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Abstract: Elasticity is an increasingly important characteristic for cloud computing environments, in particular for 
those that are deployed in dynamically changing environments. The purpose is to let the systems react and 
adapt the workload on its current and additional (in an autonomic manner) hardware and software resources. 
In this paper, we propose an approach that allows the combination of variability and reusability for 
modelling elasticity. The used approach is based on self-adaptive systems and feature modelling into a 
single solution. We show the feasibility of the proposed model through Znn.com scenario. 

1 INTRODUCTION 

Cloud computing represents one of major innovation 
in Information Technology (IT). It describes a model 
for enabling convenient, on-demand network access 
to a shared pool of configurable computing 
resources (e.g., networks, servers, storage, 
applications, and services) that can be rapidly 
provisioned and released with minimal management 
effort or service provider interaction (Mell and 
Grance, 2011).  

One of the important characteristics provided by 
cloud computing is elasticity. This concept permits a 
system to adapt the workload on its current and 
additional (in an autonomic manner) hardware and 
software resources (Herbst et al., 2013). The 
management of elasticity can be split in two 
methods: horizontal scaling and vertical one. The 
horizontal scaling permits to scale resources by 
changing the number of virtual machines (adding 
more virtual machines or devices to the computing 
platform). The vertical scaling allows adding more 
CPU, memory and disk depending on the application 
memory, storage and network bandwidth (Paraiso et 
al., 2014; Bahag and Madisetti, 2013; Marshall et 
al., 2010). 

In this paper, we propose an approach that 
enables the modelling of elasticity in a modular way. 
This approach eases the modelling of elasticity by 
using an approach based on self-adaptive systems 
(IBM, 2006) and feature modelling (Czarnecki and 
Eisencker, 2000; Czarnecki et al., 2005; Greenfield 
et al., 2004). The self-adaptive systems provide 

mechanisms for modelling the structure and the 
behaviour of systems that support elasticity. In 
addition, the feature model provides a solution for 
describing and implementing the commonalities and 
variabilities of systems components.  

The proposed approach supports the modelling 
of an elasticity system for cloud computing with 
three layers: Adaptation loop, Architectural Model, 
and Elasticity System. These layers are ordered 
hierarchically from very abstract to very concrete. 
One of the important challenges of our work consists 
in providing a solution for separating the reusable 
parts from the system specific ones. 

The remainder of this paper is organized as 
follows. Section 2 presents the architecture for 
modelling elasticity system. In Section 3, we present 
the structural variability of modelling and Section 4 
the behavioural one. Section 5 uses a case study to 
demonstrate the feasibility of our approach with the 
Znn.com application, and Section 6 implements and 
evaluates this application. In Section 7, we present 
some related work, and finally Section 8 concludes 
and discusses some future work. 

2 A MULTI-LAYER BASED 
ARCHITECTURE FOR 
MODELLING ELASTICITY 
SYSTEMS 

In this section, we present our architecture that 
enables modelling elasticity in a modular way. The

Berkane, M., Seinturier, L. and Boufaida, M.
Variability Modelling for Elastic Scaling in Cloud Computing.
DOI: 10.5220/0006831607170724
In Proceedings of the 13th International Conference on Software Technologies (ICSOFT 2018), pages 717-724
ISBN: 978-989-758-320-9
Copyright © 2018 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

717



 

Figure 1: Overview of the proposed architecture. 

proposed architecture defines three main layers: 
Adaptation loop, Architectural Model, and Elasticity 
System (Figure 1). 

The Adaptation loop layer allows modelling the 
skeleton for the overall structure of the system. The 
Architectural Model layer defines the main functions 
and properties of the elasticity system in structural 
variability and behavioural one. The Elasticity 
System layer is equipped with a set of computing 
entities, such as sensors, which collect the 
information and actuators that change the state of the 
environment of cloud computing. To model 
elasticity, we use a reference model for autonomic 
control loops with four activities: Monitor, Analyze, 
Plan, and Execute (IBM, 2006).  

