
and a set of antipattern detection rules as input to pro-
duce an unordered list of antipatterns, e.g. the undesi-
red use of the ’+’ operator. In the bottom left, a dyna-
mic analysis examines the software while it is execu-
ted in its runtime environment consuming some input
data. Various performance measures are the output of
this process, e.g. the execution time. In the final step,
we introduce a rating function, which uses the dyna-
mic performance measures together with a factor that
measures the general effectiveness of a given refac-
toring to assign a severity value to each statically de-
tected antipattern. As a result, we get an ordered list
where the top entries represent the antipatterns along
with their proposed refactorings that have the highest
potential of improving performance. Thus, there is
no more need to manually handle neither the perfor-
mance measures nor the huge amount of antipatterns.
Instead, it is possible to deal with the most promising
refactorings and defer the revision of the others.

4.1 Assumptions and Requirements

Our approach is applicable to all kinds of program-
ming languages for which the corresponding static
and dynamic analyses are available. There are, howe-
ver, differences in how complicated it is to obtain run-
time information and how many sophisticated tools
there are for a certain technology. Thus, for practi-
cal reasons, we decide to tailor our approach to the
widely used programming language Java.

Our approach relies on finding antipatterns with
a static analysis and therefore is limited to what can
be found this way. To be able to analyze even large
code bases we are restricted to detection tools that
are very fast. Characteristic for antipatterns found by
those tools is that they are relatively simple and of-
ten concern only a single operation that is empirically
known to be less efficient than some other operation,
e.g. the + operator that concatenates strings. Signi-
ficant savings are expected especially if antipatterns
occur in loops or frequently called functions. Note
that more complex causes for performance issues, like
memory leaks, inefficient or unnecessarily large da-
tabase requests or too frequent remote service calls,
are hardly detectable by a static analyses in a fail-safe
fashion. Expensive techniques, e.g. symbolic exe-
cution, would be required, but they still cover only a
small part of the considered domain. Additionally, a
high rate of false positives must be prevented because
the acceptance of a tool and the confidence in its well-
functioning would diminish rapidly.

Considering this, we expect our approach to work
best for applications where the same source code
is executed very often and thus the achievable per-
formance improvement of refactoring antipatterns is
high. This decisive criterion is assumed to hold for
large business applications, e.g. server software or
micro services that get thousands of similar request
a second. Nevertheless, our approach works for other
software as well, just with smaller performance gains.

Note that for the static antipattern detection, we
require access to the source code, while for the dy-
namic analysis a runtime environment, and realistic
input data must be available.

4.2 Rating Criteria

We aim at ordering the detected performance antipat-
terns according to their severity, i.e., their potential
of improving performance. To achieve this, we deter-
mine some rating criteria. Those may be either static
properties, e.g., the location in the source code where
an antipattern is detected together with its loop depth,
or properties that can be obtained through dynamic
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analysis, e.g., the execution time and frequency of the
surrounding method.

Static Properties

The core of our static analyis is the static antipattern
detection, which provides a list of antipatterns toget-
her with their location in the code. As an additional
static property we use the loop depth at the correspon-
ding program location as a rating criterion, i.e. within
how many layers of loops a specific antipattern is nes-
ted. We choose this property because source code
within loops has the potential of being executed very
often. If an antipattern represents an inefficiency, the
many repeated executions give it a higher impact on
performance and therefore it is more important to re-
factor.

Note that we do not use the actual amount of exe-
cutions of a loop or the nesting depth of a given anti-
pattern. To determine the actual amount of executions
of a loop for arbitrary inputs is an undecidable pro-
blem, thus we cannot use this information as rating
criterion. How deep an antipattern is nested in arbi-
trary control flow structures, i.e., the nesting depth, is
easy to determine. One could argue that source code
within, e.g., an if-statement is executed less often.
However, we have no evidence that control flow struc-
tures other than loops form a reliable correlation that
can be used as basis for a rating.

