
Analysis of GPGPU Programs for Data-race and Barrier Divergence

Santonu Sarkar1, Prateek Kandelwal2, Soumyadip Bandyopadhyay3 and Holger Giese3

1ABB Corporate Research, India
2MathWorks, India

3Hasso Plattner Institute für Digital Engineering gGmbH, Germany

Keywords: Verification, SMT Solver, CUDA, GPGPU, Data Races, Barrier Divergence.

Abstract: Todays business and scientific applications have a high computing demand due to the increasing data size
and the demand for responsiveness. Many such applications have a high degree of parallelism and GPGPUs
emerge as a fit candidate for the demand. GPGPUs can offer an extremely high degree of data parallelism
owing to its architecture that has many computing cores. However, unless the programs written to exploit the
architecture are correct, the potential gain in performance cannot be achieved. In this paper, we focus on the
two important properties of the programs written for GPGPUs, namely i) the data-race conditions and ii) the
barrier divergence. We present a technique to identify the existence of these properties in a CUDA program
using a static property verification method. The proposed approach can be utilized in tandem with normal
application development process to help the programmer to remove the bugs that can have an impact on the
performance and improve the safety of a CUDA program.

1 INTRODUCTION

With the order of magnitude increase in computing
demand in the business and scientific applications, de-
velopers are more and more inclined towards massi-
vely data-parallel computing platform like a general-
purpose graphics processing unit (GPGPU) (Nickolls
and Dally, 2010). GPGPUs are programmable co-
processors where designers can develop applications
in CUDA if they are using NVIDIA GPGPU. CUDA
(Compute Unified Device Architecture) is an exten-
sion to standard ANSI C through additional key-
words. A CUDA program follows a Single-Program
Multiple- Data (SPMD) model, where a piece of code,
called kernel, is executed by hundreds of threads de-
pending on the device’s computing capability, in a
lock-step fashion (where all the participating thre-
ads execute the same instruction). The developer can
bundle these threads into a set of thread-blocks, where
a set of threads in a block can share their data and
synchronize their actions through a built-in barrier
function called __syncthreads().

While sharing of data among threads is essential
for any reasonably complex parallel application, it can
lead the program to a unsafe state where the behavior
of the program is unpredictable and incorrect. The
safety property of a program, which informally me-

ans that the program will never end-up in an errone-
ous state, or will never stop functioning in an arbitrary
manner, is a well-known and critical property that an
operational system should exhibit (Lamport, 1977).
A parallel program can reach an unsafe state when
multiple threads enter into a race condition, conflict
with each other for data access enters into a dead-
lock situation and so on. Such a situation never arises
in a sequential program. Thus, unlike a sequential
software, detecting a violation of the safety property
and identifying its cause in a parallel program is far
more challenging. Petri net based verification of pa-
rallel programs has been reported in (Bandyopadhyay
et al., 2017; Bandyopadhyay et al., 2018), however, it
checks only the computational equiavlence.

One of the well-known techniques for detecting
such an unsafe operation in a program is the pro-
perty verification method. This approach models po-
tential causes for a program safety violation such as
data-races, or deadlock as properties of the program.
The verification program analyzes these properties,
extracted from the code, for their satisfiability. While
this technique has been proposed for a long time and
used in the context of sequential programs, recently
it has gained renewed interest with the resurgence of
GPGPUs and its programming model. Analysis of
a parallel program differs from the analysis of a se-
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quential program because of the possible ordering of
instructions, can be many (unless restricted otherwise
with synchronization calls or atomic access) when
these instructions are executed in parallel by multiple
threads. The analysis of such a program requires the
methodology to consider all possible inter-leavings of
the instructions where there is no specific ordering
imposed by the program. This has a significant im-
pact on the number of permutations that need to be
analyzed. This problem can be severe in the case of
GPU programs, as the number of threads can be in
the order of thousands, with absolutely no synchro-
nization available between two threads belonging to
separate blocks.

We propose a static verification tool that can ana-
lyze a CUDA program and verify all possible data-
races spanning all the barrier intervals, which may
occur when the program is executed on a GPU. The
major contributions of this paper are as follows:

1. Existing literature such as (Li and Gopala-
krishnan, 2010; Lv et al., 2011) detects a sin-
gle data race or a set of races between two bar-
rier functions. This, in turn, requires the de-
velopers to repeatedly run and fix the data race
conditions, which can be quite cumbersome and
time-consuming when the program is large, invol-
ving many barriers. Thus, our approach generates
more comprehensive results in one run which can
substantially improve the program repairing time.

2. Our method can detect whether the barriers are
divergent.

3. We have provided a formal analysis of our data
race and barrier divergence detection algorithms
and proved that our approach is sound, i.e., it does
not have any false positive results.

The paper has been organized as follows. In
Section 3, we provide an overview of the approach.
Next, we elaborate the program translation mecha-
nism in Section 4. In Section 5 we elaborate the verifi-
cation approach. We report the experimental study of
our tool in Section 6. Finally, we conclude our paper.

2 RELATED WORK

Unlike a sequential program, a parallel program exe-
cution can lead to several new safety and correctness
issues (Kirk and Hwu, 2016; Lin et al., 2015). A more
recent article (Ernstsson et al., 2017) further substan-
tiates several safety issues in GPU programming.

An early approach by Boyer et al. (Boyer et al.,
2008) proposed a dynamic analysis of a CUDA pro-
gram. The CUDA kernel is instrumented to gene-

rate runtime traces of memory accesses by different
threads, which is analyzed to discover various bugs
like data races and bank conflicts.In comparison, our
approach analyzes the symbolic constraints associa-
ted with the potentially conflicting access, along with
checking for divergent barriers, which are not handled
in the former case.

