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This paper discusses an open source tool that is capable to assist users in generating automatic test data for

multiple programs under test. The tool works by clustering inputs data from a corpus folder and producing
generative models for each of the clusters. The models have a recurrent neural network structure and their
training and sampling are parallelized with Tensorflow. As features, the tool supports online updating of
the corpus folder and the already trained models, and supports any kind of program under test or input file
example. There is no manual effort for users, other than customizing per cluster parameters for optimizations
or using function hooks that they could use through a data structure, which acts as an expert system. The
evaluation section shows the efficiency of both learning and code coverage using some concrete programs and

new tests sampling methods.

1 INTRODUCTION

The importance of security in software systems has
increased year over year recently, because of the wide
interconnectivity between different software pieces.
Important resources are invested nowadays in de-
tecting security bugs in these systems before being re-
leased on the market. Machine generated test data is
desirable for automatizing the process of testing and
ensuring a better coverage.

Ideally, the purpose of an automatic test data ge-
neration system for programs evaluation should be to
generate test data that covers as many branches as
possible from a program’s code, with the least com-
putational effort possible. The most common techni-
que is Fuzz testing (Godefroid, 2007), which is a pro-
gram analysis technique that looks for inputs causing
errors such as buffer overflows, memory access vio-
lations, null pointer dereferences, etc, which in gene-
ral have a high rate of being exploitable. Using this
technique, testing data is generated using random in-
puts and the program under test is executing them for
the purpose of detecting issues like the above mentio-
ned ones. One of the main limitations of fuzz testing
is that it takes a significant effort to produce inputs
that covers almost all branches of a program’s source
code. This comes from the fact that using random-
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ness, it results in a high chance of producing inputs
that are not correct and rejected in the early outs of a
program’s execution.

Alternative methods that augment the classic random
fuzz testing with different methods were created.
Such ideas involved the use of genetic algorithms for
better guiding the test data generation towards unco-
vered areas (Paduraru et al., 2017), or by using re-
current neural networks and predicting the probabi-
lity distribution of the next character knowing a previ-
ously generated context (Godefroid et al., 2017), (Ra-
jpal et al., 2017).

This paper discusses an open-source tool (from
the authors’ knowledge, the first one at the moment
of writing this paper) that given a corpus of different
existing test file formats, it performs cluster analysis,
then learns a generative model for each cluster, which
can be used later to quickly generate new tests with
a high rate of being correct (i.e., touching more bran-
ches of a program instead of taking the early outs due
to incorrect inputs). More specifically, the contributi-
ons of this paper in the field of using machine learning
for automating software testing are:

e An open-source tool that is capable of storing a
database of generative models for sampling new
test data for multiple programs at once. These mo-
dels are learned from a corpus of test data, which
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can be updated online with newly added content.
No manual clusterization of inputs is needed.

e Description of a parallelized implementation for
learning the models and sampling from them
using Tensorflow (Abadi et al., 2016). The mo-
dels also permit checkpoints and online learning.

e Present a technique for assigning begin/end mar-
kers in the pre-processed training data that works
for all kinds of files, not just the well-known ones.
The previous work in the field that uses the same
core system as our tool (i.e. recurrent neural net-
works) is focused only on PDF files.

e Allows users to leverage expert system in oversi-
zing the work and perform custom optimizations
and logs for learning or sampling certain catego-
ries of file types.

The paper is structured as follows. Next section
presents some existing work in the field that inspired
the work presented in this paper. Section 3 makes a
quick introduction in one of the ways machine lear-
ning can be used to generate new texts based on an
existing corpus of texts. Section 4 presents our met-
hods for automating the process of test data genera-
tion. Evaluation of our tool and methods are discus-
sed in Section 5. Finally, conclusions and future work
are given in the last section.