Runtime Properties

An important runtime property is the total execution
time of a method. It is defined as the sum of all execu-
tion times of a method in a given program run. The-
refore, it gives an impression on how much time the
program spends in a specific method. The time spent
in subroutines is counted towards the respective su-
broutine but not the calling method. Thereby, we get a
correlation between the time spent and a very limited
number of code lines. A high total execution time in-
dicates that either some very expensive operations are
performed or the number of executions must be high,
e.g. due to a loop. In the second case an antipattern in
this method has a higher impact on performance.

Another interesting property is the call count, i.e.
how often a method is called during runtime. Using
the same reasoning as above, we consider antipatterns
in frequently called methods to have a higher impact
on performance.

The third runtime property is the memory con-
sumption of a method. To capture the memory con-
sumption of a given method in Java, we use the sus-
pension count. As Java is a memory-managed lan-
guage, the garbage collector suspends the currently

executed method from time to time. The suspension
count tells how often the garbage collector suspended
a certain method to perform a collection. We choose
this property as indicator for high memory consump-
tion with the reasoning that if a method suffers sus-
pensions disproportionately often, it probably alloca-
tes a lot of memory. The claimed correlation is ba-
sed on the assumption that a garbage collection ta-
kes place whenever all memory is used up, which sta-
tistically happens more often in allocation intensive
methods. Although different implementations of gar-
bage collectors behave very differently in many ways,
the assumption that more suspensions by the garbage
collector indicate a higher memory consumption pre-
sumably holds. Note that for many other languages
there exist profiling tools like Google’s gperftools for
C or the Memory Profiler for Python, which report
the memory consumption of each method in a given
program. Our rating function can easily be adapted
to include these measures instead of the suspension
count.

A runtime property that we leave out is the in-
crease of execution time under increasing load. If
a method takes significantly more time just because
the system is under load, this indicates that the met-
hod contains some operation that impairs the perfor-
mance. Often, the problem is about waiting time that
is spent e.g. for synchronization between multiple
threads (Grabner, 2009). We still do not consider this
property for two reasons. First, none of our antipat-
terns causes waiting times. Second, measuring the
increase of execution time under increasing load in
a completely automated fashion is very complicated,
e.g., because a dedicated testing environment for the
measured software is required. For the same reasons
we do not utilize synchronization and waiting times.
Neither do we consider the API breakdown, because
the information which component takes the most time
is not detailed enough to form a connection with spe-
cific antipattern occurrences.

Antipattern Properties

As a further important rating criterion, we use the pro-
perties of the antipattern itself. We expect some anti-
patterns to bring high performance gains through re-
factoring while others yield only small improvements.
To assess the general effectiveness of a given set of re-
factorings, we have implemented a micro benchmark
for each class of antipattern and its refactored coun-
terpart in a before-afterwards fashion (cf. Section 5).
In doing so, we evaluate the effectiveness of each re-
factoring and thus can derive meaningful weights for
our rating function.

Note that we have the choice to utilize either the
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relative improvement after the refactoring or the ab-
solute improvement. As we are mostly interested in a
positive effect on the performance of the whole soft-
ware it makes sense to consider the absolute gain. The
relative improvement is only of limited meaning be-
cause an operation that takes quasi no time has few sa-
ving potential even if it can be made faster by a factor
of 50. Therefore, we select the absolute effectiveness
of refactorings as rating criterion.

4.3 Rating Function

Our final goal is to provide a heuristics for the prio-
ritization and selection of antipatterns regarding their
negative impact on performance for a given program.
To achieve this, we present a novel rating function that
can be used as a heuristics to estimate the severity of
a detected antipattern in terms of the expected effect
of refactoring the antipattern on performance. Our ra-
ting function is based on the various criteria discussed
above and forms the heart of innovation in our appro-
ach as it actually combines the statically and dynami-
cally obtained data.

