
TCC (Tracer-Carrying Code): A Hash-based Pinpointable Traceability
Tool using Copy&Paste

Katsuhiko Gondow1, Yoshitaka Arahori1, Koji Yamamoto2, Masahiro Fukuyori2

and Riyuuichi Umekawa2

1Dept. of Computing Science, Tokyo Institute of Technology, Tokyo, Japan
2Fujitsu Laboratories, Kanagawa, Japan

Keywords: Software Traceability, Traceability Link, Hash Value, Software Maintenance, Copy and Paste.

Abstract: In software development, it is crucially important to effectively capture, record and maintain traceability links
in a lightweight way. For example, we often would like to know “what documents (rationale) a programmer
referred to, to write this code fragment”, which is supposed to be solved by the traceability links. Most of
previous work are retrospective approaches based on information retrieval techniques, but they are likely to
generate many false positive traceability links; i.e., their accuracy is low. Unlike retrospective approaches, this
paper proposes a novel lightweight prospective approach, which we call TCC (tracer-carrying code). TCC
uses a hash value as a tracer (global ID), widely used in distributed version control systems like Git. TCC
automatically embeds a TCC tracer into source code as a side-effect of users’ copy&paste operation, so users
have no need to explicitly handle tracers (e.g., users have no need to copy&pastes URLs). TCC also caches the
referred original text into Git repository. Thus, users can always view the original text later by simply clicking
the tracer, even after its URL or file path is changed, or the original text is modified or removed. To show
the feasibility of our TCC approach, we developed several TCC prototype systems for Emacs editor, Google
Chrome browser, Chrome PDF viewer, and macOS system clipboard. We applied them to the development of
a simple iPhone application, which shows a good result; our TCC is quite effective and useful to establish and
maintain pinpointable traceability links in a lightweight way. Also several important findings are obtained.

1 INTRODUCTION

In software development, it is crucially important to
effectively capture, record and maintain traceability
links in a lightweight way. For example, we often
would like to know “what documents (rationale) a
programmer referred to, to write this code fragment”,
which is supposed to be solved by the traceability
links. Most of previous work are retrospective ap-
proaches based on information retrieval techniques,
but they are likely to generate many false positive
trace links; i.e., their accuracy is low.

In practice, there are many cases where the pro-
grammers know, with pinpoint accuracy, the source
and target of traceability links for the software arti-
facts being developed. For example, consider the situ-
ation where a programmer found out the URL (e.g., to
Q&A sites like Stack Overflow), where a workaround
is described after spending several tens of minutes
to resolve an implementation issue (see Sec. 2.3 and
Sec. 5 for concrete examples). We call this a pin-

pointable traceability link (Sec. 2.2).
Unlike retrospective approaches, this paper pro-

poses a novel lightweight prospective approach,
which we call TCC (tracer-carrying code). The main
aim of TCC is to make it easier to certainly establish
and maintain pinpointable traceability links, focusing
on the practical use. Note that TCC does not aim to
establish all pinpointable traceability links. Instead,
TCC aims to establish non-trivial pinpointable trace-
ability links, which are found out by the programmers
after spending several tens of minutes for example,
and thus are thought important by the programmers.

TCC uses a hash value as a tracer (global ID),
widely used in distributed version control systems
like Git. TCC automatically embeds1 a TCC tracer
into source code as a side-effect of users’ copy&paste
operation, so users have no need to explicitly han-
dle tracers (e.g., users have no need to copy&pastes

1In the current implementation of TCC, the hash value
is simply written in source code as comments.

Gondow, K., Arahori, Y., Yamamoto, K., Fukuyori, M. and Umekawa, R.
TCC (Tracer-Carrying Code): A Hash-based Pinpointable Traceability Tool using Copy&Paste.
DOI: 10.5220/0006837102210232
In Proceedings of the 13th International Conference on Software Technologies (ICSOFT 2018), pages 221-232
ISBN: 978-989-758-320-9
Copyright © 2018 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

221

URLs). The reason of using copy&paste in TCC is
because our observation suggests that there is a high
correlation between pinpointable traceability links
and copy&paste operations. That is, a copy&paste
often occurs when a programmer wants to use some
information in the referred document (where to copy)
to write a code fragment (where to paste), for exam-
ple.

TCC also caches the referred original whole text
into Git repository. Thus, users can always view the
original text later by simply clicking the tracer, even
after its URL or file path is changed, or the original
text is modified or removed.

Although the idea of TCC is quite simple, TCC
has the following important advantages:

• TCC automatically establishes pinpointable trace-
ability links by hooking into users’ copy&paste
operations. Also TCC alleviates the bothersome
management of URL links, memos, and so on.
Once the user has done the TCC’s copy&paste,
the text stored in a Git repository can be always
viewed by simply clicking the TCC tracer, even
after its URL or file path is changed, or the orig-
inal text is modified or removed. Furthermore,
TCC can handle the artifacts with no URL or file
path from the beginning.

• TCC can check the consistency among artifacts
by comparing the hash values (see pair-hash in
Sec. 4.1.2). Also TCC can cope with fine grained
traceability links (see part-hash in Sec. 4.1.3).

• TCC is language-independent, since TCC can be
applied to any text-based files. Furthermore TCC
can be applied to some binary files if copy&paste
is available (e.g., PDF files).

