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Abstract: Two numerical stochastic models of air temperature time-series are considered in this paper. The first model 
is constructed under the assumption that time-series are nonstationary. In the second model air temperature 
time-series are considered as a periodically correlated random processes. Data from real observations on 
weather stations was used for estimation of models’ parameters. On the basis of simulated trajectories, some 
statistical properties of rare meteorological events, like sharp temperature drops or long-term temperature 
decreases in summer, are studied. 

1 INTRODUCTION 

The study of statistical properties of atmospheric 
processes involving adverse weather conditions (for 
example, long-term heavy precipitation, dry hot 
wind, unfavourable combination of low temperature 
and high relative humidity, etc.) is of great scientific 
and practical importance. Results of this study are 
crucial for solution of some problems in 
agroclimatology, planning of heating and 
conditioning systems and in many other applied 
areas (see, for example, Pall et al., 2013; Araya and 
Kisekka, 2017; Khomutskiy, 2017). Unfortunately, 
there are extremely few real observation data for 
obtaining stable statistical characteristics of rare / 
extreme weather events. Moreover, the behaviour of 
their characteristics is influenced by climatic 
changes, and hence it is not always possible to 
obtain reliable estimates only from observation data. 
In this regard, in recent decades a lot of scientific 
groups all over the world work at development of 
so-called "stochastic weather generators" (or short 
"weather generators"). At its core, " weather 
generators" are software packages that allow 
numerically simulate long sequences of random 
numbers having statistical properties, repeating the 
basic properties of real meteorological series. Using

 the Monte Carlo method, both the properties of 
specific meteorological processes and their 
complexes are studied (see, for example, Kleiber et 
al., 2013; Ailloit et al., 2015; Semenov et al., 1998, 
Kargapolova, 2017). Depending on the problem 
being solved, time-series of meteorological elements 
of different time scales are simulated (with hours, 
days, decades, etc. as a time-step). The type of 
simulated random processes (stationary or non-
stationary, Gaussian or non-Gaussian, etc.) is 
determined by the properties of real meteorological 
processes and by the selected time step. 

In this paper two numerical stochastic models of 
air temperature non-Gaussian time-series are 
considered. The first model is constructed under the 
assumption that time-series are nonstationary. In the 
second model air temperature time-series are 
considered as a periodically correlated random 
process. Both models let to simulate air temperature 
time-series with 3 h. time-step, taking into account 
daily oscillation of a real process. Parameters of both 
models were estimated on the basis of data from 
long-term real observations. On the basis of 
simulated trajectories, some statistical properties of 
rare meteorological events, like sharp temperature 
drops or long-term temperature decreases in 
summer, are studied. 
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2 REAL DATA 

In this paper a problem connected with the study of 
some statistical characteristics of rare and extreme 
behavior of air temperature is considered. In order to 
solve this problem, one has to construct a numerical 
stochastic model of the air temperature time-series 
based on real data collected at weather stations. To 
define models’ parameters data collected 8 times per 
day (i.e. every 3 hours) during 23 years from 1993 to 
2015 were used. For the sake of convenience, 
month-long time-series of air temperature that start 
on the first of a month are considered. The most 
noticeable feature of the temperature series at such 
time interval is the diurnal variation, defined by the 
day/night alternation. As an illustration, on the Fig. 1 
temperature in Sochi (Russia) in December 1993 and 
2015 is presented. All models, considered in this 
paper, were tested on a basis of real data from 12 
weather stations situated in different climatic zones 
(for example, weather stations in Sochi (subtropical 
zone), Ekaterinburg (temperate continental zone), 
Tomsk (sharply continental zone), Prigranichniy 
(polar zone), etc.). Although all examples in the 
article are given only for Sochi and Tomsk, all 
conclusions are valid for all considered weather 
stations. 

 

Figure 1: Air temperature. Sochi. December, 1-11. 

3 PERIODICALLY 
CORRELATED MODEL 

Recall that a random process  X t  is a periodically 

correlated process with a period T  if its 
mathematical expectation, variance and correlation 
function are periodic functions (Gladyshev, 1961; 
Dragan et al., 1987): 
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The idea of simulation of Gaussian sequences 
satisfying these conditions belongs to V.A. Rozhkov 
and was first realized in the form of a first-order 
autoregression vector model (Bokov et al., 1995). 
Later, other approaches to simulation of random 
processes with such properties were developed (see, 
for example, Hurd and Miamee, 2007; Kargapolova 
and Ogorodnikov, 2012; Ogorodnikov et al., 2010; 
Sereseva and Medvyatskaya, 2017). 