These activities can be seen as components, 
which communicate (Knowledge component) to 
adapt elasticity’s behaviour in response to change 
requirements and environmental conditions. In this 
layer, the Analyze component interprets the different 
data provided by the Monitor component (sensors). 
In addition, the Analyze compares the updated 
values found from the sensors with specific 
threshold values. Each threshold contains one or 
more boundary values. These values are used to 
represent boundaries between normal and abnormal 
behaviours. Once the Analyze indicates a situation 
when an adaptation might be needed, it creates a 

trigger to the Plan component. This last component 
selects the specific reconfigurations and show how 
the reconfigurations can be executed at run time by 
Execute component. 

In the next section, we present the Architecture 
Model in two phases: structural variability and 
behavioural one. 

3 STRUCTURAL VARIABILITY 

This phase provides the structure of the system. It 
refines the application components by using feature 
modelling. 

3.1 Extending Feature Model for 
Structural Variability 

The Feature Model can be used to build the 
architectural model. It contains a set of Features, 
and the relationships between the Features like: 
implies and exclude (Czarnecki and Eisencker, 
2000; Czarnecki et al., 2005; Greenfield et al., 
2004). In our work, we define a new concept called 
Feature Level. It can represent the structure of 
system at different level from abstract to concrete. 
This new concept can be used to represent the 
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autonomic control loop, properties, physical 
components and software ones of elasticity systems. 
Our new feature meta-model is shown in Figure 2. 
 

 

Figure 2: Feature Meta-model for structural variability. 

3.2 Feature Model for Elasticity 
System 

In the elasticity system, we define four kinds of 
layers: autonomic control loop, property, software 
component and physical one. These layers are 
specified by feature level (defined in feature meta-
model). In the first layer, we represent the common 
architecture with Monitor, Analyze, and Execute 
component (IBM, 2006) as mandatory features 
(child features are required). In the other layers, we 
define the different functions related to the 
application as OR features (at least one of the child 
features must be selected). These functions represent 
the properties, the software components, and the 
physical ones related to model elasticity systems 
(Figure 3).  
 

 

Figure 3: Structural variability. 

The Plan component represents the different 
rules of elasticity system. It will be represented in 
the behavioural variability section. 

4 BEHAVIOURAL VARIABILITY 

In this phase, we specify the behaviour of the 
elasticity system. For this, we combine the feature 
model with a state transition diagram into a single 
solution. 

4.1 Feature Model with State 
Transition Diagram 

In this new model (state-transition part), each state is 
composed of the sets of components (software 
component and physical one). In addition (feature-
model part), these components are associated to a set 
of configurations. The transitions between states 
represent the rules. These rules represent the 
different elasticity actions: scaling up, scaling out, 
scaling in, and scaling down. The variability is 
expressed by the different configurations and actions 
defined by the components (Figure 4). 

 

Figure 4: Behavioural variability. 

4.2 Adaptation Behavioural of 
Elasticity 

In this section, we propose an algorithm that 
considers the different scenarios of elasticity 
adaptation. This algorithm represents the different 
rules of elasticity system in Plan component.  

We consider a system with a set of servers (S) 
and computing capacities (C). We define three 
parameters: MaxS, MaxC and Q. These three 
parameters represent respectively, the maximum 
number of servers in the pool, the maximum number 
of computing capacities, and the quality of service of 
the system (like response time) (see lines 1-5 in 
Listing 1). In the elasticity adaptation, we define 
four situations: The first situation determines the 
number of servers in the pool and the computing 
capacities under maximum (see lines 8-12 in 
Listing 1). In the second situation, we consider that 
the number of servers is in maximum and computing 
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capacities under maximum (see lines 14-18 in 
Listing 1). The third situation is the reverse of the 
second one: the number of servers under maximum 
and computing capacities is in maximum (see lines 
20-24 in Listing 1). In the last situation, we consider 
that the number of servers and the computing 
capacities are in maximum (see lines 26-30 in 
Listing 1). 