• The Git repositories for other projects can be
safely merged into the Git repositories used by
TCC since the possibility of the hash collisions
is low enough in practice.

• Unlike retrospective approaches, TCC distin-
guishes different versions of the same artifact in-
cluding many common words, since TCC is hash-
based; different versions have different hashes in
practical use.

• The TCC tracer is just a text including hash val-
ues, so even in editors or environments not sup-
ported by TCC, the contents of artifacts can be
retrieved by manually manipulating the Git repos-
itory with the hash values.

• The idea of TCC is very simple, so the TCC im-
plementation is likely to be very small. Actually
the LOC of TCC for Emacs is about 1,000 lines in

Emacs Lisp. (In spite of this fact, the TCC imple-
mentation is not trivial, and even not feasible in
some cases. See Sec. 4.4).

The main contributions of this research are as fol-
lows:

• We have proposed TCC as a novel lightweight
traceability method which automatically embeds
a hash value as the tracer to the copy&pasted text
(Sec. 4).

• We have provided the first prototype implemen-
tation of TCC for Emacs, Google Chrome, PDF
viewer and macOS clipboard (Sec.4.3). The full
source code of TCC is publicly available at the
TCC homepage (TCC homepage).

• Our preliminary experiment shows that TCC is
an effective and useful traceability tool with some
important findings (Sec. 5).

The rest of this paper is organized as follows.
Sec. 2 explains the software traceability and our target
pinpointable traceability links. Motivating examples
of pinpointable traceability links are also presented.
Sec. 3 gives related work. Sec. 4 describes the idea,
design and implementation of TCC. Sec. 5 describes
the preliminary experiment of applying TCC to a sim-
ple iPhone application development. Several import
findings are also described. Finally Sec. 6 gives the
conclusion.

2 BACKGROUND

2.1 Software Traceability

Although there are various definitions of software
traceability (Cleland-Huang, et al., 2012) (Cleland-
Huang, et al., 2014), we define software traceability
as follows:

Software traceability is a property that we can
trace, in both directions, what parts of one
software artifact (e.g., code) reflect (e.g. sat-
isfy, implement, etc.) a part of another soft-
ware artifact (e.g., requirement).

Suppose there are two software artifacts A and B.
Also suppose there are a relationship between A and
B like: “B satisfies A”, “A is the rationale of B” and
we can reach from A to B, and vice versa. Then, we

ICSOFT 2018 - 13th International Conference on Software Technologies

222

say “a software traceability between A and B is estab-
lished”. A link between A and B is called “traceability
link”.

Software systems are developed to satisfy their re-
quirements, related standards and laws, and so on, but
the requirements are often modified. So we often need
to modify the corresponding code, too. Conversely,
when a bug is found, we need to refer to the corre-
sponding requirements to correct the code. Therefore
traceability links are indispensable in software devel-
opment.

2.2 Pinpointable Traceability Links

Unfortunately, it is often quite difficult to effectively
and efficiently establish traceability links. Upstream
requirements are often ambiguous, vague and con-
flicting (Cleland-Huang, et al., 2012), and their gran-
ularity tends to be coarse, so it is difficult to con-
nect them to the corresponding downstream code
fragments. A non-functional requirement (e.g., se-
curity arrangement) often comes with cross-cutting
concerns, which potentially have complicated one-to-
many (or many-to-many) traceability links, and it is
quite difficult to establish them in reality.

From this observation, in this paper, we limit our
scope to pinpointable traceability links, which can
pinpoint the parts of source and target of the re-
lated artifacts (see also Sec. 1). In other words, pin-
pointable traceability links are links with one-to-one
relationship between the fine-grained parts of text-
based artifacts. At a glance, pinpointable links are
easy to cope with, but actually not. The reasons are as
follows:

• As the size of software systems and their SDK
platforms are rapidly increasing, there are so
many pinpointable links among them. These APIs
and documents are often updated, and their URLs
are often modified. Thus, the management of pin-
pointable traceability links is a bothersome and er-
ror prone task.

• Even though traceability links are limited to text-
based ones, there are many kinds of media like
plain texts, PDF, HTML/XML documents, MS of-
fice documents, etc., which are stored in various
tools (e.g., version control systems, issue track-
ing systems, Email clients, SNS) and IDEs (e.g.,
Eclipse, Xcode).

• It often takes much time (e.g., several tens of min-
utes) for programmers to find out pinpointable
traceability links, since there are several cases
where the API is used intentionally in a non-
intuitive way (See Sec. 2.3 and Sec. 5 for exam-

void signal_handler (int sig) {
//

:::::::
fprintf must not be used here (see C99)

::::
write (fd, buf, n_buf);

}

Figure 1: write is used instead of fprintf in a UNIX sig-
nal handler.

ple). One major reason of the difficulty in recov-
ering traceability links stems from the fact that it
is really difficult to precisely know the program-
mer’s intentions, for example, when the program-
mer used not straightforward or not well-known
ways.

2.3 Motivating Examples of
Pinpointable Traceability Links

2.3.1 Motivating Example #1: fprintf Cannot
Be used in a UNIX Signal Handler

As shown in Fig. 1, in a UNIX signal handler, the
system call write should be used to output some data,
and the library function fprintf must not be used to
do so. The reason of this is because Sec. 7.1.4.4 of
the C standard (C99, 1999) says as follows:

The functions in the standard library are not
guaranteed to be reentrant and may modify
objects with static storage duration. Thus, a
signal handler cannot, in general, call standard
library functions.