PUG tool (Li, 2010) is a symbolic verifier based
approach to detect data race conflicts, barrier diver-
gence, and bank conflicts. PUGpara (Li and Gopala-
krishnan, 2012) is an extension of the PUG tool which
can also check for functional correctness and equiva-
lence of CUDA kernels. PUGpara models a single
parameterized thread and uses symbolic analysis for
verification of data race and equivalence checking. A
limitation of the tool is that the tool does not detect all
the races in a program, and exits on the first encounter
of a race. Also, the barrier divergence detection me-
chanism in presence of branches, checks if the num-
ber of barriers executed along the path to be the same
in the absence of branch divergence, which is not cor-
rect as per the CUDA specification, where for each
barrier synchronization call, it is expected that either
all the threads within the block should execute it, or
none at all.

Performance degradation analysis of GPUs con-
cerning bank conflicts and coalesced global memory
has been modeled as an unsatisfiability problem in
(Lv et al., 2011). The approach produces a counter-
example where threads with consecutive thread-ids
may not access the consecutive memory locations.
Here factors like data-type and the nature of access
play an essential role (CUD, 2017). While the ap-
proach reported in the paper is novel, it is indeed
not robust in considering all possible scenarios of un-
coalesced access or complex bank conflict scenarios.

A combination of static and dynamic analysis has
been proposed by (Zheng et al., 2011; Zheng et al.,
2014) where, initially a static analysis is used to re-
duce the number of statements to be instrumented for
checking data races. Next, the access patterns of the
instrumented statements are collected and analyzed
using dynamic analysis.

An approach presented in (Said et al., 2011) ge-
nerates concrete thread schedules that can determi-
nistically trigger a particular data race. This appro-
ach also leverages the satisfiability modulo theory
(SMT) to generate the schedule, modeled as con-
straints. The approach, however, has been develo-
ped for task-parallelism in Java involving fork/join se-
mantics.

Recently a synchronous delayed visibility se-
mantics based program verification has been propo-
sed(Betts et al., 2015) to detect data races and barrier
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divergence. Unlike this approach, we are using the
notion of the predicated form of a thread in our ap-
proach while translating the program to assist in the
generation of symbolic constraints.

Symbolic execution-based approach for detecting
data races in OpenCL code has been explored in (Col-
lingbourne et al., 2012) which records each memory
access and then use this information to detect the data-
race. Naturally, approach is computationally more ex-
pensive than an efficient SMT based solver like ours.

Formal Semantics for heterogeneous CUDA C is
presented in (Hathhorn et al., 2012) with an interpre-
ter built upon the approach. With the help of the in-
terpreter based execution, the developers can identify
specific instances of race conditions and deadlocks
due to barrier divergence.

The test amplification based approach is presented
in (Leung et al., 2012), where it is shown that in cer-
tain conditions, the results obtained by a single test
execution of a kernel can be amplified to prove the
correctness properties like data-race freedom for the
kernel in general during static analysis.

A concolic testing based technique is presented
in GKLEE (Li et al., 2012b; Li et al., 2012a) which
looks into both correctness and various performance
issues of GPU programs.

Researchers have used finite state model-based
analysis to detect occurrences of conflicts among ato-
mic synchronization commands in (Chiang et al.,
2013) which can help in generating alternate delay ba-
sed scheduling of GPU programs.

The concept of barrier invariants is presented
in (Chong et al., 2013) to enable verification for data
dependent kernels, specially when the data are in the
shared memory of a GPU. However, the approach
does not directly address the data race situation.

In (Collingbourne et al., 2013), a lock-step seman-
tics for GPU kernels has been proposed to deal with
unstructured GPU kernels.

Permission-based separation logic presented
in (Huisman and Mihelčić, 2013; Blom and Huisman,
2014), has been used for verification of OpenCL
programs. Here, the program is annotated by read
and write permissions, where at most one thread can
hold write permission to a location, and multiple
threads can hold read permission simultaneously.

Bardsley et al.(Bardsley and Donaldson, 2014)
presented a method to analyze atomics and warp s sy-
nchronization for GPU kernels without explicit bar-
riers using a two-pass and a re-sync approach. The
approach has been proposed to analyze the cases of
inter and intra-warp execution.

The problem of optimal barrier in SPMD and
multi-threaded programs has been studied in (Stöhr

s h a r e d i n t A[ 1 0 2 4 ] , i n t B[ 1 0 2 4 ] ,
i n t C[ 1 0 2 4 ] ;

d e v i c e void d a t a r a c e ( ) {
i n t i , t i d ;
t i d = t h r e a d I d x . x ; / / IR 1 .
A[ t i d % 2]= 100 ; / / IR 2 .
B[ t i d ]= A[ t i d ] + 5 ; / / IR 3 .
i f ( ( t i d % 2 ==0) {

s y n c t h r e a d s ( ) ; / / IR 4 .
B[ t i d ]= A[ t i d ] + 1 0 ; / / IR 5 .

}
A[ t i d +1] = 1 0 ; / / IR 6 , IR 7

s y n c t h r e a d s ( ) ;
B[ t i d %3] = A[ t i d ]∗B[ t i d ] ;
f o r ( i =0 ; i <100; i ++) { / / IR 8

A[ i % t i d ] = i +10; / / IR 9
}

}

Figure 1: A Schematic Diagram of Our tool.