We define our rating function, which determines
the expected effectiveness of refactoring a given anti-
pattern AP, as follows:

severity = exec · (calls+b · loop) · ft,AP

+(β · susp+1) · (calls+b · loop) · fm,AP

where exec is the total execution time, susp the sus-
pension count, calls the call count, loop the loop
depth, ft,AP an antipattern time factor and fm,AP an
antipattern memory factor. The antipattern time and
memory factors ft,AP and fm,AP capture the general ef-
fectiveness of refactoring the antipattern AP. We have
determined these factors using micro benchmarks.
The idea behind this is as follows: If the execution
time of a single piece of code only consisting of a gi-
ven antipattern can be reduced by a factor of 10 using
the proposed refactoring for this antipattern, we as-
sess the general effectiveness of this refactorings to
have a time factor of ft,AP = 10. If, for the same expe-
riment, the memory consumption is reduced to 50%,
the memory factor of this refactoring is fm,AP = 2.
We describe our micro benchmarks to determine the
time and memory factors for a given set of antipat-
terns in Section 5 and present the resulting factors in
Table 2. To fine-tune our rating function, we intro-
duce the weighting factors b and β, where b weights
the relative relevance of the loop depth compared to
the call count, and β the relative relevance of memory
consumption compared to the execution time.

The ratio behind our rating function is to identify
antipatterns that are at locations in the source code

that are executed very often. Refactorings at those
locations have a larger potential of improving perfor-
mance than elsewhere and should receive a higher ra-
ting. If, e.g., the execution time of a method is high, it
is probable that this method is either called very often
or contains a loop with many runs. If an antipattern
is located in such a method with a high call count, we
assume that it is executed often. Consequently, in this
case the term exec · calls becomes large and leads to
a higher rating. If on the other hand the call count
is low but the antipattern lives within a loop, we li-
kewise assume many executions. This time the term
exec · loop becomes large and again leads to a hig-
her rating. When merged together under the premise
that either of the two cases should result in a higher
rating, we get the term exec · (calls+ b · loop) in the
rating function. The weighting factor b can be used
to normalize the loop depth with respect to the call
count (the loop depth is typically between 0 and 4,
while the call count has much larger numbers), and to
express a domain- or application-specific relevance of
loop depth and call count. In applications or domains
where the loop depth is not expected to significantly
influence the performance, b can be reduced, and vice
versa. The antipattern time factor ft,AP gives an esti-
mate for the general impact of the antipattern on exe-
cution time and is therefore multiplied. Altogether,
this yields the first summand of the rating function.

The derivation of the second summand is very si-
milar. For methods that get frequently suspended for
garbage collection we assume a higher memory con-
sumption. This leads to the term susp · (calls + b ·
loop). We again multiply with the antipattern me-
mory factor fm,AP to take the general impact of the
antipattern on memory consumption into account. A
particularity of the suspension count is that for most
methods it simply is zero, since overall garbage col-
lection kicks in relatively seldom. Because we do not
want to zero out the whole impact on memory, we add
the constant one and get (susp+1).

Finally, we put together the two terms, each repre-
senting an independent indication of a high impact on
performance. Since execution times can easily grow
large while the suspension count keeps low, the weig-
hting factor β should be used to align the magnitude.
In addition, the software developer can increase β to
search for refactorings that are promising to reduce
the memory consumption, and decrease β to focus on
refactorings that are promising to reduce the overall
execution time. Note that in (β · susp+ 1) the con-
stant one is not scaled by β. The reasoning is that in
case of zero suspensions the summand should have
little influence and only break the tie between other-
wise similarly rated antipatterns. If scaled, the second
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summand could grow significantly large, although the
suspension count is zero and there actually is no evi-
dence for a high memory consumption.

4.4 Weight Determination

To normalize the loop depth with respect to the call
count and the memory suspensions with respect to
the execution time, we determine initial values of the
weighting factors b and β. As mentioned above, they
can be adjusted to fine-tune the ranking function to
certain domains or to a desired performance goal.

The weighting factor b defines the relation bet-
ween call count and loop depth. To scale the loop
depth range of 0 to 4 such that it matches the magni-
tude of call counts common for the current antipattern
selection process, we choose

b =
1

Nm
∑

methods
calls

with Nm as the number of methods. In other words, we
choose b such that it equals the average call count of a
method. In our experiments, the call count average is
a multiple of the median. Thus, the loop depth has an
adequate effect on the antipatterns rating but the ex-
treme call counts still surpass the loop depth in effect.
Note that b has to be calculated once in an antipattern
selection process.