2 RELATED WORK

In the field of fuzzing techniques, there are three main
categories currently: blackbox random fuzzing (Sut-
ton et al., 2007), whitebox random fuzzing (Gode-
froid et al., 2012), and grammar based fuzzing (Pur-
dom, 1972), (Sutton et al., 2007). The first two are au-
tomatic methods proving efficiency in finding vulne-
rabilities in binary-format file parsers. These methods
are also augmented with others for better results. For
example, in (Paduraru et al., 2017) authors present a
distributed framework using genetic algorithms that
generates new tests by looking at the probability of
each branch encountered during the execution. Their
fitness function scores a newly generated input test
by the probability of the branches encountered in the
program’s execution trace. This way, the genetic al-
gorithm tries to create input data that drives the pro-
gram’s execution towards rare (low probability) bran-
ches inside the program’s control flow. They use Apa-
che Spark for parallelization and dynamic tainting to
know the paths taken during the execution. Their met-
hod obtains better scores than classical random fuz-
zers and it is one of the solutions that we compare
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against, using the same two examples: an HTTP par-
ser and an XML parser.

On the other side, the grammar based fuzzing is
not fully automatic: it requires a grammar specifying
the input format of the application under test. Typi-
cally, this grammar is written by hand and the process
becomes time consuming and error prone. It can be
viewed as a model-based testing (Utting et al., 2012),
and the work on it started with (Hanford, 1970), (Pur-
dom, 1972). Having the input grammar, test gene-
ration from it can be done either (usually) random
(Sirer and Bershad, 1999), (Coppit and Lian, 2005)
or exhaustive (Ldmmel and Schulte, 2006). Methods
that combine whitebox fuzzing with grammar-based
fuzzing were discussed in (Majumdar and Xu, 2007),
(Godefroid et al., 2008). Recent work concentra-
tes also on learning grammars automatically. For in-
stance, (Bastani et al., 2017) presents an algorithm to
synthesize a context-free grammar from a given set
of inputs. The method uses repetition and alterna-
tion constructs for regular expressions, then merging
non-terminals for the grammar construction. This can
capture hierarchical properties from the input formats
but, as mentioned in (Godefroid et al., 2017) the met-
hod is not well suited for formats such as PDF objects
for instance, which include a large diverse set of con-
tent types and key-value pair.

Autogram, mentioned in (Hoschele and Zeller,
2016) learns context-free grammars given a set of in-
puts by using dynamic tainting, i.e. dynamically ob-
serving how inputs are processed inside a program.
Syntactic entities in the generated grammar are con-
structed hierarchically by observing what parts of the
given input is processed by the program. Each such
input part becomes an entity in the grammar. The
same idea of processing input formats from exam-
ples and producing grammars, but this time associa-
ting data structures with addresses in the application’s
address space is presented in (Cui et al., 2008).

Both approaches described above for learning
grammars automatically require access to the pro-
gram for adding instrumentation. Thus, their appli-
cability and precision for complex formats under pro-
prietary applications such as PDF, DOC or XML par-
sers is unclear. Another disadvantage of these is that if
the program’s code changes, the input grammar must
be learned again. The method presented in (Gode-
froid et al., 2017) uses neural-network models to learn
statistical generative models for such formats. Star-
ting from a base suite of input PDF files (not bina-
ries) they concatenate all and use recurrent neural net-
works (RNN, and more specifically a sequence - to -
sequence network) to learn a generative model for ot-
her PDF files. Their work is focused on generative
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models for non-binary objects and, since for binary
formats such as an image embedded in PDF, the ex-
isting methods for fuzz testing (classical ones) are al-
ready efficient. Their work is a foundation for our
open-source pipeline solution, which is able to gene-
rate models from any kind of input files in a distri-
buted environment that also supports online learning,
and produce new test inputs based on a database of
models. If the base method evaluation was done on
PDF parsers, our tests also include HTTP and XML
parsers.