Figure 2: GUI of the tool.

and O’Boyle, 1997; Oboyle et al., 1995; Darte and
Schreiber, 2005; Dhok et al., 2015), where it has been
shown that the problem of identifying the optimal pla-
cement of a barrier is tractable ensuring that the pro-
blem can be solved for practical purposes.
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3 PROPOSED APPROACH

Here we translate a CUDA kernel program into a set
of well-formed logical formulae (WFF) in Static Sin-
gle Assignment (SSA) form and then perform con-
straint solving using an SMT solver to check for cor-
rectness properties as a part of the symbolic execu-
tion. Our approach is based on symbolic analysis,
where once a CUDA kernel program is translated into
a set of logical well-formed formulas, we use them
as constraints for a generic thread. We then use the
concept of two threaded execution and generate ap-
propriate additional constraints that should hold if a
given operation has a data race. These constraints are
then fed to the Z3 SMT solver 1 to see if it can find
a satisfying assignment to the constraints, if yes, then
the tool returns the assignments as a witness for the
data race condition, else reports the inability in ve-
rifying the data race condition. Our approach aims
to detect all the pairs of statements that can lead to
data race and all the instances of the barriers where
the barrier divergence is possible. The upper part of
Figure 1 shows a sample CUDA code which we use
as a running example. The lower part of the figure
is a schematic diagram of our approach comprising
of two modules, the translation, and the verification
module. The translation module uses CLANGs (Latt-
ner and Adve, 2004) Abstract Syntax Tree (AST) to
convert the CUDA kernel source file to a set of SMT
equations. The Verification module takes the transla-
ted set and creates the SMT equations encoded with
the properties that need to be verified. The satisfia-
bility for these equations is checked using the SMT
Solver, where a witness is returned if the equations
are satisfiable and imply the presence of data races
or barrier divergences. All such violations of correct-
ness properties are collected and reported back to the
user along with their location in the source code. Fi-
gure 2 shows the GUI of the tool that highlights the
statements having potential data races and barrier di-
vergence.
Example 1. Let us consider the sample CUDA ker-
nel shown in Figure 1, that uses three arrays shared
by multiple threads. Since each thread (with unique
thread id threadIdx.x) accesses one element of the ar-
ray A, threads with even thread-ids 0, 2, and 4 access
the same shared memory location, resulting in a con-
flict in line with the comment “IR 2”. Similarly, there
is a chance of a read-write conflict between lines IR 2
and IR 3.

The code has a barrier call in line 13 which ensu-
res that all the threads are synchronized at the barrier
before proceeding for the next statement. We can see

1https://github.com/Z3Prover/z3

that there can be a read-write conflict between two
threads in line IR 5 and IR 6.

There is a barrier call in line IR 4 inside the if-
condition that creates a barrier divergence since all
threads do not reach the barrier since the barrier
function is inside the if condition. In the paper, we
will illustrate only IR 5 and 6.

4 SOURCE PROGRAM TO WELL
FORMED FORMULAE

Our translation module can handle most of the
CUDA-C grammar necessary for writing kernels.
In the current implementation, we are not hand-
ling general function calls besides the call to
syncthreads(), nor pointers and assignments.

4.1 Translation Rules

The translation module shown in Figure 1, uses
CLang infrastructure to define user-defined semantic
actions for each AST node. We have defined specific
semantic actions that convert each source code state-
ment of a CUDA kernel into a predicated execution
form; formally represented as predicate→ action.

Here, both the predicate and the action are well-
formed formulae generated using the translation ru-
les. Before converting a statement into a WFF, the
translation module converts each variable into its sta-
tic single assignment (SSA) form. Hereinafter, we re-
fer to the SSA form of a variable as the “augmented
variable”.

Assignments. For an assignment statement, we cre-
ate an action as (== augmented variable lvalue) and
return to the parent AST node. If there are multiple
declaration and assignments such as int x = 10, y
= 10;, the translator will create action expression for
each of them.

Important Unary and Binary Operators. The
tool supports arithmetic and logical operators such as
the not, “!”, the bitwise inversion “¬”, unary minus
“-”, incr and decr (both postfix and prefix), “++” and
“–” operators. The parser also allows the usual bi-
nary arithmetic and logical operators. In this context,
we highlight a special case of the assignment opera-
tor, “=”. Here the translation process ensures that the
SSA index of the lvalue of the assignment expression
is incremented.
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Array Expression. Consider the expression A[tid
% 2] in line 4, in Example 1 of the CUDA pro-
gram. For this array variable, the translation mecha-
nism needs to consider the variable and the index ex-
pression that points to a specific element in the array.
When multiple threads access different elements of
an array simultaneously, there can be a possibility of
access conflict. The translator module creates a well-
formed formula combining the array variable (in SSA
form) and the index expression to detect such a poten-
tial conflict. Here we make use of McCarthy’s array
access (select-store) axiom (McCarthy, 1962; Manna,
1974) to construct the formula. We explain this later
towards the end of the section.

Conditional Statements. Conditional statements
of a CUDA program are tricky. Here, the translation
of an if and if-else statement to a WFF must consider
the fact that multiple threads of a GPGPU can take
different paths during the execution of the CUDA ker-
nel. Since we are using SSA representation, the SSA
indices might have different values in the then and
the else blocks. This is a classic compiler translation
problem, which is handled by creating a φ statement
which acts as a multiplexer to select the appropriate
augmented variable. Furthermore, a conditional sta-
tement will have a predicated execution, where the
predicate is created from the conditional expression.
The idea is illustrated below. Note that SSA indices
of the variable y change inside the if block.