The weighting factor β defines the relation bet-
ween execution time and suspension count:

β = α ·
∑

methods
exec

∑
methods

susp

In other words, β equals the total execution time di-
vided by the total suspension count. The idea is to
calculate the average of how much time corresponds
to one suspension and scale the suspension count ac-
cordingly. The factor α can be used to reduce the sus-
pension counts influence because it is suspected to be
less reliable and accurate than the execution time, as
the numbers generally are very low and a proper sta-
tistical distribution sets in very late. In our experi-
ments, we use α = 0.2. The weighting factor β has to
be calculated once per antipattern selection process.

5 EVALUATION

We have implemented our approach in Java. We per-
form the static code analysis with PMD (Copeland
and Le Vourch, 2017), which uses detection rules to
find patterns in the source code. Compared to ot-
her tools like Checkstyle (Burn, 2017) and FindBugs

(Pugh and Hovemeyer, 2017), PMD has more rules
for performance antipatterns and thus is best suited
for our approach. For the recording of runtime pro-
perties, we use the monitoring tool Dynatrace App-
Mon (Dynatrace, 2017). It is widely used in practice
and provides all the dynamic properties we need.

In this section, we first present our micro bench-
marks and experimental evaluation of the general ef-
fectiveness of a given set of refactorings independent
of a concrete program. Then, we demonstrate two ex-
periments we have conducted in order to evaluate our
approach for the automated selection of refactorings
that are promising to have a high impact on the per-
formance of a given program. As a case study, we
use STATE, a SystemC to Timed Automata Transfor-
mation Engine written in Java and developed at TU
Berlin (Herber et al., 2015; Herber et al., 2008). Alt-
hough this is not the class of software our approach is
designed for and thus the performance gain is small,
the obtained findings demonstrate the practical appli-
cability of our approach. Furthermore, we show some
example output and give a first impression of the po-
tential of our approach.

We carried out all experiments on an Intel(R)
Core(TM) i7-2620M CPU @ 2.7 GHZ, 2 Core with
8 GB RAM running the Microsoft Windows 10 Pro
operating system. We use the Oracle JVM version 8.

5.1 Micro Benchmarks

We have implemented micro benchmarks to deter-
mine the general effectiveness of a given set of anti-
patterns independent of a concrete program. We me-
asure the effectiveness in terms of time and memory
factors ft,AP and fm,AP, which represent the relative
severity of the various antipatterns. Since we are inte-
rested in the relative effectiveness of performance re-
factorings, only the relation between the performance
of code containing the antipattern and code containg
the refactored version is important and the absolute
results do not matter.

Challenges of Java Micro Benchmarks

Micro benchmarks are not easy to design, especially
in a language like Java. There are some general pit-
falls and some that stem from how Java and its virtual
machine work (Goetz, 2005).

The first thing to go wrong is that something com-
pletely different is measured than what was intended.
A naive example is a benchmark to measure some
arithmetical operation that writes each result to the
console. What impacts the performance in such a set-
ting is mostly the output and not the actual arithme-
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tics. To avoid this, we put only the absolutely neces-
sary operations into the measurement code.

The accuracy of the CPU clock is by far not high
enough to capture times in the magnitude of CPU cy-
cles. Thus, we nest the operations we want to measure
into a simple, repeating loop. The repetition count
must be high enough to reach overall computation ti-
mes where the accuracy is sufficiently good.

A Java specific pitfall is the just-in-time compi-
ler (JIT compiler), which automatically compiles fre-
quently executed portions of the program while lea-
ving the rest for interpretation as usual. This can cor-
rupt a measurement because half of the executions are
interpreted and the other half compiled. We encounter
this challenge with a so called warm-up. This means
that we run the benchmark code 20000 times before
the actual measurement is started. This guarantees
that the JIT compiler translates the benchmark code
and we measure only the compiled version.

Another general difficulty is the compiler optimi-
zation in benchmarks. As the executed code does not
fulfill any contentual purpose the compiler may find
out and optimize it away, rendering the whole bench-
mark useless. To solve this problem, we always return
a number that in some way contains values involved
in the measured code. Like this, we avoid optimiza-
tion with a negligible overhead.