3 USING MACHINE LEARNING
TO LEARN GENERATIVE
MODELS FOR TESTING

A statistical learning approach for learning generative
models for PDF files was introduced in (Godefroid
et al., 2017). Their main idea is to learn the model ba-
sed on a large corpus of PDF objects using recurrent
neural networks, and more specifically a sequence-to-
sequence network model (Cho et al., 2014), (Sutske-
ver et al., 2014). This model has been used for ma-
chine translation (Sutskever et al., 2014) and speech
recognition (Chorowski et al., 2015), producing state
of the art results in these fields. The model can be trai-
ned in an unsupervised manner to learn a generative
model from the corpus folder, then used to produce
new sequences of test data.

3.1 Sequence-to-Sequence Neural
Network Model

Recurrent neural networks (RNN) are neural network
models that operate on a variable input sequence <
X1,X2,...,xr > and have a hidden layer of states #,
and an output y. At each time step () one element
from the input sequence is consumed, modifying the
internal hidden state and the output of the network as
follows:

ht:f(ht—hxt) (D

yr =06(hy) 2

where G is a function such as softmax (used ty-
pically in learning classifiers) that computes the out-
put probability distribution over a given vocabulary
by taking into account the current hidden state, while
f is a non-linear activation function used to make the
transition between hidden states (e.g. of functions:
sigmoid, tanh, ReLU, etc). Thus, the RNN can learn
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the probability distribution of the next character (x;)
in the vocabulary, given a character sequence as input
< X1,X2,...,X_1 >, 1.e. it can learn the conditional
distribution p(x;| < x1,x2,...,X—1 >).

Sequence-to-sequence model (seq2seq) was in-
troduced in (Cho et al., 2014). It consists of two
connected recurrent neural networks: one that acts
as an encoder, processing a variable input sequence
and producing a fixed dimensional representation, and
another one that acts as a decoder by taking the fixed
dimensional input sequence representation and gene-
rating a variable dimensional output sequence. The
decoder network uses the output character at time step
t as an input character for time step # + 1. Thus, it
learns a conditional distribution over a sequence of
next outputs, i.e. p(< Y1, y71 > | < X1,000, X12 >).
Figure 2 shows the architecture of the model.

The test data of generative models presented in
this paper uses the seq2seq models. The corpus of
input files are treated as a sequence of characters, so
the model itself contains the distribution of the next
character in the vocabulary based on a previously ge-
nerated context. An epoch is defined in the machine
learning terminology as a full iteration of the learning
algorithm over the entire training database (i.e. input
files in the corpus). In the evaluation section, we use
different epochs (10, 20, 30, 40 and 50) to correlate
the time needed to train versus the quality of the trai-
ned model.

3.2 Using the Model to Generate New
Inputs

After the seq2seq model is trained, it can be used to
generate new inputs based on the probability distri-
bution of next characters and the previously genera-
ted context. The work in (Godefroid et al., 2017)
always starts with “obj” string and continuously ge-
nerates characters using different policies to draw the
next characters from the model, until the output pro-
duced is the string “endobj”. These markers are the
ones used to represent the beginning and ending of
PDF objects. While our tool is capable of dynami-
cally adapting to new / unknown file types or without
any expert knowledge, we use a different strategy for
defining the beginning / end markers (see the next
section for details).

There are four documented policies that can be
used when deciding which character a model should
output next:

e No sampling : just use the model as it is without
randomness ; this will produce deterministic re-
sults from any starting point, i.e. the highest pro-
bability character will be chosen always.
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Figure 1: A sequence-to-sequence graphical representation. In this example, the encoder part takes as input the internal string
marker representing the beginning of an HTTP request, while the decoder produces the beginning text of such a request.

e Sample: random sampling at each next character
according to the probability distribution encapsu-
lated in the model. This strategy produces a di-
verse set of new inputs combining the patterns le-
arned from data but also mixing with random fuz-
zing.

e SampleSpace: random sampling only at white
spaces. According to the evaluation section, this
produces better well-formed new inputs that are
not deterministic but that are not as diverse as the
Sample model.

e SampleFuzz: A parameter defines the threshold
probability for deciding how to choose the next
character from the learned model. Then, a random
value is drawn at each time step and if it is higher
than the threshold, the next character chosen is the
one with the highest probability from the learned
model. Otherwise, the character with the lowest
probability is selected in an attempt to trick the
PDF parser. The idea was analysed in (Godefroid
et al., 2017). However, in our analysis this shows
worse results than Sample and SampleSpace met-
hods.