CUDA program
fragment

i n t x = 1 0 ;
i n t y = 4 ;
i f ( x > 9 ) {

y = 6 ;
}

Predicated form

(true) =⇒ x1 = 10
(true) =⇒ y1 = 4

(x1 > 9) =⇒ y2 = 6
!(x1 > 9) =⇒ y2 = y1

For Loop. A CUDA kernel can have a for-loop,
which implies that each thread will execute the for-
loop. The translator model allows a simplified for
loop construct with an initialization expression, the
guard condition and the increment operation, of the
form “var = var op k”, where k is a constant value
or an expression that does not change over iterations,
and op is one of the +,-, <<, >> operations. We
construct predicates to model an arbitrary and valid
iteration of the loop out of the three expressions and
use it for the statements inside the loop body.

CUDA program
fragment

i n t y =0;

f o r ( i n t i =0 ;
i <100; i ++) {

y = i +9; }

Predicated form

(true) =⇒ y0 = 0
(true) =⇒ i1 = 0

(true) =⇒ i2 = (i1+ i2k×1)
∧(i2k ≥ 0)

(i2 < 100) =⇒ y1 = i2+9

In this particular illustration, ‘i2’ represents the
value of the index ‘i’ at an arbitrary iteration of the
loop. Note that the value of ‘i2’ depends on a free
variable ‘i2k’, which models an arbitrary kZth itera-
tion. Since the iteration is modeled using a free vari-
able, the WFF allows modeling of conflict scenarios
where different threads execute different iterations of
the loop.

4.2 Translated Well Formed Formulae
(WFF)

The program statements are converted into a set of
SMT compliant well formed formulae, which we can
express in Backus Naur Form as:
expr := num | var | (unaryop expr) | (binop expr1 expr2)

| (store var expr1 expr2) | (select var expr)
Here var is a variable, num ∈ Z, unaryop∈ {!,˜}
and binaryop ∈ {=,+,-,*,/,%,&&,||,ˆ,&,|}.

The select operation is used to read a value at an
index i from array variable. The expression (select
A i) corresponds to the value stored in the array A at
position i.

The store operation is used to express a writing a
value v in an array at a particular index i. For exam-
ple, A[i] = v is converted to an expression (store
A i v).
Example 2. Consider the code snippet shown in Fi-
gure 1. The translator module will create a set of
WFFs. For brevity, we show the translated WFF for
the lines annotated with IR 4, 5, and 6.
4) (’==’, (’%’,’tid4132775177_1’,’2’), ’0’)

=> BAR
5) (’==’, (’%’,’tid4132775177_1’,’2’), ’0’)

=> (’==’, ’B1306833491_2’, (’store’,
’B1306833491_1’, ’tid4132775177_1’,
(’+’, (’select’, ’A1271100794_1’,
’tid4132775177_1’), ’10’)))

6) (’==’, (’%’,’tid4132775177_1’,’1’), ’0’)
=>(’==’, ’A1271100794_2’,(’store’,

’A1271100794_1’,(’+’, ’tid4132775177_1’,
’1’), ’10’))

Now consider the body of the for-loop (IR 8 and 9).
The translator module will create a predicated form
for the loop and the loop body.
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8) True => (’and’, (’>=’,’i2473756790_2_k’, 0),
(’==’,’i2473756790_2’,(’+’,
’i2473756790_1’,(’*’,’i2473756790_2_k’,
’1’))))

9) (’and’, ’True’,(’<’,’i2473756790_2’,
’100’))=> (’==’, ’A1271100794_3’,
(’store’,’A1271100794_2’,(’%’,
’i2473756790_2’,’tid4293592209_1’),
(+ i2473756790_2, ’10’)))

As discussed earlier, since i2 represents a valid value
of the loop index variable ‘i’ at an arbitrary loop ite-
ration, the generated WFF considers all the possible
cases across the array. Thus, the generated WFF#8
means that ‘i2’ can take any value as long as there
exists a valid ‘i2k’, and in conjunction with WFF#9,
the value of ’‘i2k’ is bounded such that we deal with
only valid iterations.

5 VERIFICATION METHOD

We have decoupled the verification module from the
translator module to provide greater flexibility and ex-
tensibility to the verification module. For instance,
one can add multiple correctness checking procedures
working on the same formulas with the same or diffe-
rent degree of granularity if such a need arises. As a
concrete example, we intend to introduce intra-warp
bank conflicts detection module as a future extension
of our current tool.

The basic workflow of the verification process in-
volves taking translated statements from the transla-
tion module as input, along with the GlobalVariable-
Map. The next step is to generate statements corre-
sponding to a single, generic threaded execution. A
two threaded execution model is then created using
this generic threaded statement. Here we would like
to highlight a crucial distinction between our appro-
ach from the general symbolic execution approach. In
our approach, we are translating the program to ge-
nerate a set of constraints, and these constraints are
solved for verification of a correctness property. Like
a symbolic execution approach, these constraints are
generated by treating input as symbolic values; howe-
ver, unlike a symbolic execution, we do not define any
operational semantics as far as execution of the state-
ment is concerned. This makes our approach more
lightweight that a full-fledged operational semantics
driven approach. In our approach, we iterate over
each pair of possibly conflicting statements and test
it for the correctness by considering all the necessary
constraints on which the statements depend.

We now define three properties that our verifica-
tion method is based on.

Property 1. If a SMT solver generates a model M
for a Q of WFFs then M |= Q. This property implies
the following. Let P be a program, and P is translated
into the set M of well-formed formula (WFF). This set
of WFF represents the model (of the program) given
to the SMT solver.