This description comes from the fact that data
races can occur if the C standard I/O library functions
are used in a UNIX signal handler as they (including
fprintf) are not reentrant, for example, in the buffer-
ing process (Tahara, et al., 2008).

A traceability link from this code fragment in
Fig. 1 to the above description in the C standard is
obviously pinpointable one. Note that it is quite dif-
ficult for programmers to find out this pinpointable
traceability link, if they do not know the possibility of
data race occurrence.

Also note that it is quite difficult to establish this
pinpointable link by the existing retrospective meth-
ods using the similarity between the words in the text,
since the words “fprintf“ and “signal handler” fre-
quently appear in the other places of the C standards.

On the other hand, once we discovered this fact,
we can establish the traceability link with pinpoint ac-
curacy (thus pinpointable), since the target of the link
is only one small fragment of the document (i.e., Sec.
7.1.4.4 of the C standard (C99, 1999)).

TCC (Tracer-Carrying Code): A Hash-based Pinpointable Traceability Tool using Copy&Paste

223

centering
chrome.runtime.onMessageExternal.addListener (

function (request, sender, sendResponse) {
chrome.tabs.query ({active: true, currentWindow: true},

function (tabs) { chrome.tabs.sendMessage (tabs[0].id, type: "TCC",
function (res) { sendResponse (res); return true; });
return true; });

::::::
return

:::::
true; // this line cannot be omitted.

}
);

Figure 2: return true; is required to send a response asynchronously.

2.3.2 Motivating Example #2

The code fragment in Fig. 2 is a part of our TCC im-
plementation TCC for PDF viewer (Sec. 4.3). In Fig. 2,
using chrome.runtime.onMessageExternal, a
callback function is registered to communicate be-
tween two Google Chrome extensions. The problem
here is that the final response should be sent back
by calling sendResponse, but was not, since we
accidentally omitted the last return true; by
mistake. This happened because it is not intuitive
for us to tell the Chrome that we wish to send a re-
sponse asynchronously by using this return true;,
although this is clearly written in the Google Chrome
manual (Google Chrome Manual) as follows.

This function becomes invalid when the event
listener returns, unless you return true from
the event listener to indicate you wish to send
a response asynchronously (this will keep the
message channel open to the other end until
sendResponse is called).

The link between the manual of
chrome.runtime.onMessageExternal and the
code fragment in Fig. 2 is another example of
pinpointable traceability link. If the link is lost, it
becomes difficult to know the rationale of why the
last return true; cannot be omitted.

3 RELATED WORK

There are many papers on the techniques for estab-
lishing traceability links, but, to our knowledge, they
do not use the idea of our TCC, i.e., automatically em-
bedding a TCC tracer into artifacts as a side-effect of
users’ copy&paste operation.

3.1 Retrospective Traceability, Feature
Location

There are many retrospective approaches, which try
to automatically recover traceability links by calculat-
ing the similarity between the words in the artifacts,
using information retrieval techniques like Latent Se-
mantic Indexing (LSI) (Marcus, et al., 2003)(Asun-
cion, et al., 2010)(Dekhtyar, et al., 2007)(Delater
and Paech, 2013)(Hayes, et al., 2006)(Gethers, et al.,
2011). There are many feature location techniques
proposed, which try to identify the source code
fragment that implements some functionality (re-
quirement), thus they are a kind of retrospective
traceability approaches specific to features (Rubin
and Chechik, 2013)(Dit, et al., 2011)(Dit, et al.,
2013)(Ishio, et al., 2013).

Unfortunately, all of them produce only candi-
dates of traceability links by similar word search,
so these approaches tend to lack the accuracy and
produce many false positives. Especially, they can-
not distinguish different versions of the same artifact
(e.g., source code, API document), while our TCC
can distinguish them since different versions have dif-
ferent hash values in practical use.

3.2 Prospective Traceability

There are several prospective approaches, which
try to (semi-)automatically capture traceability links
by monitoring users’ operations (Neumuller and
Grunbacher, 2006)(Asuncion, et al., 2007)(Pinheiro
and Goguen, 1996)(Pohl, 1996)(Medvidovic, et al.,
2003)(Kersten and Murphy, 2005)(Altintas, et al.,
2006)(Asuncion and Taylor, 2009). Unfortunately,
similarly to retrospective approaches, they also
suffer from the lack of accuracy. Furthermore,
some approaches require users to describe some
rules in advance (Pinheiro and Goguen, 1996)(Pohl,
1996)(Asuncion and Taylor, 2009). Thus, the exist-
ing prospective approaches are not lightweight.

ICSOFT 2018 - 13th International Conference on Software Technologies

224

Our TCC is a prospective approach in a broad
sense, but TCC’s accuracy is high and does not re-
quire rules in advance (i.e., TCC is lightweight),
since TCC embeds tracers as a side-effect of users’
copy&paste operation.