We define four functions: ScalingOut, 
ScalingUp, ScalingIn and ScalingDown (see lines 
35-56 in Listing 1). 
ScalingOut: increment the number of servers. 
ScalingUp: increment the number of computing 
capacities. ScalingIn: decrement the number of 
servers. ScalingDown: decrement the number of 
computing capacities. 
 
1 S: #Server  
2 C: #ComputingCapacity (Memory) 
3 MaxS:#max number of servers in the pool 
4 MaxC: #max number of computing capacities 
5 Q: QoS {Low, Medium & High} 
6  
7 Begin  
8 If (S<MaxS & C<MaxC) then 
9 If (Q=”Medium” | Q=”High”) 
10  ScalingUp(C); 
11 ElseIf (Q=”Low” ) 
12    ScalingOut(S);  
13 
14 If (S=MaxS & C<MaxC ) then 
15 If (Q=”Low” | Q=”Medium”) 
16     ScalingUp(C); 
17    ElseIf (Q=”High”) 
18     ScalingIn(S); 
19 
20 If (S<MaxS & C=MaxC) 
21 If(Q=”Low”) 
22     ScalingOut(S); 
23   ElseIf(Q=”Medium” | Q=”High”) 
24     ScalingDown(C); 
25 
26 If (S=MaxS & C=MaxC) 
27 If (Q=”High”) 
28  ScalingIn(S); 
29 ElseIf(Q=”Low” | Q=”Medium” ) 
30    ScalingDown(C); 
31 End 
32 
33 ScalingOut(S:Server):Server 
34 {S<=S+1 
35 Return(S)} 
36 
37 ScalingUp(C: ComputingCapacity): 
ComputingCapacity 
38 {C<=C+1 
39 Return(C)} 
40 
41 ScalingIn(S:Server):Server 

42 {S<=S-1 
43 Return(S)} 
44 
45 ScalingDown(C: ComputingCapacity): 
ComputingCapacity 
46 {C<=C-1 
47 Return(C)} 

Listing 1: Adaptation behavioural. 

5 CASE STUDY ‘Znn.com’ 

In this section, a case study is used to demonstrate 
the feasibility of our approach. We have selected a 
Znn.com scenario. Znn.com is an example that 
motivates the need for dynamic adaptation of 
elasticity system for cloud computing. It is one of 
the exemplar case studies proposed by the Software 
Engineering for Adaptive and Self-Managing 
Systems (SEAMS) research community.  It is a web-
based N-tier client-server system that provides news 
content to its customers. The main business 
objectives of Znn.com are (Cheng et al., 2009):  
 News content provision in a reasonable response 

time 
 Minimization of operating server costs 
 High quality content presentation 

5.1 Structural Variability 

In the structural phase, we have defined four 
functions of Znn.com application (Figure 5): 
Response time (represent a property), Server pool 
(represent a physical component), Server cost 
(represent a property) and Server content mode 
(represent a software component). The Response 
time function is represented by three states (Analyze 
component): low, medium, and high. This function 
can only be observed by sensors. In addition, the 
server pool function has two actions (Execute 
component): Increment server pool and decrement 
one. 

The first action increments the number of servers 
in the pool size. The second action is responsible for 
decrementing the number of servers in the pool size. 
However, the server cost function determines if we 
can increase the pool size (if the budget is under or 
over). In this function, we define two states: under 
budget and over budget. The last function specifies 
the server content mode: graphics and text. With this 
function, we can switch from graphical to textual 
mode, or from textual to graphical mode. The Plan 
component represents the different rules that can be 

ICSOFT 2018 - 13th International Conference on Software Technologies

720



 

executed to adapt Znn.com application. In the next 
section, we show the behaviour of this component. 

 

Figure 5: Structural representation of Znn.com application. 

5.2 Behavioural Variability 

In Znn.com application, we define four states. Each 
state is represented by three components: two 
components for two servers (physical components) 
and one component for server content mode 
(software component). For the server components, 
we can find two configurations: enable and disable. 
However, the server content mode component, we 
can find also two configurations: textual and 
graphical mode. 