4 PIPELINE FOR GENERATING
NEW TESTS BASED ON
EXISTING CORPUS

The tool presented in this paper is open-source and
currently available at: https://github.com/AGAPIA/
AutomaticTestDataRNN. It receives as input a corpus
of different input file types, with no previous classi-
fication made manually by the user. The content of
the folder can be updated online in both directions:
either adding new files of existing types, or adding
new file types. This is an important requirement since
the main requirements from software security com-
panies (such as the one we collaborated with, Bitde-
fender) are: (1) to be able to learn and produce new

inputs of different kinds for many different programs
with the purpose of security evaluation, and (2) to au-
tomatically and dynamically collect data from users,
i.e. new input tests are added online and used to im-
prove the trained model).

4.1 The Training Pipeline

Given the path to an existing corpus folder (data), the
training pipeline writes its output in two folders:

(1) data_preprocesses
(2) data_models

Folder (1) stores the clusterized and preprocessed
corpus data. Since the types of the files in there is
unknown, our first target is to cluster them by iden-
tifying the type of each file in the corpus then put
them in a different subfolder corresponding to each
file type. As an example, if the corpus folder (data)
contains three different input file types such as XML,
PDF and HTTP requests, then the first step will cre-
ate (if not already existing) three clusters (folders) and
add each input file to the corresponding one. Cur-
rently, the classification of files to clusters is done
using the file —/ command in Unix, and getting the
output string of the command (we plan to improve
this classification in the future work by using unsu-
pervised learning and perform clusterization based on
common identified features). Since at each training
epoch the entire sequence of character in each file
must be processed, and considering that seek operati-
ons on disk can be expensive, the strategy used by our
training pipeline is to concatenate together all files in
each cluster (folder) in a single file to make the trai-
ning process faster. Thus, each of the three folders in
the concrete example above will contain a single file
with the aggregated context from the initial ones. The
neural-network model of each cluster is trained by
splitting the aggregated file content (Ccopens) in mul-
tiple training sequences of a fixed size L, which can
be customized by user. Thus, the i training sequence
contains #; = Ccopene [i* L : (i+1)x L] (where F[a : b]
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denotes the subsequence of characters in F' between
indices a and b). For each of these training sequences,
the expected output that the network is trained against
is the input one shifted by 1 position to the right, i.e,
0; = Ccontem[i*L+1 : (i+1)*L+ 1]. The model
is then trained with all these input/output sequences
from a cluster’s content and using backpropagation
to correct the weights, it learns the probability map
of next characters having a given context (prior se-
quence). This previous context is modeled with the
hidden state layer.

However, we need a generic way to mark the
beginning and ending of an individual file content,
such that the sampling method knows how to start
and when to stop. At this moment, the beginning
marker is a string BEGIN#CLUSTERID, while the
end marker is a string END#CLUSTERID, where
CLUSTERID is an integer built using a string to inte-
ger mapping heuristic. The input string used for map-
ping is the full classification output string given by
the file — I command when the file was classified in
a cluster. A supervisor map checks if all hashcodes
are unique and tries different methods until for each
cluster there is a unique identifier. The equation be-
low shows the content of a cluster’s aggregated file,
where the } and + operators acts as concatenation of
strings, and C is a given cluster type.