3.3 Software Concordance

The Software Concordance (Nguyen and Munson,
2003) integrates both of source code and documents
into XML formats, and connect them using hyper-
text links as traceability links. Software concor-
dance also provides uniform editing and versioning
for Java. This approach seems highly language-
dependent, which may make it difficult to extend the
Software Concordance to other languages.

Unlike the Software Concordance, TCC is
language-independent, and TCC can be in principle
applied to all text-based artifacts, since TCC just em-
beds a hash value to the original copy&pasted text.

3.4 Documentation Tools, Cross
Referencer Tools, IDEs

Documentation tools (e.g., Javadoc, Doxygen) gener-
ate API documents using the user-specified annota-
tions, which helps users to keep the API documents
consistent, but they do not support traceability links.
(Users have to manually specify the URL in the anno-
tations.)

Cross reference tools (e.g., LXR, GNU Global,
Cxref) automatically generate links between the def-
inition and reference of identifiers, which helps users
to understand the source code. The supported links
are limited to identifiers (e.g., names of files, classes,
methods, functions and variables), so they cannot sup-
port general traceability links.

Recent IDEs (e.g., Eclipse, Xcode) navigate users
to the corresponding API manuals by clicking the API
function names in the source code editors. Like cross
reference tools, the supported links are limited to API
function names.

3.5 Literate Programming

In literate programming (Knuth, 1984), source code
and the corresponding document are written in the
same file, and a dedicated tool of literate program-
ming generates the traditional source code and docu-
ments separately. This approach helps users to keep
source code and its document consistent, but trace-
ability links need to be manually described, when the
document exists outside of the source code (e.g., stan-

dards and laws) or the document is too large to put
them into the same file.

3.6 Software Watermarking, Software
Birthmarking

There are software watermarking/birthmarking tech-
niques (Jalil, 2009)(Myles and Collberg, 2004),
whose primary goal is to prevent software piracy. In
watermarking, some invisible data is embedded to
programs purposely, while a birthmark is calculated
using some characteristics of the programs.

Both techniques detect software piracy by com-
paring some characteristic values of two artifacts A
and B. Thus, it is a prerequisite that you already have
A and B. (If not, a brute force search is possible, but
impractical.)

On the other hand, in software traceabilities, we
need to reach from the artifact A to B when we
have only A, and B is unknown yet. Thus soft-
ware watermarking/birthmarking are not suitable for
software traceabilities. Furthermore, software wa-
termarking/birthmarking are typically used for the
whole software (coarse granularity), while our TCC
is used for the small fragments of artifacts (fine gran-
ularity).

4 TCC: TRACER-CARRYING
CODE

This section presents the idea, design and implemen-
tation of our TCC (Tracer-Carrying Code). We pro-
pose a novel traceability method called TCC, whose
primary aim is to establish pinpointable traceability
links in an effective and lightweight way.

4.1 Ideas of TCC

4.1.1 Idea #1: TCC Embeds a Hash Value as
Tracer in a Copy&Pasted Text

Consider the situation where a user copy&pastes
some text (e.g., “output "X"” in Fig. 3) from one
file A to another file B, with the intention of estab-
lishing a traceability link from B to A. Then, as a side
effect of the copy&paste, TCC automatically embeds
the hash value (0x1234 in Fig. 3) for the whole con-
tent of A to the copy&pasted text2. In our current
implementation, we use SHA-1 (20-bytes length, i.e.,
40 characters in hexadecimal) as a hashing method.

2TCC also embeds other information like URL if exists.
See Table. 1 in Sec. 4.2 for the detail.

TCC (Tracer-Carrying Code): A Hash-based Pinpointable Traceability Tool using Copy&Paste

225

The pasted hash values might make the source
code less readable. To avoid this problem, TCC pro-
vides a mechanism to hidden the hash values in the
editors like outlining mechanism.

Also TCC registers the whole content of the file
A to a Git repository, so the whole content of A can
be retrieved by using the hash value as a key. Thus,
the user can view the content of A by accessing the
Git repository at any time, even after the original file
content is modified or removed, or the URL or file
path is modified. To make this retrieval easier, TCC
provides a mechanism to do this by simply clicking
the hash value in B’s editor.

Figure 3: TCC’s idea #1.

4.1.2 Idea #2: TCC Detects Inconsistency using
Pair Hash

If the user desires, TCC embeds the pair hash of A
and B (e.g., hash(A+B) in Fig. 4), which is the hash
value for the string-concatenated text of A and B. If
the original file A or B (on the Internet or file system,
not in the Git repository) is changed, TCC detects the
change by comparing two pair hashes of the previ-
ously recorded one and the latest one.

Here this pair hash mechanism assumes that the
user always sets up the pair hash after he or she modi-
fies the file A and/or B into a consistent state between
them. This assumption is required since there is no
other way for TCC to know that A and B get consis-
tent. The pair hash is a kind of declaration by the user
to show the user believes that A and B are consistent.

Note that the pair hash cannot prevent malicious
falsification, since any user can set up the pair hash
again after modification. In this case, TCC cannot
detect the inconsistency, although the previous con-
sistent versions of A and B can be reverted manually
later from the Git repository.

Figure 4: TCC’s idea #2.