We represent three examples of scenarios 
(behaviours) of Znn.com (Cheng et al., 2009) with 
elasticity actions: 
 Scenario 1: if the response time is high, Znn.com 

will increment the number of servers in the pool 
if the budget is not over (scaling out); otherwise, 
Znn.com will switch the servers to textual mode 
(scaling down); 

 Scenario 2: if the response time is low, Znn.com 
will decrement its server pool size if it is near 
budget limit (scaling in); otherwise Znn.com 
will switch the servers to graphical mode if they 
are not already in that mode (scaling down); 

 Scenario 3: if the response time is in the medium 
range, Znn.com will switch to graphical mode if 
it the mode is textual (scaling down), if the 
server pool size may either be incremented to 
decrease response time or decremented to reduce 
cost (scaling out). 

In Figure 6, we present all the (behaviours) scenarios 
of Znn.com. 
 

 

Figure 6: Behavioural representation of Znn.com 
application. 

6 IMPLEMENTATION AND 
EVALUATION 

We give some implementation aspects of elasticity 
in Znn.com. 

6.1 Implementation 

CaesarJ is selected as a language to implement 
Znn.com application. This language is an aspect-
oriented language that supports reusability (Nunez 
and Gasiunas, 2015). It is an extension of Java and 
integrates the features model. This language defines 
five concepts to implement the application: 
Collaboration Interfaces, Implementation, Binding, 
Weavlets and Weavlet Deployer (Figure 7). 
 

 

Figure 7: Znn.com application with CaesarJ language. 

The modularity in CasearJ is materialized by 
Collaboration Interfaces.  In these interfaces, one 
can separate the reusable parts from the application 
specific ones. 
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The Znn.com architecture is defined by the 
Collaboration Interface (Listing 2). In this Interface 
(represented by cclass concept), we define the 
different principal components of Znn.com 
application: Servers and Clients. In addition, this 
interface is split in a provided part and an expected 
one. 
 
1 package znn;  
2 abstract public cclass ZnnArch { 
3  abstract public cclass Serveur { 
4  abstract public void AdaptAction 
(Client cl);}  
5  abstract public cclass Client {  
6   abstract public float Request();} }  

Listing 2: Znn.com Architecture with Collaboration 
Interface. 

The provided part is implemented with reusable 
CaesarJ components “Implementation”. This part 
implements the different actions related to Znn.com 
application (Listing 3). For server pool actions, we 
can find two actions: increment server pool and 
decrement one. However, the server content mode 
actions, we can find: textual and graphical mode.  
 
1 package znn;  
2 abstract public cclass ScreenMode 
extends ZnnArch { 
3  abstract public cclass Serveur { 
4   private float resptime; 
5   public void AdaptAction (Client 
cl){  
6    float diff = cl.Resptime();  
7    resptime -= diff; }}  

Listing 3: Implementation part of Znn.com. 

The expected part is implemented with CaesarJ 
“Binding”. It implements the variabilities of system 
(Listing 4). In this part, we can find two properties 
response time and server cost. The response time is 
represented by three states: low, medium, and high. 
In addition, the server cost is represented by two 
states: budget is under or over. 
 
1 package bindingPart; 
2 import znn.*; 
3 import client.*; 
4 
5 abstract public cclass RTHigh extends 
ZnnArch { 
6  public cclass RequestClient extends 
Client wraps InfoRequest { 
7   public float resptime () { 
8    return 5;}}}  

Listing 4: Binding part of Znn.com. 

The Weavlets are implemented through an empty 
CaesarJ class that extends the Implementation and 
the Binding. These Weavlets are deployed in the 
application by “Weavlet Deployer”. 

6.2 Evaluation 

In this section, we evaluate the proposed approach 
using two criteria: reusability and energy 
consumption. 

6.2.1 Reusability 

Reusability refers to the degree to which existing 
applications can be reused in new applications. In 
this property, we compare a Java and CaesarJ 
implementation of Znn.com application with some 
criteria: separation of concerns (with two attributes: 
concern diffusion over components CDC and 
concern diffusion over operations CDO), coupling 
(with coupling between modules attribute CBM) 
and cohesion (with lack of cohesion attribute LCO) 
(Cacho et al., 2006). 