Let Q be the set of properties that we want to ve-
rify. In our case, the set Q contains both the data race
and barrier divergent property which is in the form of
the set of WFF. This property means that if M satis-
fies Q, then the program contains both data race and
barrier divergence.

Property 2. A kernel is free of data races iff any two
arbitrary threads of execution of the kernel are free of
data races.

Property 3. A kernel is free of barrier divergence if,
for any two threads in the block, an arbitrary pair of
thread do not diverge.

The entire verification approach follows 2-
threaded execution model, where to verify a correct-
ness property, the verifier module considers a pair of
arbitrary threads. This approach is valid because the
correctness properties like data races and barrier di-
vergence are pair-wise properties, that is, in a given
set of threads, unless all the pairs of threads can be
proved to behave correctly, the correctness property
of the entire program cannot be proved. Therefore,
if one wants to verify the program for the absence of
data race and barrier divergence, considering an ar-
bitrary pair of distinct threads and checking if they
violate the correctness, suffices the purpose.

5.1 Data Race Detection

The verification module handles the verification pro-
cess of different correctness properties. As mentioned
earlier, this process takes a set of translated statements
and the GlobalVariableMap as input from the trans-
lator module. The verification process first converts
each translated statement into a threaded form where
each variable which is not global or shared, is repla-
ced with a thread local variable. This ensures that du-
ring the two threaded analysis, the local variables do
not affect other variables due to their respective con-
straints. This process is done by recursively visiting
each expression in the well-formed formula and con-
verting it to its corresponding threaded version. The
function that converts translate statements into a thre-
aded form is named as ThreadIFY() in this paper.

Once the threaded version is generated, the veri-
fication module creates thread specific copies for two
symbolically parameterized threads, ti and t j which
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are used in verification of correctness properties, dis-
cussed in the following subsections.

Condition for data race:A data race occurs when
two distinct threads access the same location such that
one of the accesses is a write operation and these two
accesses are within the same barrier interval. It may
be noted that a barrier interval is the sequence of pro-
gram statements between two barrier synchronization
calls.

Barrier Synchronization: CUDA provides the bar-
rier synchronization as the only synchronization pri-
mitive. The underlying principle of a barrier synchro-
nization is that a thread upon encountering a barrier
call waits until all the threads in the thread block re-
ach the barrier, after which they resume their execu-
tion. Barriers ensure that all the changes done to the
shared memory space are registered. The reason why
access to the same location results in a data race is
that the CUDA does not provide any guarantee about
when the changes to a shared location will be reflected
within a barrier interval, also, since multiple threads
are accessing the same location, even if one guaran-
tees that the changes will be reflected immediately,
the access can follow a different order, which can re-
sult in an inconsistency in the value read by different
threads. Consider the code snippet shown in Exam-
ple 1. The translator module will create the following
set of WFF. There are auxiliary data structures that are
created in this stage too, which, for the sake of brevity,
are not described here. Here we show the translated
WFF for the lines annotated with IR 1 to IR 7.

Encoding Data race: Let us consider the two thre-
aded execution model where two threads ti and t j
encounters a data race, in a pair of statements, and
the operations that conflict, involve conflicting access
such as A[tid] = 100, and y =A[tid+10] + y. Let
us assume without loss of generality that the first
access is a write access, taking place in the thread ti
and the second access is a read access taking place
in another thread t j , also, let us assume that the
variable y in the second access is a local variable,
hence the accesses to the array, A are the only con-
flicting operations in this example. A data race will
occur if the location A + tidi and A + tid j + 10 are
same, provided that tidi 6= tid j. Hence, there con-
dition for checking data race roughly translates to,
tid j 6= tidi ∧ tidi == (tid j + 10). Feeding this to the
constraint solver, we are likely to get a satisfying mo-
del where tidi = tid j +10. Since an operation is a part
of a statement, and each statement is in a predicated
form, we need to also make sure that:

a) the predicate evaluates to true for both of the
statements, otherwise a data race cannot take place,

b) since the operations in the current statement

might involve certain symbols that are defined in pre-
ceding statements, we need to include them as well.
Let us represent the predicates defined in the prece-
ding statements are Pi and Pj for the thread ti and t j re-
spectively. The verification condition then checks for
the satisfiability of the following equation (Φ) where,
Φ : (tidi 6= tid j)∧Pi∧Pj ∧ (tidi == tid j +10). More
generally, assuming that the conflicting operations in-
volve accesses on indices indexi and index j, the data
race condition becomes Φ : (tidi 6= tid j)∧ Pi ∧ Pj ∧
(indexi == index j). If Φ has a satisfying assignment,
the data race can be confirmed. However, if the SMT
solver is not able to find any satisfying assignment,
it may be due to the solver time-out. In such a case,
one can only state that the verification module was not
able to prove the existence of data race, rather than
saying that there is no data race. This is commonly
known as the soundness property of the algorithm,
which we prove in Section 5.3.2. The pseudo code for
data race detection algorithm is given in Algorithm 1.

Algorithm 1: DataraceDetection (Translated-statements).