4.1.3 Idea #3: Fine-grained Traceability using
Part Hash

As is often the case, the user wants to establish a
traceability link not to the whole content of the file,
but to the specific part of it. In this case, the hash
value for the whole content might produce a false pos-
itive, since only adding one character at the beginning
of the file implies the change of the whole file, even
though the specific part that the user is interested in re-
mains unchanged. Thus, the granularity of the whole
file is sometimes too coarse.

To solve this problem by enabling fine-grained
granularity, TCC embeds the part hash of the spe-
cific part that the user specifies (e.g., hash(a part A) in
Fig. 5). The part hash for the file A (reference target)
is straightforwardly computed for the selected region
in copy&paste, while the region needs to be addition-
ally specified by the user to compute the part hash for
the file B (reference source).

Figure 5: TCC’s idea #3.

4.2 TCC’s More Concrete Usage
Examples

This section shows TCC’s more concrete usage ex-
amples using the screenshots of the Emacs version
of our TCC implementations, called TCC for Emacs

ICSOFT 2018 - 13th International Conference on Software Technologies

226

Figure 6: TCC’s copy operation in the file A.txt.

Figure 7: The copied text with a hash code is pasted into
B.c.

(See Sec. 4.3 for other TCC implementations). TCC
for Emacs is implemented as an Emacs minor-mode,
so TCC can be enabled in editing of any kind of text-
based files, which means TCC for Emacs is language-
independent.

Figure 8: The content of A.txt is shown with the previ-
ously copied region highlighted (in a different buffer from
A.txt).

Figure 9: TCC tracers are made invisible.

1. TCC copy operation
Consider the situation, like Sec. 4.1, where a user
copy&pastes the text “output "X"” from the file
A.txt to B.c. First, in the file A.txt, the user
does the copy operation (Fig. 6). As a side ef-
fect, as described in Sec. 4.1.1, TCC appends the
hash value of A.txt to the copied text. Also TCC
registers A.txt to a Git repository3. Note here

3We use Git in our implementation, but other hash-based

that we deliberately designed TCC’s copy oper-
ation to be different from the normal one in the
Emacs or the underlying OS, since TCC’s copy
operation silently modifies the copied text, and
the modification of the copied text unintended by
the user is undesirable4. Because of this, TCC for
Emacs does not use the normal copy&paste area
in Emacs (primary selection). Instead, TCC for
Emacs uses the secondary selection as the TCC’s
copy&paste area, which most users do not use.

2. TCC paste operation
After the copy operation, the user pastes the
copied text with a hash value to B.c (Fig. 7). Un-
like TCC’s copy operation, this paste is a nor-
mal one. The underlined text appended by TCC
for Emacs (called TCC tracer) in Fig. 7 is click-
able; when clicked, the content of A.txt will be
shown in the editor with the previously copied re-
gion highlighted (Fig. 8) by retrieving it from the
Git repository. Note that the buffer window is dif-
ferent from the original one of A.txt, thus this
feature always works even after A.txt is removed
or moved in the editor, file system, or Web server.
As shown in Fig. 7, the TCC tracer is represented
in JSON format for easy processing; the keys in
TCC tracer and their meaning are listed in Ta-
ble. 1. @TCC is just a preamble to show that TCC’s
hash value follows. The TCC tracer in Fig. 7 in-
cludes the hash value of A.txt (ref-hash), the
part hash value of A.txt (ref-part-hash), the
byte offset positions of the copied area in A.txt
(ref-pos), the file path of A.txt (ref-url), and
the time stamp when copied (timestamp).
The TCC tracer in Fig. 7 is 7-lines long; it makes
the source code difficult to read. To alleviate this,
TCC for Emacs allows the user to make the hash
value invisible (Fig. 9) by a simple key operation
(Ctrl-c t i by default).

3. TCC inconsistency checking
TCC detects the inconsistency between source
and target files by comparing the hash values in
the TCC tracer. To show this, consider the situa-
tion where the user modified the first line of A.txt
(Fig. 10), but the user forgot to modify the corre-
sponding part of B.c, which results in an incon-
sistent state.
Then TCC compares two hash values between

distributed version control systems can be used alterna-
tively. TCC uses the Git repository at /.tcc by default, but
the existing Git repositories in other projects can also be
used, since no interference occurs there.

4Actually, in most Web browsers, modifying the clip-
board in JavaScript is not allowed for security reasons.

TCC (Tracer-Carrying Code): A Hash-based Pinpointable Traceability Tool using Copy&Paste

227

Table 1: Keys in TCC tracer.
Key Description

ref-hash Hash value for the whole con-
tent of target file

ref-part-hash Hash value for the part content
of target file

ref-pos Pair of byte offsets of the copied
region in target file

ref-url URL or file path of target file (if
exists)

timestamp Time stamp when this TCC
tracer was appended

my-hash Hash value for the whole con-
tent of source file

my-part-hash Hash value for the part content
of source file

my-pos Pair of byte offsets of the speci-
fied region by the user in source
file

pair-hash Hash value for the whole con-
tent of both of target and source
file

pair-part-hash Hash value for the part contents
of both of target and source file

pair-pos Two pairs of byte offsets for the
regions in target and source file

the previously recorded one and the latest one,
and highlights them in red color if they differ
(Fig. 11). Currently, this is invoked by the user’s
key operation (Ctrl-c t c by default), but it
can be automated, using periodic polling, with-
out the user’s operation. Note that in Fig. 11,

Figure 10: The user modifies the target file A.txt at the first
line.