CDC counts the number of modules whose main 
purpose is to contribute to the implementation of a 
concern and the number of other classes and 
collaboration interfaces that access them. CDO 
counts the number of operations whose main 
purpose is to contribute to the implementation of a 
concern and the number of other methods and 
advices that access them. CBM counts the number 
of modules to which a module is coupled. LCO 
counts the number of operations within a module 
that does not access the same instance variable 
(Cacho et al., 2006). 

 

Figure 8: separation of concerns, coupling and cohesion in 
Znn.com application. 

The implementation of Znn.com application with 
CaesarJ presents better results in terms of the 
number of diffusion over components (CDC), the 
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number of operations whose main purpose is to 
contribute to the implementation of a concern 
(CDO) and the number of modules to which a 
module is coupled (CBM). 
In addition, the number of operations within a 
module that does not access the same instance 
variable (LCO) is not reduced (Figure 8). 

6.2.2 Energy Consumption 

This property represents the amount of energy 
consumed in a system. We evaluate the energy 
consumption in the client machine (with laptop) by 
two properties: screen (by brightness) and battery. 

We consider the battery level before adaptation 
in 92% (175 minutes remaining). The level of the 
battery is decreasing to the level 7% after 124 
minutes without adaptation (Figure 9). 
 

 

Figure 9: Level of battery without adaptation. 

After the adaptation, the level of the battery is 
decreasing to the level 7% after 157 minutes. We 
have a gain of 33 minutes (Figure 10). 
 

 

Figure 10: Level of battery with adaptation. 

7 RELATED WORK 

This section overviews selected efforts conducted by 
researchers to facilitate the modelling of elasticity.  

(Buyya et al., 2010) propose an architectural for 
utility-oriented federation of Cloud computing 
environments. They provide a federated cloud 
infrastructure approach to represent elasticity for 
applications. However, their solution does not 
separate the components of architecture. In our case, 
we have used MAPE-K component to represent the 
components of system. 

The authors in (Vaquero et al., 2011) present an 
approach that manages the elasticity with both a 
controller component and a load balancer one. 
However, the authors do not clearly present the 
behaviour of elasticity. In our solution, we have 
combined the feature model with state transition 
diagram into a single solution to show the behaviour 
of elasticity system. 

(Marshall et al., 2010) develop a model that 
adapts services provided within a site, such as batch 
schedulers, storage archives, or Web services to take 
advantage of elastically provisioned resources. 
However, their approach does not support adding 
additional resources managers. With the 
extensibility of our approach, we can easily add new 
resource managers (functions or components in 
horizontal axis or configuration in vertical axis).   

(Paraiso et al., 2014) present an approach that 
support portability, provisioning, elasticity, and high 
availability across multiple clouds. The authors use 
the annotations notion to express elasticity rules that 
ensure the appropriate decisions. In addition, 
(Berkane et al., 2015) propose an approach for 
developing self-adaptive systems at multiple levels 
of abstraction. This approach allows the combination 
of variability with feature model and reusability with 
design pattern into a single solution. In our solution, 
we have used the feature model and MAPE-K 
components to express the elasticity. The rules have 
modelled by using the feature model with state 
transition diagram. 

8 CONCLUSION 

In this paper, we have presented an approach for 
modelling elasticity system for cloud computing in a 
modular way. Based on self-adaptive systems and 
feature modelling, our approach supports the 
modularity of applications in structural and 
behavioural phases. The first phase consists to 
provide the skeleton for the overall structure of the 
application by separating it into distinct components 
based on functions of the application and MAPE-K 
architecture. In the second phase, we have combined 
the feature model with state transition diagram into a 
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single solution to represent the different 
configurations of applications. As for future work, 
we are considering the dynamic variability of feature 
model in systems. This dynamic variability permits 
to represent the system at run-time (during 
execution). We will also try to specify the elasticity 
in a formal way by redefining the constraint of 
system. This formal specification will open the door 
to the reuse of features in the different system 
contexts. 
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