
Variability Modelling for Elastic Scaling in Cloud Computing

Mohamed Lamine Berkane1, Lionel Seinturier2 and Mahmoud Boufaida1
1Computer Science Department, LIRE Laboratory, University Constantine 2, Algeria

2University of Lille and Inria, CRIStAL UMR CNRS 9189, France

Keywords: Elasticity, Cloud Computing, Feature Model, Self-adaptive Systems, Variability.

Abstract: Elasticity is an increasingly important characteristic for cloud computing environments, in particular for
those that are deployed in dynamically changing environments. The purpose is to let the systems react and
adapt the workload on its current and additional (in an autonomic manner) hardware and software resources.
In this paper, we propose an approach that allows the combination of variability and reusability for
modelling elasticity. The used approach is based on self-adaptive systems and feature modelling into a
single solution. We show the feasibility of the proposed model through Znn.com scenario.

1 INTRODUCTION

Cloud computing represents one of major innovation
in Information Technology (IT). It describes a model
for enabling convenient, on-demand network access
to a shared pool of configurable computing
resources (e.g., networks, servers, storage,
applications, and services) that can be rapidly
provisioned and released with minimal management
effort or service provider interaction (Mell and
Grance, 2011).

One of the important characteristics provided by
cloud computing is elasticity. This concept permits a
system to adapt the workload on its current and
additional (in an autonomic manner) hardware and
software resources (Herbst et al., 2013). The
management of elasticity can be split in two
methods: horizontal scaling and vertical one. The
horizontal scaling permits to scale resources by
changing the number of virtual machines (adding
more virtual machines or devices to the computing
platform). The vertical scaling allows adding more
CPU, memory and disk depending on the application
memory, storage and network bandwidth (Paraiso et
al., 2014; Bahag and Madisetti, 2013; Marshall et
al., 2010).

In this paper, we propose an approach that
enables the modelling of elasticity in a modular way.
This approach eases the modelling of elasticity by
using an approach based on self-adaptive systems
(IBM, 2006) and feature modelling (Czarnecki and
Eisencker, 2000; Czarnecki et al., 2005; Greenfield
et al., 2004). The self-adaptive systems provide

mechanisms for modelling the structure and the
behaviour of systems that support elasticity. In
addition, the feature model provides a solution for
describing and implementing the commonalities and
variabilities of systems components.

The proposed approach supports the modelling
of an elasticity system for cloud computing with
three layers: Adaptation loop, Architectural Model,
and Elasticity System. These layers are ordered
hierarchically from very abstract to very concrete.
One of the important challenges of our work consists
in providing a solution for separating the reusable
parts from the system specific ones.

The remainder of this paper is organized as
follows. Section 2 presents the architecture for
modelling elasticity system. In Section 3, we present
the structural variability of modelling and Section 4
the behavioural one. Section 5 uses a case study to
demonstrate the feasibility of our approach with the
Znn.com application, and Section 6 implements and
evaluates this application. In Section 7, we present
some related work, and finally Section 8 concludes
and discusses some future work.

2 A MULTI-LAYER BASED
ARCHITECTURE FOR
MODELLING ELASTICITY
SYSTEMS

In this section, we present our architecture that
enables modelling elasticity in a modular way. The

Berkane, M., Seinturier, L. and Boufaida, M.
Variability Modelling for Elastic Scaling in Cloud Computing.
DOI: 10.5220/0006831607170724
In Proceedings of the 13th International Conference on Software Technologies (ICSOFT 2018), pages 717-724
ISBN: 978-989-758-320-9
Copyright © 2018 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

717

Figure 1: Overview of the proposed architecture.

proposed architecture defines three main layers:
Adaptation loop, Architectural Model, and Elasticity
System (Figure 1).

The Adaptation loop layer allows modelling the
skeleton for the overall structure of the system. The
Architectural Model layer defines the main functions
and properties of the elasticity system in structural
variability and behavioural one. The Elasticity
System layer is equipped with a set of computing
entities, such as sensors, which collect the
information and actuators that change the state of the
environment of cloud computing. To model
elasticity, we use a reference model for autonomic
control loops with four activities: Monitor, Analyze,
Plan, and Execute (IBM, 2006).

These activities can be seen as components,
which communicate (Knowledge component) to
adapt elasticity’s behaviour in response to change
requirements and environmental conditions. In this
layer, the Analyze component interprets the different
data provided by the Monitor component (sensors).
In addition, the Analyze compares the updated
values found from the sensors with specific
threshold values. Each threshold contains one or
more boundary values. These values are used to
represent boundaries between normal and abnormal
behaviours. Once the Analyze indicates a situation
when an adaptation might be needed, it creates a

trigger to the Plan component. This last component
selects the specific reconfigurations and show how
the reconfigurations can be executed at run time by
Execute component.

In the next section, we present the Architecture
Model in two phases: structural variability and
behavioural one.