Figure 11: TCC detects the inconsistency between A.txt
and B.c.

pair-hash and ref-hash are highlighted in red,
but ref-part-hash not since the copied text

Output "X" in A.txt is not modified. This
demonstrates the idea of TCC’s part hash works
well in this example. Also note that a naive re-
computation of the latest part hash using byte off-
sets ref-pos does not work, since the text Output
"X" is shifted forward by the text insertion at the
first line, and thus the hash values calculated by
ref-pos differ from the previously recorded one,
even if the text Output "X" is not modified. So
our current implementation uses a diff tool (git
diff); TCC reports the inconsistency if the origi-
nal copied text is included in the diff.

4.3 TCC Implementations

Currently, we have implemented the following TCC
prototypes, using 20-bytes length SHA-1 as a hash
method, and Git as a hash-based distributed version
control system:

• TCC for Emacs

• TCC for Google Chrome

• TCC for PDF viewer

• TCC for macOS clipboard

TCC for Emacs supports all the TCC operations
described in Sec. 4.2. Also TCC for Emacs supports
the paste operation by drag&drop, i.e., the TCC tracer
is inserted by dragging a file icon and then dropping
it on the Emacs editor.

The prototype implementations other than TCC for
Emacs only support the TCC copy operation, since

• The Web pages and PDF files on the Internet are
usually not editable5.

• Editing local PDF files has usually no meaning,
because the change will not be reflected to the
original PDF files on the Internet.

• The API of macOS clipboard provides no way to
edit the file where the copy operation is done.

TCC for Google Chrome is implemented as a
Chrome extension. For just the same reason that TCC
for Emacs uses a secondary selection (Sec. 4.2), TCC
for Google Chrome does not hook the normal copy
command (e.g., Ctrl-C). Instead, the TCC copy op-
eration is invoked by selecting the context menu Copy
with TCC tracer (Fig. 12) to make the user aware
that the copied text is modified by adding the TCC
tracer.

TCC for PDF viewer is implemented by modifying
PDF.js 6, which is a Chrome extension. The interface

5This is the main reason why our current TCC only sup-
ports one way links, not bidirectional ones.

6https://mozilla.github.io/pdf.js/

ICSOFT 2018 - 13th International Conference on Software Technologies

228

of the TCC copy operation in TCC for PDF viewer is
the same as TCC for Google Chrome (Fig. 13).

TCC for macOS clipboard is implemented as a
“macOS service”. The macOS services enable the
user to use the features of another application, pass-
ing some data (e.g., the selected text) from one ap-
plication. Thus TCC for macOS clipboard works
for all the macOS applications that supports the ma-
cOS services. TCC for mac OS clipboard can be in-
voked by the service menu (Fig. 14), the context menu
(Fig. 12 and Fig. 13) or by a system keyboard short-
cut (Ctrl-command-C in our setting). Due to the lim-
itations of the clipboard API, TCC for macOS clip-
board only registers the copied text to the Git repos-
itory, not the whole content of the selected file (see
also Sec. 4.4).

Figure 12: TCC copy operation in TCC for Google Chrome.

Figure 13: TCC copy operation in TCC for PDF viewer.

Figure 14: TCC copy operation in TCC for macOS clip-
board.

4.4 The Difficulties in Implementing
TCC

The idea of TCC is quite simple. Unfortunately, how-
ever, this does not imply that the TCC implementation
is trivial and straightforward. Actually we encoun-
tered the following difficulties when we developed the
TCC prototypes.

• The current TCC for macOS clipboard cannot
compute the hash value for the whole content of
the file (ref-hash), since the clipboard API of
macOS provides no way to access to the copied
file. So the current TCC for macOS clipboard
only computes the hash value for the copied part
(ref-part-hash). This shows the feasibility of
implementing TCC highly depends on the under-
lying API.
Also the macOS service of TCC for macOS clip-
board works well for most macOS applications,
but there are some exceptions (e.g., Microsoft Ex-
cel for macOS).

• There is no simple way to execute a UNIX shell
command from a Chrome extension mainly due to
security reasons. To work around this problem in
TCC for Google Chrome and TCC for PDF viewer,
we needed to implement a simple Web server
(called xhr_git_register.pl)7, which receives
an HTML file as a POST method, executes Git
commands to register the HTML file to the Git
repository, and returns a SHA-1 hash value.

• There is no way to obtain the byte offset positions
of the copied area (ref-pos) in the Chrome. The
reasons are twofold.

– The API window.getSelection() returns a
selection object. This selection object includes
relative offsets inside the selected DOM nodes,
but it does not include the byte offsets from the
beginning of the HTML file.

– The HTML file obtained through the API
document.documentElement.outerHTML
and the original HTML file differs in the lexical
level, where spaces, newlines and indentation
are changed. Furthermore, the HTML file is
normalized according to the XHTML standard,
where for example aaa is changed to
aaa. This means that the byte
offsets are useless even if available.

• The hash value for a file cannot be embedded in
the same file correctly, in the sense that the hash

7Until 2013, NPAPI plugins were available, which al-
lows us to call native binary code from JavaScript, but not
available now.