The garbage collection in Java is another mecha-
nism we take into account with our micro benchmark
design. If, for example, a garbage collection is perfor-
med during a benchmark the execution time increases
significantly. Hence, before each measurement, we
demand a garbage collection to happen to achieve si-
milar starting conditions. Actually, the JVM cannot
be forced to carry out a garbage collection but accor-
ding to our experiments it always obeys. Thus, if a
garbage collection takes place, it is because so much
memory was consumed.

When taking a measurement, the result is subject
to deviations. Therefore, we repeat the measurement
several times. In a series there probably are outliers,
e.g., due to some irregular background process on
the machine that executes the benchmarks. For this
reason we discard the extreme values and take the
average over the remaining as final outcome.

Micro Benchmark Implementation

We have implemented the micro benchmarks as an
Apache Tomcat servlet (Foundation, 2017). This
allows a user friendly control in the web browser
through a simple HTML interface. To cover all PMD
performance rules, we have implemented 20 bench-
mark pairs, each consisting of one benchmark for the
antipattern and one for its refactored version. The

core of each benchmark is a specific function that
executes an antipattern or its refactored counterpart
in a loop with a certain repetition count N, in our
case N = 100000. Around this benchmark function
the measurement process is built up. One benchmark
measurement consists of two parts of which the first
measures memory consumption and the second mea-
sures execution time.

For the memory consumption, we take the diffe-
rence in heap size of the JVM before and after the
benchmark function. Because in Java garbage col-
lection can happen at any time, it has to be considered
for the measurement, otherwise the alleged memory
consumption even may become negative. To solve
this problem, we use a callback function, which is
triggered by each garbage collection run and which
records how much space got cleared. We use this to
calculate the memory consumption as follows:

memConsumption =

(heapA f ter+ ∑
GCRuns

collected)−heapBe f ore

We repeated this process 50 times before taking the
average, which we consider the true memory con-
sumption. First experiments showed that the callback
function does not reliably execute timely before the
measurement in which it was triggered is over. There-
fore, after every measurement we schedule a wait of
100ms to catch late coming garbage collections and
assign the numbers to the appropriate measurement.

For the execution time measurement, we take the
difference in the system time before and after the ben-
chmark function. To achieve a reliable value we cal-
culate an average over 50 measurements, where we
discard the lowest and highest four values beforehand.
In order to accomplish an even more reliable result
we calculate such an average for ten different cases,
where in each case the repetition count is modified
according to repCount = i ·N with i = 1,2, ...,10. In
doing so, we get a series of supposedly equidistant
execution time averages. We calculate the distance
between every two successive results, which repre-
sents the increase in time for another N runs. Over
these distances we take the average and finally consi-
der it the true execution time of N runs of the bench-
marked antipattern or its refactored counterpart. The
deviation of the minimal distance and the maximal
distance from the average indicate the quality of the
measurement, with a low deviation confirming the
outcome.

Results and Interpretation

The results from our micro benchmarks are shown in
Table 2. Note that benchmarks marked with * were
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executed with N = 1000 due to long execution ti-
mes. The table comprises short, descriptive names
for the benchmarks and the corresponding average ti-
mes and the average memory consumptions as descri-
bed above. The time factor describes by what factor
the execution time changed in the refactored version
compared to the antipattern, with a high value indica-
ting that the refactoring is effective. The time saving
describes the absolute gain in execution time achie-
ved by the refactoring. Analogously, the values are
calculated for memory consumption.

The time factors are in a range of 0.8 to 21497.92,
i.e., some refactorings even have a negative impact
while others are incredibly effective. The time sa-
vings are in a range of -0.16 to 4275.11 milliseconds
per 100k repetitions and it is notable that a high factor
does not necessarily appear together with a high ab-
solute saving. Regarding memory consumption, the
factor range is 0.21 to 10086.67 and the savings range
is -0.09 to 198.17 MB per 100k repetitions. For those
pairs where the refactored version consumes no me-
mory the factor becomes NaN.