Identifier(C) = GetUniqueClusterldentifier(C)

Cluster(C)= Y (“BEGIN" +Identifier(C)
eachfileF eC

+FileContent(F) +“END" + Identifier(C))

The tool uses Tensorflow (Abadi et al., 2016) for
implementing both learning and sampling processes.
Each cluster will have its own generative model, sa-
ved in data_models folder. In the example given
above, three models will be created, one for each
XML, PDF and HTTP input types. A mapping from
CLUSTERID to the corrensponding model will be
created (and stored on disk) to let the sampling pro-
cess know where to get data from. In the network
built using Tensorflow implementation we use LSTM
cells for avoiding the problems with exploding or va-
nishing gradients (Zaremba et al., 2014). By default,
the network built has two hidden layers each with 128
hidden states. However, the user can modify this net-
work using expert knowledge per cluster granularity
as stated in Section 4.3 (the starting point of the pro-
cess described in this section is defined in generate-
Model.py script, which has a documented set of para-
meters as help). Tensorflow is also able to parallelize
automatically the training/sampling in a given cluster.
On a high-level view, the framework allows users to
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customize a network and its internal compiler / exe-
cuter decides where to run tasks with the scope of op-
timizing performance (e.g. minimize communication
time, GPU-CPU memory transfer, etc).

Our tool takes advantage of the checkpointing fe-
ature available in the Tensorflow framework, i.e. at
any time the learned model up to a point can be sa-
ved to disk. This helps users by letting them update
the generative models if new files were added dyna-
mically to the clusters after the initial learning step.
This way, the learned weights in the neural network
are reused and if the new files are not completely dif-
ferent in terms of features from the initial ones, the
training time scales proportionally to the size of the
new content added. At the implementation level, an
indexing service keeps the track of the new content
in each cluster and informs a service periodically to
start the generative models updating for each of the
modified clusters. Another advantage of the check-
point feature is that it allows users to take advantage
of the intermediate trained models. Although not op-
timal, these can be used in parallel with the training
process (until convergence) to generate new test data.

4.2 New Inputs Generation

The pseudocode in the listing below shows the met-
hod used to generate a new input test. The function
receives as input a cluster type (considering that there
exists a trained generative model for the given clus-
ter), and a policy functor pointing to one of the four
policies defined in the previous section. The first step
is to get the custom parameters and the begin/end mar-
ker strings for the given cluster. The next step is
to feed the entire begin marker string (starting with
a zero set hidden layer) and get the resulted hidden
state. This will capture the context learned from the
training data at the beginning of the files in that clus-
ter. Then, the code loops producing output characters
one by one using the probability distribution map (P)
returned by the Feed Forward function in the current
state (h_state). At each iteration, as seen in Figure 2,
the last produced output character and state are given
as parameters to find the probability distribution map
over vocabulary. The loop ends when the last part of
the output (suffix) is exactly the end marker string (or
until a certain maximum size was produced to avoid
blocking if the training was not good enough to get
to the end marker). The starting point of the concrete
implementation can be found in the script file named
sampleModel.py.

SampleNewTest (Cluster, PolicyType):

Params = GetParams (Cluster)
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| Start | ’

"k If new files were added
to the corpus folder
|dota) and the service
didn't run in the last T
seconds

Add the new files to the carresponding
»=|Cluster (or create a new one if needed)
in dota_preprocessed folder

Concatenate the new content
= |added inside a single file using
begin/end markers
representative for their
cluster

Load each of the modified / changed
_ . cluster neural networks and update
training with the new training data. T——

Figure 2: The process of updating the generative models.

BeginMarker, EndMarker = GetMarkers (Params)

foreach ¢ in BeginMarker:
h_state, P = FeedForward(h0, internalRNN, c)
lastChar = ¢

output = ""

while the suffix of output != EndMarker :
lastChar = Policy(PolicyType, P, lastChar)
output += lastChar
h_state, P = FeedForward(h_state,
internalRNN, lastChar)
return output

A pseudocode defining sampling policies is pre-
sented in the listing below. Roulette-wheel based
random selection is used with the Sample policy, and
with the SampleSpace one when the previous charac-
ter generated was a whitespace. If SampleSpace is
used but still inside a word, or if SampleFuzz sam-
pling method is used and the random value drawn is
higher than the fuzz threshold, then the character with
the highest probability from the vocabulary is chosen.
Instead, if the random value is smaller than fuzz thres-
hold, the character with the lowest probability is cho-
sen in an attempt to trick the program under test.