The idea to consider air temperature time-series 
as periodically correlated processes with a period 
equal to 24 hours was suggested in (Derenok and 
Ogorodnikov, 2008). However, due to ill-considered 
choice of approximation of sample one-dimensional 
distributions, the proposed model gave acceptable 
results in the study of extreme temperature behavior 
only for weather stations located in a temperate 
climatic zone. In this paper a modification of a 
model, suggested in (Derenok and Ogorodnikov, 
2008), is presented. This modification gives good 
results for all considered climatic zones.  

Let’s consider time-series  1 2 8, , , dT T T T


  of 

air temperature as a periodically correlated discrete-
time random process with a period 8T  , where iT  

is air temperature at a measurement number i  (“at a 

time moment i ” ),  28,30,31d   is a number of 

days in a month. 
First input parameter of a stochastic model is 

one-dimensional distribution of each component iT . 

To construct a stochastic model, the use of sample 
one-dimensional distributions is not advisable, since 
the sample distributions don’t have any tails, and 
therefore do not allow to estimate the probability of 
occurrence of extreme values of a meteorological 
element. In this connection, it is necessary to 
approximate the sample distributions by some 
analytic densities, which, on the one hand, do not 
greatly alter the form of the distribution and its 
moments, and on the other, possess tails. In 
(Derenok and Ogorodnikov, 2008) a Gaussian 
density was used for such approximation. Analysis 
of real data shows that at some weather stations 
sample distribution of air temperature is bimodal, 
and it can’t be approximated well with a Gaussian 
distribution. To define the best approximation (in 
sense of the Pearson’s criterion and closeness of 
approximating distributions moments to empirical 
ones) several types of approximating densities and 
different methods of densities parameters estimation 
were compared. Numerical experiments show that 
mixtures 
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of two Gaussian distributions approximate closely 
sample histograms of air temperature for all 
measurements 1,8k   (and, therefore, for all 
moments of time 1,2, ,8i d  ) at all considered 
weather stations. Fig. 2 shows examples of air 

temperature sample histograms   , o
ks x x C  and 

corresponding approximating densities. Parameters 
2 2

1 1 2 2, , , ,k k k k ka b a b  were chosen using an 

algorithm, proposed in (Marchenko and Minakova, 
1980). This algorithm let to choose such parameters 
of a mixture  kg x  that mathematical expectation, 

variance and skewness of a random variable with a 
density  kg x  are equal to corresponding sample 

characteristics and function  kg x  minimizes the 

Pearson’s functional, that describes difference 
between  ks x  and  kg x . For each k  sample 

mathematical expectation, variance and skewness 
were estimated on a basis of 23d -element sample. 

 

Figure 2: Sample and approximation distribution densities 
of air temperature. Sochi, July. 

Another input parameter of a model is 
correlation matrix of the weather process. In this 
paper a sample correlation matrix R  is used to 
describe correlation structure of air temperature 
time-series (approximation of the sample correlation 
function of the process with some analytic 
parametric function is a work in progress). It should 
be noted, that the matrix 
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estimated under assumption that the process T


 is 
periodically correlated, is a block-Toeplitz matrix. 
Analysis of real data shows that for all 
meteorological stations and months considered, the 
amplitudes of diurnal oscillations of the 
corresponding autocorrelation functions 

 ,corr i i h  of air temperature are significant. 

Fig. 3 shows examples of sample correlation 
coefficients  ,corr i i h , as functions of time i  for 

a fixed shift h  (presented in Fig. 3 functions are 
periodic because estimations of correlation 
coefficients were done under the assumption that the 

process T


 is periodically correlated). As a function 
of the shift h , the correlation coefficients decrease 
rapidly, as illustrated in Fig. 4.  

 

Figure 3: Sample correlation coefficients  ,corr i i h  

of air temperature. Tomsk, June. 

 

Figure 4: Sample correlation coefficients  0,corr h  of 

air temperature. Sochi, December. 
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For simulation of T


 with given one-dimensional 

distributions   , 1,8kg x k   and given correlation 

matrix R  a method of inverse distribution function 
may be used (Piranashvili 1966; Ogorodnikov and 
Prigarin, 1996). In the framework of this method, 

simulation of T


 comes down to an algorithm with 3 
steps: 

1. Calculation of a matrix R   that is a correlation 
matrix of an intermediate standard Gaussian 

process  1 2 8, , , dT T T T   


 . Element 

 i, j , , 1,8r i j d   of the matrix R   is a 

solution of an equation  
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is a distribution density of a bivariate Gaussian 
vector with zero mean, variance equal to 1 and 
correlation coefficient  i, jr  between components 

number i  and j ,     is a CDF of a standard 

normal distribution, ,i jF F  are CDFs corresponding 

to densities    ,i jg x g x . 