The results fit well with the expectations we had
based on the antipattern description. For example, we
now have evidence that performing arithmetics with
the short type takes additional execution time due to
the internal type casts but saves memory. In conclu-
sion, we are very confident that our effort to design
good benchmarks payed off by providing useful re-
sults that we can use in the rating function to distin-
guish between more or less severe antipatterns.

The measurements taken with the micro bench-
marks are not only good for determining the antipat-
tern factors used in the rating function. They have a
value in themselves because the effectiveness of re-
factoring the antipatterns gets quantified in a relative
and an absolute way. The results show that there are
several refactorings that reduce execution time or me-
mory consumption by large factors. At the same time,
we get an overview of how much can be saved through
refactoring this kind of antipatterns. While for some
the savings are close to zero, for others they are mul-
tiple seconds per 100k calls. Those values suggest
that in general our approach of refactoring this kind
of statically detectable antipatterns has some effect,
as long as not every occurrence is considered but only
systematically selected ones. The results from our mi-
cro benchmarks also provide a valuable insight to the
general effectiveness of performance refactorings and
can be used by further research on antipatterns and
performance refactorings.

Table 1: Experiments with STATE.

Average Absolute Relative
Time Diff Impact

Original 2232.47 ms - -
Injected 2242.03 ms +9.56 ms 0.428 %
Refactored 2218.07 ms -14.4 ms 0.645 %

5.2 Experimental Evaluation

We have evaluated our approach with the software
STATE (Herber et al., 2015; Herber et al., 2008) in
version STATE-2.1. It is licensed as open source
under the GNU General Public License version 3
and consists of approx. 30,000 lines of code in
285 classes. We chose one of the shipped exam-
ples from STATE to do our measurements, namely
b transport.

Experiment 1: Antipattern Injection. In our first
experiment, we have injected some antipatterns in the
source code of STATE, measured their impact on per-
formance and evaluated how they get rated by our
ranking tool. To achieve this, we have duplicated the
STATE source code. Then, in one copy we have ma-
nipulated two methods by replacing all occurrences
of StringBuilder with the less efficient + operator.
In this process, we have altered about 60 lines of code
and replaced in total 49 calls to append. The rest of
the source code remains unchanged.

Our expectation is that the manipulated copy runs
slower, i.e. the measured execution times are increa-
sed. We base this expectation on the benchmark re-
sults where the string concatenation antipattern sho-
wed strong impact on performance. Another expecta-
tion is that the introduced antipatterns get ranked high
in a follow up analysis of the manipulated copy, be-
cause they were injected into a prominent method and
have large antipattern factors.

The upper two rows of Table 1 show the execu-
tion times of the original STATE version compared
to the worsened version where we have injected an-
tipatterns. The average execution time of the ori-
ginal STATE software is 2232.47 ms. The average
execution time of the worsened version with antipat-
terns injected is 2242.03 ms, resulting in an absolute
difference of 9.56 ms. Thus, the refactoring of the
injected antipatterns, i.e. the restoration of the ori-
ginal state, achieves a performance improvement of
0.428%. The subsequent rating tool analysis reveals
that the injected antipatterns are found by our tool.
The 24 occurrences appear among the 26 top rated
antipatterns.

According to our expectation, the STATE version
with antipatterns injected shows worse performance
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than the original. The execution time difference of
about half a percent is small, but we have to keep in
mind that STATE has very different characteristics to
a large-scale server software or micro service, where
our approach is supposed to exploit its full potential.
Considering this, half a percent is already a good re-
sult, especially in relation to the very low effort it ta-
kes to implement some simple, local refactorings.

Experiment 2: Performance Refactorings. In our
second experiment, we have performed a preliminary
analysis of STATE with the rating tool and subse-
quently refactored the top rated antipatterns. After-
wards, we measured if the performance was improved
by the refactorings.With our approach, we get a list of
detected antipatterns sorted according to their assig-
ned ratings. Figure 2 shows the first five lines of the
output file slightly shortened. The large number in
square brackets is the rating assigned to the antipat-
tern. The other information helps to comprehend the
rating and to find the antipattern in the source code.