Policy(PolicyType, P, C):
switch Type:
case NoSample:
return argmax(P)
case SampleSpace:
if C == " " return roulettewheel (P)
else return argmax(P)
case Sample:
return roulettewheel (P)
case SampleFuzz:
if rand < FuzzThreshold:
return argmin (P)
else
return argmax (P)
default:
assert "no such policy"

4.3 Expert Knowledge

Different clusters might need different parameters for
optimal results. For example, training PDF objects
might require more time to get to the same loss re-
sult than the threshold set for learning HTTP reque-
sts. The optimal parameters can differ starting from
simple thresholds to the configuration of the neural
network structure, i.e. the number of hidden layers or
states. The tool allows users to inject their own pa-
rameters for both learning and sampling new results,
by using a map data structure that looks more like an
expert system. If custom data is available in that map
(e.g. [’"HTTP request cluster” ,num hidden layers] =
1) for a particular cluster and parameters, then those
are used instead of the default ones. Another exam-
ple is the customization of the beginning/end markers
used to know when a certain input data starts and
ends. For well-known types, the user can override our
default method for assigning the markers with the cor-
rect ones (e.g. PDF objects start with “obj”” and end
with “endobj”). Also, since Tensorflow can provide
graphical statistics added by users (Tensorboard) du-
ring both training and sampling, the tool allows users
to insert customized logs and graphics per cluster type
using the function hooks provided.

S EVALUATION

As the previous work in the field (Godefroid et al.,
2017) already evaluated the training efficiency of the
core method, i.e. learning a generative model with
RNNs and do inference over it to find new inputs,
using PDF file types, we evaluate our tool using two
more parser applications: XML parser ! and HTTP
parser 2. However, we use our own mark system for

Thttp://xmlsoft.org
Zhttps://github.com/nodejs/http-parser
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beginning/ending of a file, which works for generic
(any kind of) file types as mentioned in Section 4.
The two new mentioned test applications were used to
compare the results directly against the work in (Pad-
uraru et al., 2017), which uses random fuzz testing
driven by a genetic algorithm to get better coverage
over time, and the same two programs for evaluation.

5.1 Experiment Setup and Methodology

The experiments described below involved a cluster
of 8 PCs, each one with 12 physical CPU cores, tota-
ling 96 physical cores of approximately the same per-
formance (Intel Core i7-5930K 3.50 Ghz). Each of
the PC had one GPU device, an Nvidia GTX 1070.
The user should note that adding more GPUs into
the system could improve performance with our tool
since the benchmarks show that the GPU device was
in average about 15 times faster than the CPU both
for learning models and generating new tests.

In our tests, we ultimately care about the coverage
metric of a database of input tests: how many bran-
ches of a program are evaluated using all the avai-
lable tests, and how much time did we spend to get
to that coverage? Our implementation uses a tool
called Tracer that can run a program P against the
input test data and produce a trace, i.e., an orde-
red list of branch instructions By, ....., B, that a pro-
gram encountered while executing with the given in-
put test: Tracer(P,test) = ByBj...B,. Because a pro-
gram can make calls to other libraries or system exe-
cutables, each branch is a pair of the module name and
offset where the branch instruction occurred: B; =
(module,of fset). Note that we divide our program
in basic blocks, which are sequences of x86 instructi-
ons that contain exactly one branch instruction at its
end. We used a tracer tool developed by Bitdefen-
der company, which helped us in the evaluation pro-
cess, but there are also open-source tracer tools such
as Bintrace 3. Having a set of input test files, we name
coverage the set of different instructions (pairs of
(module,of fset)) encountered by Tracer when exe-
cuting all those tests. We are interested in maximizing
the size of this set usually, and/or minimizing the time
needed to obtain good coverage.

Specifically, when training generative models,
another point of interest is how efficient is the trai-
ned model with different setups, i.e. how many newly
generated tests are correctly compiled by the HTTP
and XML parsers (Pass Rate metric) ? This could
help us make a correlation between the Pass Rate and
coverage metrics.