1: raceing-statement= /0;
2: conflicting-statements = {〈si,s j〉 | si,s j ∈ Translated-

statement ∧si conflicts with s j }
3: thread1 = ThreadIFY(Translated-statements,1)
4: thread2 = ThreadIFY(Translated-statements,2)
5: for 〈sl ,sm〉 ∈ conflicting-statements do
6: conflicting-op= {〈opl

i ,opm
j 〉 | opl

i ∈
theread1.si,opm

j ∈ theread2.s j and opl
i conflicts

with opm
j }

7: for 〈opl
i ,opm

j 〉 ∈ conflicting-op do
8: smt-eqn = Generate-SMT-EQN

(opl
i ,opm

j ,datarace)
9: if CHECK-SAT(sat-eqn)==SAT then

10: raceing-statement = raceing-statement ∪
〈opl

i ,opm
j 〉

11: end if
12: conflicting-op=conflicting-op \〈opl

i ,opm
j 〉

13: end for
14: conflicting-statements= conflicting-

statements\〈sl ,sm〉
15: end for
16: return racing-statement

5.2 Barrier Divergence Detection

Barrier divergence occurs when for a barrier some
threads in a block execute the call, while others do
not. This can happen in cases when a barrier call is
executed only in some scenarios. For instance, when
a barrier is present within a conditional statement, the
condition might not hold true for some threads. CU-
DAs programming guide specifies that the behavior in
such scenarios is not defined. It is very likely that such
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a call might result in a deadlock, and hence can im-
pact the correctness of the program. We need to verify
if it is possible that for a given barrier synchronization
call, one thread will execute it while others will not, if
yes, then we have a possible barrier divergence. Since
we are tracking the predicates for each statement se-
parately, drawing the terminology from the data race
section, this gives us the equation Ψ to be satisfied
where, Ψ : (tidi 6= tid j)∧(Pi⊕Pj) This means that for
two different threads Ψ is true if either Pi or Pj is true.
If Ψ has a satisfying assignment, the current barrier
call is divergent, and the model represents the witness
to it. However, if there is no satisfying assignment,
as in the case for data race, here too, we cannot say
that the current barrier indeed is free of divergence.
We prove the soundness of the barrier divergence ap-
proach in Section 5.3.3. The pseudo code for barrier
divergence detection is given in Algorithm 2.

Algorithm 2: BarrierDivergence (Translated-statements).

1: diverging-barriers= /0;
2: barrier-list = {sb | ∀sb ∈ Translated-statement ∧sb =

syncthreads() }
3: threadi = ThreadIFY(Translated-statements, i)
4: thread j = ThreadIFY(Translated-statements, j)
5: barrier-pairs={〈bi,b j〉 | b is barrier-list and bi is b in

threadi, b j is b in thread j}
6: for 〈bi,b j〉 ∈ barrier-pairs do
7: smt-eqn = Generate-SMT-EQN (bi,b j,barrier)
8: if CHECK-SAT(sat-eqn)==SAT then
9: diverging-barriers = diverging-barriers ∪

〈opl
i ,opm

j 〉
10: end if
11: barrier-pairs=barrier-pairs\〈bi,b j〉
12: end for
13: return diverging-barriers

Example 3. Consider the CUDA kernel shown in Fi-
gure 1, Example 1 and the set of WFF in Example 2.
These WFF represent the model of the program which
is verified against the data race and barrier diver-
gence conditions. Let us consider the data race de-
tection. The verification module detects a data race
condition for various conflicting operations by crea-
ting two-threaded SMT equations. For instance, let
us consider the conflict between IR 5. And IR 6. The
main clause to encode the data race condition for the
two threaded version will have an extra predicate for
IR 6 (for the enclosing if condition), which needs to
be true as well. The clause will look like:

True AND (t_2__tid4132775177_1 % 1))==(0)
AND (t_1__tid4132775177_1 ==
(t_2__tid4132775177_1+1)

Reporting violations:
The generation of witnesses occur for that portion of

the code where the tool is able to detect a data ra-
ces or a barrier divergence. The verification module
reports them along with the line number and column
number for the instances of variables (line 18 and 20)
as shown in Figure 1.

5.3 Formal Analysis of Our Approach

In this section, we discuss two important aspects of
our approach, namely the termination of our algo-
rithm and the soundness. We analyze these two as-
pects for both data-race as well as barrier divergence
algorithms.

5.3.1 Soundness of Translation

Theorem 1. If no satisfying assignment for the WFFs
Φi and Φ j of the two threads i and j and the condition
linking to statements φi, j exists, then no execution of
the two threads i and j leading to a situation fulfilling
the condition linking to statements φi, j exists.

Proof. Assuming that an execution of the two thre-
ads i and j leading to a situation fulfilling the con-
dition linking to statements φi, j exists, we will show
that then also a satisfying assignment for the well for-
med formulas Φi and Φ j of the two threads i and j
and the condition linking to statements φi, j exists via
induction over the length of the trace execution.

We consider an interleaved trace of the two thre-
ads i and j that leads to a final variable assignment
fulfilling the condition linking to statements φi, j bac-
kwards and show that for each postfix of the trace
the existence implies the existence of the related sa-
tisfying assignment for the well formed formulas Φ′i
and Φ′j of postfixes of the two threads i and j related
to the postfix of the trace considered so far. This in-
duction terminates as for any invalid safety property a
finite trace invalidating it must exist.
Basis. For an empty statement for both thread any
property that is not unsatisfiable can be fulfilled.
Induction Hypothesis. Let n be the length of trace
execution. Then ∀n,1≤ i≤ n,φi, j ≡ T
Induction Steps. The induction hypothesis holds for
nth length of trace execution and it contains all essen-
tial program constructors like assignment statement,
important unary and binary operations, array expres-
sion, conditional statement, for loop etc. Here we
show that the induction step holds for the assignment
and the for-loop for brevity. Similar proofs hold for
the rest of the program constructs.