In our experiment, we have implemented the pro-
posed refactorings for 17 of the top rated 19 anti-
patterns. Two antipatterns remain untreated. One is
an unavoidable object instantiation inside a loop and
the other would require a StringBuilder to prepend
text, which it is not intended for. Apart from the 17
refactorings the source code remains unchanged.

Our expectation is that the refactored version runs
faster than the original, i.e. the measured execution
times are reduced. Although the analyzed software
is not in our target domain of large-scale server soft-
ware, this experiment shows exactly how our appro-
ach is meant to be used in practice.

The last row of Table 1 shows the results for our
second experiment. The average execution time of the
refactored version of STATE is 2218.07 ms. Compa-
red to the original version, this results in a difference
of 14.40 ms. Thus, the refactoring of the 17 top rated
antipatterns achieves an overall performance impro-
vement of 0.645%.

Overall, we can see our expectation satisfied,
since the refactored version effectively executes fas-
ter than the original STATE. Again, slightly more
than half a percent is a small performance impro-
vement but the same argumentation as above holds
and we still consider the result a success. It shows
that the rating tool succeeds in proposing refactorings
that improve performance and suggests that its ap-
plication on a server software or micro service can
yield great performance gains with a small refacto-
ring effort. Note that a PMD analysis of the STATE
source code already restricted to the performance an-
tipatterns yields 843 issues. Of those, only 339 recei-

ved a rating greater than zero and promise a positive
effect on performance through refactoring at all. Note
also that using solely Dynatrace AppMon to capture
runtime properties leaves one with lots of information
without any concrete instruction on what to do.

6 CONCLUSION

In this paper, we have proposed a novel approach to
combine static and dynamic software analyses to au-
tomatically select refactorings that improve the per-
formance of a given program. Our major contribu-
tions are twofold: First, we have presented a a ra-
ting function for antipatterns, which assesses their re-
spective potential to improve performance through re-
factoring based on both static and dynamic properties.
Second, we have implemented micro benchmarks that
assess the general effectiveness of a given set of per-
formance antipatterns independent of a specific pro-
gram. Our benchmarks clearly show that the antipat-
terns actually have an effect on performance, although
the effects vary. Due to the mostly small savings, in
the majority of cases a refactoring is only reasona-
ble if the antipattern is executed frequently, e.g. in a
loop or frequently called method. This illustrates the
importance of a feasible approach to select the most
effective refactorings in a given program.

We have implemented our approach for the auto-
mated selection of refactorings that are most promi-
sing to improve the performance of a given program
using PMD (Copeland and Le Vourch, 2017) for sta-
tic code analyses and Dynatrace AppMon (Dynatrace,
2017) for dynamic software analysis to capture per-
formance measures. The result is a list of recommen-
ded refactorings ordered by effectiveness.

We have demonstrated the practical applicability
of our approach with a sample software that consists
of 30,000 lines of code. Although our approach works
best for large scale server software, it still yields some
improvement for our much smaller case study from a
totally different domain. We therefore assess the po-
tential in a large scale server software as high, especi-
ally due to the good cost-benefit ratio.

Our approach enables us to select only the most
important antipatterns out of the huge amount of an-
tipatterns that are typically provided by static antipat-
tern detection tools. At the same time, it drastically
reduces the cost of interpreting data delivered by dy-
namic analyses. Due to the automated interpretation
and the precisely recommended refactorings, little ex-
pertise is required.