TCC (Tracer-Carrying Code): A Hash-based Pinpointable Traceability Tool using Copy&Paste

229

void signal_handler (int sig)
{

// fprintf must not be used here (see C99)
// C99 says: a signal handler cannot,
// in general, call (omitted) @TCC...
write (fd, buf, n_buf);

}

Figure 15: TCC link is successfully established in Exam-
ple. 1.

value embedded in the file is not the same as the
hash value recomputed for the file, since the em-
bedded hash value alters the hash value for the
file.
To work around this problem, (e.g. my-hash (Ta-
ble. 1) is the case), when TCC computes and
checks the hash value, TCC removes the existing
hash value from the file in advance.

5 PRELIMINARY EXPERIMENT

As a first preliminary experiment, we applied TCC
to our two motivating examples (Sec. 2.3); for both
cases, TCC worked well. Fig. 15 shows that the TCC
link is successfully established in the first example
(Fig. 1)8, where the TCC link itself is made invisible
as

We also applied TCC to our own simple iPhone
application development. The application is a simple
pedometer (Fig. 16), and its source code is about 600
lines in Swift3. As the result, we found that TCC is an
effective and useful traceability tool in the following
findings:

Figure 16: Screenshot of our pedometer application using
TCC.

• TCC is useful to record the implementation ratio-
nale.

8The figure using TCC for the second example (Fig. 2)
is omitted to save space here.

For example, we would like to output the notifi-
cation in the application (e.g., “You have reached
10,000 steps!”) even when the application is run-
ning in the background. But the motion-related
API of iOS SDK (CoreMotion) is not allowed to
run in the background. However, other famous
pedometer applications like Runtastic definitely
do this even in the background.
After a half hour struggling on the Internet, we
found out some techniques in combination with
other services that are allowed to run in the back-
ground (e.g., GPS, music) (Apple Programming
Guide)(Apple Ref. Core)(Apple Ref. Back-
Ground)(stack overflow). TCC made it easier for
us to record these URLs as a rationale (i.e., the
reason why the GPS service is used, which is un-
necessary at a glance) using the TCC tracer in the
source code.
This TCC tracer is useful since the TCC tracer
saves time to search the rationale again, and also
gives us a sense of relief that we can reach the
contents of URLs at any time, even after they are
updated, moved or removed (the API manuals are
frequently updated).

• TCC is useful to record unresolved issues.
For example, it was unclear how we can increment
an iOS badge on the application icon, which is the
number of unread notifications in the application.
At the time we developed, we can setup the iOS
badges by incrementing the variable UILocal.
applicationIconBadgeNumber, but the manual
says that the API is deprecated, so we should not
have used it.
After all, we could not find the appropriate way in
the manual (perhaps, the manual was not updated
for the latest API), so we could not help but use
the above deprecated API. We described this issue
in the Emacs buffer, and established a traceabil-
ity link to this by copy&pasted from the Emacs
buffer. This shows TCC is useful for unresolved
issues by recording the hash value for anonymous
files and stores them to the Git repository.
A typical conventional way to show some unre-
solved issue is to write a comment like FIXME:
this API is obsolete. Using TCC, we can
write more detailed long description and embed
the TCC link to the description.

• We did not need the traceability links to most
of the normal API manuals we referred to, since
modern IDEs like Eclipse and Xcode provide
a way to easily view the corresponding manual
from the API function name. Instead, TCC is ef-
fective to record the rationale of corner cases.

ICSOFT 2018 - 13th International Conference on Software Technologies

230

6 CONCLUSION

This paper proposes a novel lightweight prospective
approach to establish and maintain traceability links,
which we call TCC (tracer-carrying code). TCC uses
a hash value as a tracer (global ID), and TCC automat-
ically embeds a TCC tracer into source code as a side-
effect of users’ copy&paste operation. To show the
feasibility of our TCC approach, we developed sev-
eral TCC prototype systems. We applied them to the
development of a simple iPhone application, which
shows a good result. As a future work, we would like
to implement other prototypes, for example, for IDEs
like Eclipse and Xcode, and for office software like
MS Excel and Powerpoint.

REFERENCES

J. Cleland-Huang, O. Gotel and A. Zisman (Eds.): Software
and Systems Traceability, ISBN: 978-1-4471-5819-6,
Springer, 2012.

J. Cleland-Huang, O. Gotel, J. H. Hayes, P. Mader and
A. Zisman: Software traceability: trends and future
directions, Proc. on Future of Software Engineering
(FOSE 2014). pp.55–69, ACM, 2014.

Programming languages–C: ISO/IEC 9899:1999.
T. Tahara, K. Gondow, S. Ohsuga: DRACULA: Detec-

tor of Data Races in Signals Handlers, 15th Asia-
Pacific Software Engineering Conf. (APSEC), pp.17–
24, 2008.

A. Marcus and J. I. Maletic: Recovering documentation-
to- source-code traceability links using latent semantic
indexing, ICSE’03, pp.125–135, 2003.

H. U. Asuncion, A. U. Asuncion and R. N. Taylor: Software
traceability with topic modeling, ICSE’10, pp.95–
104, 2010.

A. Dekhtyar, J. H. Hayes, S. Sundaram, A. Holbrook and
O. Dekhtyar: Technique integration for requirements
assessment, 15th IEEE Int. Requirements Engineering
Conf. (RE 2007), pp.141–150, 2007.