2. Simulation of a standard Gaussian sequence T 


 
with correlation matrix R  . 

3. Transformation of  T 


 into T


: 
 

  1 , 1,8i i iT F T i d    . 

 

If matrix R  , obtained in the first step, is not 
positively defined, it must be regularized. Several 
methods of regularization are described in 
(Ogorodnikov and Prigarin, 1996). In this paper a 
method of regularization based on substitution of 
negative eigenvalues of the matrix R   with small 
positive numbers was used. Simulation of a standard 

Gaussian sequence T 


 with correlation matrix R   in 
the second step could be done using Cholesky or 
spectral decomposition of the matrix R  . However, 
due to a special structure of the matrix ,R  there are 

methods to reduce time required for simulation of 

T 


. As it was mentioned above, matrix R  is a 
block-Toeplitz matrix. Therefore, matrix R   is also 

block-Toeplitz. This means that the sequence T 


 
may be interpreted as a vector stationary sequence, 
that could be simulated with efficient algorithms 
presented in (Ogorodnikov, 1990; Robinson, 1983). 
In this paper an algorithm of Levinson was used. It 
should be noted that, due to the block-Toeplitz 
structure of the matrix R  , on the first step of the 
simulation algorithm, it is enough to solve only 

8 8d  equations for  i, j , 1,8, 1,8r i j d   .  

4 NONSTATIONARY MODEL 

It is possible to consider air temperature time-series 
as a non-stationary sequence without any periodic 
characteristics. At first thought, this assumption 
looks especially plausible for off-season months, 
when difference between average daily temperature 
in the beginning and in the end of a month is 
essential. Fig. 5 shows an example of fluctuation of 
average temperature in such month. 

 

Figure 5: Average daily air temperature. Tomsk, 
November. 

For simulation of a non-stationary sequence 

 1 2 8,S , , dS S S


  of air temperature it is 

necessary to define 8d  distribution densities 
(instead of 8  densities in the periodically correlated 
model). As in the described above model, in the non-
stationary model for approximation of sample 
histograms mixtures of Gaussian distributions are 
used. It should be noted that in this case size of a 
sample used for histogramming and estimation of 
sample moments is equal to 23 . Since sample is so 
small, the statistical uncertainty of distribution 
parameters estimation is relatively great. To 
decrease this uncertainty, a moving average 
procedure with a five-day averaging window was 
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used for distribution parameters and correlation 
coefficients estimation. 

Sample correlation matrix   i, jC c  of a 

non-stationary sequence S


, used as a second input 
parameter of a model, doesn’t have any specific 
features. It means that in the framework of inverse 
distribution function method it is necessary to solve 
8 8d d  equations to define a correlation matrix 

  i, jC c   of an auxiliary standard Gaussian 

process 'S


. In this paper simulation of 'S


 with the 
correlation matrix C  was done using Cholesky 
decomposition of the matrix C . 

5 NUMERICAL EXPERIMENTS 

It is obvious, that any stochastic model must be 
verified before one starts to use simulated 
trajectories to study properties of a simulated 
process.  For a model verification, it is necessary to 
compare simulated and real data based estimations 
of such characteristics, which, on the one hand, are 
reliably estimated by real data, and on the other hand 
are not input parameters of the model. Here are 
several examples of such characteristics. 

Tab. 1 shows the probabilities of the event “air 

temperature is below a given level ol C  during at 

least 3 hours (equivalently – during at least 2 
consequent measurements)”. For models 
verification, levels l  close to the mean values of 
temperature were chosen. Since both models 
accurately reproduce this characteristic, simulated 
trajectories were used to estimate the probabilities of 
the specified event for extreme low levels (

38, 40ol C   ) for which an estimate from a small 
sample of real data yields a zero result, although the 

event is possible. Here and below 510  simulated 
trajectories were used for estimations. To denote 
estimations based on real data, an abbreviation RD is 
used, and for estimations based on the periodically 
correlated model and on the nonstationary one 
abbreviations PCM and NSM are used respectively.  