In future work, we plan to carry out a field expe-
riment in which our approach is used to improve the
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[3280529] exec = 97 .00 | susp = 0 | c a l l s =13595 | l oop =0 A n t i p a t t e r n ’ AppendCharac te rWi thChar ’ i n
method ’ t o S t r i n g ’ a t l i n e 288 i n f i l e L o c a t i o n . j a v a

[2592057] exec = 1674 .51 | susp = 3 | c a l l s = 5 | l oop =1 A n t i p a t t e r n ’ A v o i d I n s t a n t i a t i n g O b j e c t s I n L o o p s
’ i n method ’ p a r s e P a r a l l e l ’ a t l i n e 123 i n f i l e UppaalXMLManager . j a v a

[1548647] exec = 1504 .23 | susp = 0 | c a l l s = 5 | l oop =1 A n t i p a t t e r n ’ AppendCharac te rWi thChar ’ i n
method ’ embed ’ a t l i n e 103 i n f i l e Para l le lUppaalXMLEmbedder . j a v a

[1280611] exec = 58 .58 | susp = 0 | c a l l s = 8770 | l oop =0 A n t i p a t t e r n ’ AppendCharac te rWi thChar ’ i n
method ’ t o S t r i n g ’ a t l i n e 221 i n f i l e T r a n s i t i o n . j a v a

[1280611] exec = 58 .58 | susp = 0 | c a l l s = 8770 | l oop =0 A n t i p a t t e r n ’ AppendCharac te rWi thChar ’ i n
method ’ t o S t r i n g ’ a t l i n e 222 i n f i l e T r a n s i t i o n . j a v a

Figure 2: Extract of Rating Tool Results for STATE.

Table 2: Micro Benchmarks for Antipatterns.

Micro Benchmark Avg Avg Time Time Mem Mem
Time Mem Factor Saving Factor Saving
[ms] [kB] [1] [ms/100k] [1] [MB/100k]

StringBuilder using equals(””) 1.30 4133 30.62 1.24 24.52 3.96StringBuilder using length() == 0 0.04 140
Concatenate 10 strings with plus operator 74.42 246622 2.09 40.70 5.06 198.17Concatenate 10 strings with StringBuilder 37.21 48900
Multiple append in multiple statements 9.22 60202 0.99 -0.05 1.00 -0.09Multiple append in only one statement 9.28 60215
Instantiate Boolean object 0.05 140 1.25 0.01 NaN 0.14Reference pooled Boolean 0.04 0
Arithmetics with short 0.05 17 1.25 0.01 0.21 -0.07Arithmetics with integer 0.04 82
Instantiate object with final member * 23.45 553 1.01 22.95 1.02 0.01Instantiate object with static final member * 23.18 544
Call toArray with empty array 0.86 6471 0.84 -0.16 1.00 0.00Call toArray with correctly sized array 1.02 6471
Create many small objects 0.44 2740 2.10 0.23 3.42 1.94Create separate data arrays 0.21 802
Check first char with startsWith 0.04 0 0.80 -0.01 NaN 0.00Check first char with charAt(0) 0.05 0
Copy array iteratively into List * 50.30 40539 10962.82 4275.11 1313.69 37.92Wrap array with asList 0.39 2623
Copy array iteratively into array 10.02 15 1.02 0.16 1.07 0.00Copy array with copyarray 9.86 14
Convert to string with + ”” 4.12 12732 1.15 0.53 2.31 7.22Convert to string with toString 3.59 5510
Instantiate with explicitly initialized member * 27.47 570 1.08 182.75 1.01 0.01Instantiate with implicitly initialized member * 25.32 565
Throw an exception * 30.35 1068 21497.92 2579.63 10086.67 1.06Set flag and check if it’s set 0.12 9
Create string with new 0.57 1876 14.25 0.53 NaN 1.88Create pooled string with quotes 0.04 0
Check string equality casting both upper case 12.70 20872 2.76 8.10 NaN 20.87Check string equality ignoring case 4.60 0
Append character with double quotes 4.17 2366 2.47 2.48 1.45 0.74Append character with single quotes 1.69 1629
Search character with double quotes 0.93 0 1.02 0.02 NaN 0.00Search character with single quotes 0.91 0
Check if string is empty with trim 1.00 2408 25.00 0.96 NaN 2.41Check is string is empty with loop 0.04 0
Initialize StringBuilder too short 4.46 33252 1.17 0.64 1.18 5.09Initialize StringBuilder sufficiently large 3.82 28163

performance of a large scale server software. Furt-
hermore, we plan to investigate more complex refac-
torings. For this, we plan to include static analyses

that detect performance bottlenecks, for example, via
symbolic execution.
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