A. Delater and B. Paech: Analyzing the tracing of re-
quirements and source code during software develop-
ment, a research preview, 19th Int. Working Conf. on
Requirements Engineering: Foundation for Software
Quality (REFSQ 2013), pp.308–314, 2013.

J. H. Hayes, A. Dekhtyar and S. K. Sundaram: Advanc-
ing candidate link generation for requirements tracing:
the study of methods, IEEE Transactions on Software
Engineering, 32(1), pp.4–19, 2006.

M. Gethers, R. Oliveto, D. Poshyvanyk and A. De Lucia:
On integrating orthogonal information retrieval meth-
ods to improve traceability recovery, 27th IEEE Int.
Conf. on Software Maintenance (ICSM), pp.25–30,
2011.

J. Rubin and M. Chechik: A survey of feature location tech-
niques, in the book of Domain engineering: product
lines, languages, and conceptual models, ISBN-10:
3642366538, Springer, pp.29–58, 2013.

B. Dit, M. Revelle, M. Gethers, D. Poshyvanyk: Feature lo-
cation in source code: a taxonomy and survey, Journal
of software maintenance and evolution: research and
practice, 25(1), pp.53–95, 2011

B. Dit, M. Revelle and D. Poshyvanyk: Integrating in-
formation retrieval, execution and link analysis algo-
rithms to improve feature location in software. Empir-
ical Software Engineering, 18(2), pp.277–309, 2013.

T. Ishio, S. Hayashi, H. Kazato and T. Oshima: On the ef-
fectiveness of accuracy of automated feature location
technique, 20th Working Conf. on Reverse Engineer-
ing (WCRE), pp.381–390, 2013.

C. Neumuller and P. Grunbacher: Automating Software
Traceability in Very Small Companies: A Case Study
and Lessons Learne, 21st IEEE/ACM Int. Conf.
on Automated Software Engineering (ASE), pp.145–
156, 2006.

H. U. Asuncion, F. François, and R. N. Taylor: An end-
to-end industrial software traceability tool, Proc. 6th
joint meeting of the European Software Engineer-
ing Conf. and the ACM SIGSOFT Sympo. on The
Foundations of Software Engineering (ESEC-FSE),
pp.115–124, 2007.

F. A. C. Pinheiro and J. A. Goguen: An Object-Oriented
Tool for Tracing Requirements. IEEE Softw. 13(2),
pp.52–64, 1996.

K. Pohl: PRO-ART: enabling requirements pre-traceability,
Proc. 2nd Int. Conf. on Requirements Engineering,
pp.76–84, 1996.

N. Medvidovic, P. Grunbacher, A. Egyed and B. W. Boehm:
Bridging models across the software lifecycle, Jour-
nal of Systems and Software, 68(3), pp.199âĂŞ-215,
2003.

M. Kersten and G. C. Murphy: Mylar: a degree-of-interest
model for IDEs: Proc. 4th Int. Conf. on Aspect-
Oriented Software Development (AOSD) pp.159–
168, 2005.

I. Altintas, O. Barney, E. Jaeger-Frank: Provenance collec-
tion support in the kepler scientific workflow system,
Int. Provenance and Annotation Workshop, pp.118–
132, 2006.

H. U. Asuncion and R. N. Taylor: Capturing custom link
semantics among heterogeneous artifacts and tools,
Proc. 2009 ICSE Workshop on Traceability in Emerg-
ing Forms of Software Engineering (TEFSE ’09),
pp.1–5, 2009.

T. N. Nguyen and E. V. Munson: The software concor-
dance: a new software document management envi-
ronment, SIGDOC’03: Proc. 21st Annual Int. Conf.
on Documentation, pp.198–205, 2003.

D. E. Knuth: Literate programming, Comput. J., 27(2),
pp.97–111, 1984.

Jalil, Z.: A Review of Digital Watermarking Techniques for
Text Documents. Int. Conf. Information and Multime-
dia Technology, ICIMT 2009, pp.230âĂŞ-234, 2009.

G. Myles and C. S. Collberg:Detecting software theft via
whole program path birthmarks, Proc. 7th Int. Conf.
on Information Security, vol. 3225 of LNCS, pages
404–415. Springer, 2004.

App Programming Guide for iOS: Background Execu-
tion, https://developer.apple. com/library/content/

TCC (Tracer-Carrying Code): A Hash-based Pinpointable Traceability Tool using Copy&Paste

231

documentation/iPhone/Conceptual/iPhoneOSProgram
mingGuide/BackgroundExecution/ BackgroundExe-
cution.html

Apple Reference: Core Location, https://developer. ap-
ple.com/ reference/corelocation/

Apple Reference: allowsBackgroundLocationUp-
dates, https://developer.apple.com/reference/
corelocation/cllocationmanager/1620568-
allowsbackgroundlocationupdates

stack overflow: Pedometer in the Background, http://stack
overflow.com/questions/17785325/ pedometer-in-the-
background/

Google Chrome Manual: chrome.runtime#onMessage Ex-
ternal, https://developer.chrome.com/extensions/ run-
time #event-onMessageExternal

TCC homepage: http://www.sde.cs.titech.ac.jp/tcc/

ICSOFT 2018 - 13th International Conference on Software Technologies

232