Another characteristic that was used both for 
models verification and study of air temperature 
time-series properties was a “probability of a rapid 
change of air temperature”. As a rapid change of air 

temperature, a change for more than oC  in less 

than 24 hours was considered. Tab. 2 shows 
corresponding estimations. Rapid temperature 

changes (both temperature drops and rises) are 
unpleasant weather events, that negatively influence 
on a human well-being and on open-ground planted 
crop species. This characteristic is reproduced well 
by both models for all considered weather stations. 

Table 1: Probabilities of the event "air temperature is 

below a given level ol C  during at least 3 hours". Tomsk, 

December. 

ol C  RD PCM NSM 

-10 0.63 0.61 0.62 
-14 0.46 0.44 0.42 
-16 0.37 0.38 0.40 
-18 0.31 0.20 0.31 
-32 0.04 0.03 0.04 
-38 0.00 0.01 0.01 
-40 0.00 0.01 0.01 

Table 2: Probabilities of the air temperature rapid change. 
Tomsk, March. 

oC  RD PCM NSM 

5 0.85 0.84 0.86 
9 0.52 0.54 0.51 
13 0.23 0.23 0.22 
17 0.06 0.05 0.07 
21 0.01 0.02 0.02 
25 0.00 0.01 0.01 

 

One more characteristic that was studied on a 
basis of real and simulated data was “average 
number of days in a month with a minimum daily 

temperature above given level ol C ”. Tab. 3 shows 

corresponding estimations. That last column of the 
Tab. 3 contains estimations of the characteristic 
under consideration, obtained with simulated 
trajectories of a well-known model WGEN (see, for 
example, Richardson, 1981; Richardson and Wright, 
1984; Semenov et al., 1998). WGEN is a stochastic 
model of a weather complex “daily precipitation, 
daily maximum and minimum temperature, solar 
radiation”. All three models (PCM, NSM and 
WGEN) give comparable results. It's worth noting 

that for extreme high levels 26,28ol C  there is a 
big difference between estimations on real and 
simulated data. The most probable explanation of 
this fact is that size of a real data sample is too small 
for reliable estimation of rare (but physically 
possible) weather events. 

The last characteristic presented in this paper is 
“average daily temperature in a day number i ”. 
Estimations of these probabilities for two different 
months (first of which is an in-season month and 
second is an off-season) are shown in Tab. 4 and 
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Tab.5. It’s easy to see, that NSM accurately 
reproduces this characteristic both for in-season and 
off-season months, while PCM gives plausible 
results only for the in-season month. 

Table 3: Average number of days in a month with a 

minimum daily temperature above given level ol C . 

Sochi, July. 

ol C  RD PCM NSM WGEN 

14 30.78 30.81 30.76 30.80
16 29.83 29.63 29.64 29.60
18 25.70 25.31 25.98 25.30
20 16.74 16.70 16.79 16.70
22 7.09 6.96 7.03 7.07
24 1.70 1.63 1.62 1.60
26 0.04 0.21 0.20 0.19
28 0.00 0.11 0.11 0.10

Table 4: Average daily temperature in a day number i . 
Sochi, January. 

i RD PCM NSM 
1 7.41 7.42 7.39
11 6.17 6.16 6.19
21 5.69 5.66 5.63
31 5.84 5.83 5.81

Table 5: Average daily temperature in a day number i . 
Sochi, May. 

i  RD PCM NSM 
1 13.87 16.01 13.96
11 15.99 16.06 15.83
21 18.47 15.99 18.01
31 19.45 16.04 19.52

6 CONCLUSIONS 

Results of numerical experiments show that, in 
general, both considered models reproduce quite 
well the properties of a real air temperature time-
series in an in-season month and can be used for 
study of the properties of extreme / rare 
meteorological events. But, since simulation of a 

periodically correlation sequence 'T


 as a vector 
stationary sequence requires less time than 
simulation of a non-stationary sequence 'S


, usage 

of the first model is preferable. For off-season 
months the periodically correlated model does not 
always give satisfactory results, so it is better to use 
the non-stationary model. 

In future, the both models will be expanded – 
instead of air temperature time-series, three-
component weather complexes “air temperature, 
relative humidity, atmospheric pressure” and “air 

temperature, relative humidity, wind speed 
modulus” will be simulated as joint time-series. 
Simulation of first weather complex is of interest, 
because on a basis of simulated trajectories it is 
possible to study the properties of humid air 
enthalpy time-series. Simulated trajectories of the 
second complex could be used as input data for 
models of forest / grassland fires spread. 

Both models also could be easily transformed 
into conditional models that may be used for 
probabilistic forecasting of air temperature. Quality 
of such forecasts will be studied later. 
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