3https://bitbucket.org/mihaila/bintrace
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5.2 Training Data and Generation of
New Tests

The training set consisted of XML and PDF files that
were taken using web-crawling different websites. A
total of 12.000 files were randomly selected and sto-
red for each of these two categories. For HTTP re-
quests, we used an internal logger to collect 100.000
of such request. The folder grouping all these inputs
is named in our terminology corpus test set. A me-
tric to understand how well does the trained model
learn is named Pass Rate. This estimates (using the
output from grep tool) the percent of tests (from the
generated suite) that are well formatted for the par-
ser under test. As Figure 3 shows, and as expected,
the quality of trained model grows with the number
of epochs used for training (i.e. the number of full
passes over the entire training data set). Randomizing
only on spaces (i.e. using SampleSpace) gives better
results for Pass Rate metric since more data is used as
indicated as being optimal by the trained model. Ten-
sorflow was used for both training and inference, and
the hardware system considered was the one descri-
bed at the beginning of this section.

95
85 -
75

65

Pass Rate Percent

55

N

45

35
10 20 30 40 50

Num epochs

e HTTP-Sample HTTP-SampleSpace

XML-Sample XML-SampleSpace

e PDF-Sample = PDF-SampleSpace

Figure 3: Pass Rate metric evaluation for different number
of epochs and models used to generate new tests.

Table 1 shows the time needed to perform model
learning over the entire corpus folder of 12.000 PDF
and XML files, and 100.000 HTTP requests using a
different number of epochs. Other parameters are also
important, the user should also take a look at the des-
cription of those inside the tool’s repository and try
to parametrize with expert knowledge for more opti-
mizations when dealing with new file types. Table 2



shows the timings for producing 10.000 new inputs
for PDF and XML files, and 50.000 of HTTP reque-
sts. As expected, since there is only inference through
a learned model, the timings are almost equal between
all models (we do not even show the difference bet-
ween Sample and SampleSpace since the difference
is negligible). Actually, from profiling the data tests
generation it takes more time to write the output data
(i.e. input tests) on disk rather than spending cycles
on inference.

Table 1: Time in hours to train models on different number
of epochs and using 12.000 files for PDF and XML, and
100.000 HTTP requests as training dataset.

Num epochs | HTTP | XML | PDF objects
50 8h:25 | 7h:19 %h:11
40 6h:59 | 5h:56 8h:04
30 5h:35 | 4h:20 6h:15
20 3h:48 | 3h:42 4h:17
10 2h:10 | 1h:12 3h:02

Table 2: The average time needed to produce 10.000 new
inputs for PDF and XML files, and 50.000 new HTTP re-
quests.

File type | Time in minutes
XML 49
HTTP 25

PDF 51

Main Takeaway: The time needed to train the model
is fixed, depending on the number of epochs and a few
other parameters. After the training phase, the tool
can create huge databases of new inputs (valid ones)
quickly, which in the end can provide better code co-
verage than existing fuzzing methods. Those do not
need the training phase, but the new tests generated
are often rejected from early tests inside the program
because of their incorrect format.

5.3 Coverage Evaluation

For the coverage evaluation tables below, we consi-
dered only the model trained with 30 epochs, which
was the winner in terms of performance versus trai-
ning cost. Using 40 or 50 epochs increased just with a
few new lines the coverage over time, but the training
time is significantly higher. Of course, the user should
experiment and find the optimal number of epochs de-
pending on training data size for example, and their
budget time limit allocated for training.