Assignment. Let ηp and ηq be the the assignments
statements of thread i and thread j respectively.
The constructed well formed formulae Φi and Φ j
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has been generated by the range of the induction
hypothesis, i.e., ∀n,1 ≤ i, j ≤ n. For (n + 1)th

iteration, the well formed formulae must be con-
structed as the induction hypothesis holds.

For-Loop. Let ηp and ηq be the the assignments sta-
tements of therad i and thread j respectively. Let
the loop has been unrolled n times and during un-
rolling the induction hypothesis holds. For unrol-
ling once more times, the assertion becomes true.

For (n+1)th length the rest of program contracts are
also available. Hence the induction hypothesis is true
for (n+1)th length.

We now discuss first on the basis of this general
results the termination and soundness of the data race
detection algorithm.

5.3.2 Data Race: Soundness

Theorem 2. If the function DataraceDetection
(Algorithm 1) reports a data race for operation pair
〈opl

i ,opm
j 〉 where opl

i be the operation i in lth state-
ment and opm

j be the operation j in the mth statement,
then there is a data race between lth and jth state-
ments.

Proof. Let the step 10 of the function
DataraceDetection (Algorithm 1) be true.
However, the algorithm reports that there is no
data race. Therefore, according to Theorem 1 the
welformed formulae Φi and Φ j are not formed for
the threads i and j respectively. Therefore, step 9
is not satisfied by the condition and if step 9 is not
satisfied, then the control does not go to step 10.
Hence contradiction.

We now discuss the termination and soundness of
the barrier divergence detection algorithm.

5.3.3 Barrier-divergence: Soundness

Theorem 3. If the function BarrierDivergence
reports a divergent barrier at statement si, then there
must be a barrier call at si which is indeed divergent.

Proof. Assume that the function
BarrierDivergence reports no barrier diver-
gence. Let us also assume that the statement sb is
a barrier statement. As sb is a barrier statement,
step 9 of the function BarrierDivergence must
be satisfied. Therefore, according to Theorem 1
the welformed formulae Φi and Φ j are not formed
for the threads i and j respectively. Therefore, step
8 is not satisfied by the condition and if step 8 is
not satisfied, then the control does not go to step 9.
Hence contradiction.

Table 1: Results for Data race and Barrier divergence free
detection times in seconds.

Benchmarks LOC #Kernels #Conjuncts DR BD DR Time (sec) BD Time (sec)
CG 100 12 124 NO NO 0.2314 0.1235
BCM 53 3 78 NO NO 0.0031 0.0014
MIN MAX 80 4 123 NO NO 0.0120 0.0064
LUP 136 18 167 NO NO 0.5195 0.3432
K-Means 142 34 231 NO NO 0.8342 0.4123
HC 132 26 143 NO NO 0.4167 0.2437
DCT 30 2 53 NO NO 0.0075 0.0042
LRU 190 23 272 NO NO 0.9198 0.6342
FFT 1002 47 1845 NO NO 1.83455 0.9943
UA 1234 172 1324 NO NO 2.3412 2.0034

5.4 Complexity Analysis

We discuss the complexity of the verification algo-
rithms for data race detection and barrier divergence,
Algorithm 1 and Algorithm 2 respectively in a ri-
gorous way.
Algorithm 1. Step 1 takes O(1) time. Step 2 com-
putes pair of conflict statements and it takes O(n2)
time. Step 3 and 4 take O(1) times. Step 6 compu-
tes pairs of conflicting operators and if the number of
operators are |F |, then it takes O(|F |2) time. SMT
solver is called in Step 8 for generating SMT equa-
tion which takes O(2|F |) where F is the length of the
constraint. Only addition operation takes place in the
if-block (Steps 9-11) and takes O(1) time as we main-
tained a value indexed data structure. In Step 12, only
deletion operation takes place and takes O(1) time.
The loop in step 7 iterates |F | times. Hence over-
all complexity is O(|F |.2|F |) times. Similarly, in step
5, the loop iterates n times; the total complexity is
O(n.|F |.2|F |)' O(2|F |).
Algorithm 2. Step 1 takes O(1) time. Step 2 com-
putes all the barriers for a program and it takes O(n)
time. Step 3 and 4 take O(1) times. Step 5 com-
putes pairs of barrier and it takes O(n2) time. SMT
solver is called in Step 7 for generating SMT equa-
tion which takes O(2|F |) where F is the length of the
constraint. Only addition operation takes place in the
if-block (Steps 8-10) and takes O(1) time as we main-
tained a value indexed data structure. In Step 11, only
deletion operation takes place and takes O(1) time.
The loop in step 6 iterates n times. Hence the overall
complexity is O(n.2|F |)' O(2|F |) times.

6 EXPERIMENTAL RESULTS

The verification algorithm is implemented in Python
and tested on several parallel benchmarks on a 2.0
GHz Intel(R) Core(TM)2 Duo CPU machine (using
only a single core). The set of benchmarks is availa-
ble in (Bondhugula et al., 2008; Che et al., 2009). The
steps for carrying out the experimentation are outlined
below.
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1. Preparation of the Benchmarks Suite. The
source code and the documentation related to the
list of source programs are given in (Bondhugula
et al., 2008; Che et al., 2009). It is to be noted that
some of these examples such as K-Means, HC,
DCT, LRU, UA, and FFT are widely used in va-
rious application domains such as bioinformatics,
image processing, computational fluid dynamics
(CFD), etc.

2. Program to WFF. Each of the above programs is
then translated into the well-formed formulae by
the translation module of the tool as described in
Section 4. Next, the set of well-formed formulae
is used by the verification modules to detect data
race and barrier divergence conditions.