Tables 3 and 4 show the coverage for XML and
HTTP file types by using three different evaluation
methods. The first one, XML-fuzz+genetic / HTTP -
fuzz + genetic, considers the fuzzing method driven
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by genetic algorithms as explained in (Paduraru et al.,
2017). The Sample and SampleSpace are the two mo-
dels used for sampling defined above in this paper,
and which uses our tool. The main observation is that
with simple fuzzing (i.e. no use of generative mo-
dels), the coverage value converges quickly to a va-
lue, without necessarily growing by having more time
allocated. This happens mainly because the random
fuzzing methods produce many times inputs that are
not correct, being rejected by early outs, or difficult
to deviate from a few common branches inside a pro-
gram even when adopting different policies to guide
fuzzing ((Paduraru et al., 2017), (Godefroid et al.,
2017)). However, fuzzing without learning the input
context techniques have their own advantage: they are
simple to implement and require no training time. For
instance, if smoke tests (Kaner et al., 2001) are nee-
ded after changing the user application’s source code
and input grammar, quick random fuzzing methods
are very efficient since they do not require any trai-
ning time. Learning a generative model is not fea-
sible in this situation due to the limited time needed
to respond to the new code change. Actually, techni-
ques can be combined: classic fuzzing can be used
for smoke tests, while fuzzing with generative models
such as the one presented in this paper can be used to
perform longer and more performant tests.

Table 3: The number of branch instructions touched in com-
parison between random fuzzing driven by genetic algo-
rithms, Sample and SampleSpace models for XML files.

Model %h 15h | 24h | 72h
XML-fuzz+genetic | 1271 | 1279 | 1285 | 1286
XML-Sample 1290 | 1364 | 1455 | 1549
XML-SampleSpace | 1291 | 1375 | 1407 | 1553

Table 4: The number of branch instructions touched in com-
parison between random fuzzing driven by genetic algo-
rithms, Sample and SampleSpace models for HTTP reque-
sts.

Model 9h | 15h | 24h | 72h
HTTP-fuzz+genetic | 229 | 230 | 230 | 232
HTTP-Sample 238 | 249 | 257 | 271
HTTP-SampleSpace | 241 | 245 | 269 | 279

In 72 hours using the system described in the se-
tup, the system was able to get approximately 20%
more coverage than the best documented model on
the XML and HTTP cases. Also, please note again
that the two models evaluated were chosen to com-
pare against other documented results. Our tool is
able to produce generative models and training tests
after training on any kind of user inputs formats (e.g.
HTML, DOC, XLS, source code for different pro-
gramming languages, etc). An interesting aspect is
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that the Sample method has better results than Sam-
pleSpace one, although the Pass Rate metric shows
inverse results. Remember that by sampling each cha-
racter according to the probability distribution in the
generative model, it has a higher rate of making in-
puts incorrect (Figure 3). One possible explanation
for this is that having a high rate of correct inputs
can make the program avoid some instructions that
were verifying the code’s correctness in more detail.
Thus, those instructions might be encountered by Tra-
cer only when the inputs given are a mix between cor-
rect and (slightly) invalid. In (Godefroid et al., 2017)
there is also a discussion about performing random
fuzzing over the inputs learned using RNN methods,
but similar to our evaluation, the results are not better
than the Sample method. The other technique pre-
sented in (Hoschele and Zeller, 2016) that learns the
grammar of the input through dynamic tainting and
applicable currently only to Java programs, could not
be evaluated since the tool is not (yet) open-source
and could not be retrieved in any other way.

6 CONCLUSIONS AND FUTURE
WORK

This paper presented an open-source tool that is able
to assist users in automatic generation of test data for
evaluating programs, having as initial input a corpus
of example tests. Support for any kind of input file
formats, operating efficiently in distributed environ-
ments, online learning, and checkpoints are one of its
strongest features. The evaluation section shows the
efficiency of using recurrent neural networks to learn
generative models that are able to produce new tests,
from two main perspectives: improved instruction co-
verage over random fuzzing and the percent of cor-
rect input files produced from the learned model. As
future work, we plan to improve the clusterization
of files using autoencoders techniques that are able
to learn features from existing inputs, study the ef-
fectiveness of using Generative adversarial networks
(GANS5) in improving tests coverage. Another topic is
to improve the usability of the tool by providing a vi-
sual interface for controlling parameters and injecting
expert knowledge in learning and generation proces-
ses in an easier way.
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