3. Reporting of Results. For each test case, we ob-
served the numbers of kernels, the number of con-
juncts in SMT equations and the number of data
race and barrier divergence are encountered. For
small examples like DCT and MINANDMAX,
the data race and barrier divergence are manually
verified for correctness.

6.1 Analysis

Table 1 represents the description of the parallel ben-
chmarks concerning the number of lines of code
(LOC), number of kernels and number of conjuncts.
It is to be noted that the number of conjuncts is al-
ways greater than the number of lines of codes be-
cause there exists at least one conjunct in each line
of code and at least one additional conjunct should
be present between any two lines of code. Table 1
also depicts that there is no data race and barrier di-
vergence for each benchmark. Last two columns of
Table 1 depicts the data race and barrier divergence
detection time. In all the cases, it is also worth no-
ting that detection of barrier divergence time is smal-
ler than the data race detection. If barrier divergence
occurs, then there is a possibility for data race. Ho-
wever, the reverse is not true.

Finally, we take some applications from the ben-
chmark suites and manually inject some errors at the
code level. The objective of this line of experimenta-
tion is to check the efficacy of the verification module
in detecting data race and barrier divergence respecti-
vely. We have introduced the following types of error.

Type 1. Removal of barrier where read after write
operation occurs between two threads; this has
been injected in the HC and DCT benchmarks.

Type 2. Removal of the barrier where a write after
a read operation occurs between two threads; this
has been injected in the LUP benchmark.

Table 2: Results for Data race and Barrier divergence de-
tection times.

Error Benchmarks #DR #BD DR Time (sec) BD Time (sec)
Type 1 HC 6 5 0.8314 0.5235

DCT 2 2 0.0234 0.0123
Type 2 LUP 5 3 0.6298 0.4231
Type 3 HC 6 5 0.7217 0.6355
Type 4 MINANDMAX 3 1 0.1237 0.0934

UA 5 4 0.3256 0.2651

Type 3. Removal of the barrier where write after
write operation occurs between two threads; this
has been injected in the HC benchmark.

Type 4. data-locality error which introduce false
data-locality in the conditional branch in
MINANDMAX and UA benchmarks.

Table 3: Characteristics of counter examples.

Error Benchmarks Counter Model size
# formulae # conjuncts

Type 1 HC 12 45
DCT 7 24

Type 2 LUP 5 16
Type 3 HC 12 41
Type 4 MINANDMAX 3 9

UA 24 89

Table 3 only considered the part where the errors
have been injected rather than the entire code. For
this reason, the number of formulae or the number of
conjuncts vary from Table 2.

6.2 Analysis of Erroneous Benchmarks

Table 2 depicts the descriptions of the errors introdu-
ced in the benchmarks, the number of data races and
barrier divergences and the execution times taken by
the data race detection module and by the barrier di-
vergence module; (in each cases, the data race and
barrier divergence have been detected by the modu-
les successfully;) The last two columns of the Table
2 record the positive data race and barrier divergence
detection time. It is to be noted that in all cases, the
actual data race and barrier divergence detection time
is higher than the data race free and barrier divergence
free detection time. If the verification module detects
that there is a data race or barrier divergence, the tool
constructs the corresponding counter models and gi-
ves the counter model as the output. For this rea-
son, real data race and barrier divergence detection
time are much higher. Table 3 depicts the size of
the counter model concerning the number of formu-
lae and number of conjuncts.
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6.3 Analysis of Comparative Study

We have compared the performance of our tool with
the online version of PUG as shown in Table 4. The
noteworthy fact is that our tool can identify a set of
barrier divergence and data races that span across
multiple barriers in a single iteration. Since PUG
stops after detecting barrier divergences and data ra-
ces present within the first barrier it encounters, it re-
quires multiple runs (after correcting the already en-
countered problems) to discover additional barriers
spanning across multiple barriers. From the develo-
per productivity point of view, our approach certainly
helps to repair the program faster.

Table 4: Comparative results.

Error Benchmarks # Barrier # Data #Iterations
Divergence Races PUG Our Tool

Type 1 HC 6 5 2 1
DCT 2 2 1 1

Type 2 LUP 5 3 2 1
Type 3 HC 6 5 3 1
Type 4 MIN MAX 3 1 2 1

UA 5 4 3 1

7 CONCLUSION

In this paper, we have proposed an approach for sta-
tic verification of GPU kernels programmed using
CUDA. Our approach verifies whether the program
has the data race or has barrier divergence issues. Our
approach can identify all the violations of these across
the barriers for which we can generate witnesses in
the code. We have elaborated the implementation
of our approach and provided a formal proof of the
soundness of the algorithm. Thus, if our tool reports
a data race or a barrier divergence, these conditions
do exist in the code. Like other reported approaches,
our tool does not have a completeness property, i.e.,
it cannot report all possible data-races or barrier di-
vergences. The experimental results indicate that the
proposed tool has a minimal performance impact.

Producing a list of conflicts in one go has bene-
fits for verification tool developers, where the tool
can take advantage of the list of conflicts and barrier
divergences and suggest placement of barriers in the
code to remove the conflicts. This assistance mecha-
nism can help programmers to implement conflict free
CUDA programs more efficiently.

We are working to include verification of additio-
nal properties such as shared memory bank conflicts
and global coalesced memory accesses as they can
significantly affect the performance of the kernel and
thus impact the observed speedup. We also plan to

build this verifier as an integral part of the design pro-
cess so that the designers can check for these safety
properties as they develop the code for GPGPU.
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