3 STRUCTURAL VARIABILITY

This phase provides the structure of the system. It
refines the application components by using feature
modelling.

3.1 Extending Feature Model for
Structural Variability

The Feature Model can be used to build the
architectural model. It contains a set of Features,
and the relationships between the Features like:
implies and exclude (Czarnecki and Eisencker,
2000; Czarnecki et al., 2005; Greenfield et al.,
2004). In our work, we define a new concept called
Feature Level. It can represent the structure of
system at different level from abstract to concrete.
This new concept can be used to represent the

ICSOFT 2018 - 13th International Conference on Software Technologies

718

autonomic control loop, properties, physical
components and software ones of elasticity systems.
Our new feature meta-model is shown in Figure 2.

Figure 2: Feature Meta-model for structural variability.

3.2 Feature Model for Elasticity
System

In the elasticity system, we define four kinds of
layers: autonomic control loop, property, software
component and physical one. These layers are
specified by feature level (defined in feature meta-
model). In the first layer, we represent the common
architecture with Monitor, Analyze, and Execute
component (IBM, 2006) as mandatory features
(child features are required). In the other layers, we
define the different functions related to the
application as OR features (at least one of the child
features must be selected). These functions represent
the properties, the software components, and the
physical ones related to model elasticity systems
(Figure 3).

Figure 3: Structural variability.

The Plan component represents the different
rules of elasticity system. It will be represented in
the behavioural variability section.

4 BEHAVIOURAL VARIABILITY

In this phase, we specify the behaviour of the
elasticity system. For this, we combine the feature
model with a state transition diagram into a single
solution.

4.1 Feature Model with State
Transition Diagram

In this new model (state-transition part), each state is
composed of the sets of components (software
component and physical one). In addition (feature-
model part), these components are associated to a set
of configurations. The transitions between states
represent the rules. These rules represent the
different elasticity actions: scaling up, scaling out,
scaling in, and scaling down. The variability is
expressed by the different configurations and actions
defined by the components (Figure 4).

Figure 4: Behavioural variability.

4.2 Adaptation Behavioural of
Elasticity

In this section, we propose an algorithm that
considers the different scenarios of elasticity
adaptation. This algorithm represents the different
rules of elasticity system in Plan component.

We consider a system with a set of servers (S)
and computing capacities (C). We define three
parameters: MaxS, MaxC and Q. These three
parameters represent respectively, the maximum
number of servers in the pool, the maximum number
of computing capacities, and the quality of service of
the system (like response time) (see lines 1-5 in
Listing 1). In the elasticity adaptation, we define
four situations: The first situation determines the
number of servers in the pool and the computing
capacities under maximum (see lines 8-12 in
Listing 1). In the second situation, we consider that
the number of servers is in maximum and computing

Variability Modelling for Elastic Scaling in Cloud Computing

719

capacities under maximum (see lines 14-18 in
Listing 1). The third situation is the reverse of the
second one: the number of servers under maximum
and computing capacities is in maximum (see lines
20-24 in Listing 1). In the last situation, we consider
that the number of servers and the computing
capacities are in maximum (see lines 26-30 in
Listing 1).

We define four functions: ScalingOut,
ScalingUp, ScalingIn and ScalingDown (see lines
35-56 in Listing 1).
ScalingOut: increment the number of servers.
ScalingUp: increment the number of computing
capacities. ScalingIn: decrement the number of
servers. ScalingDown: decrement the number of
computing capacities.

1 S: #Server
2 C: #ComputingCapacity (Memory)
3 MaxS:#max number of servers in the pool
4 MaxC: #max number of computing capacities
5 Q: QoS {Low, Medium & High}
6
7 Begin
8 If (S<MaxS & C<MaxC) then
9 If (Q=”Medium” | Q=”High”)
10 ScalingUp(C);
11 ElseIf (Q=”Low”)
12 ScalingOut(S);
13
14 If (S=MaxS & C<MaxC) then
15 If (Q=”Low” | Q=”Medium”)
16 ScalingUp(C);
17 ElseIf (Q=”High”)
18 ScalingIn(S);
19
20 If (S<MaxS & C=MaxC)
21 If(Q=”Low”)
22 ScalingOut(S);
23 ElseIf(Q=”Medium” | Q=”High”)
24 ScalingDown(C);
25
26 If (S=MaxS & C=MaxC)
27 If (Q=”High”)
28 ScalingIn(S);
29 ElseIf(Q=”Low” | Q=”Medium”)
30 ScalingDown(C);
31 End
32
33 ScalingOut(S:Server):Server
34 {S<=S+1
35 Return(S)}
36
37 ScalingUp(C: ComputingCapacity):
ComputingCapacity
38 {C<=C+1
39 Return(C)}
40
41 ScalingIn(S:Server):Server

42 {S<=S-1
43 Return(S)}
44
45 ScalingDown(C: ComputingCapacity):
ComputingCapacity
46 {C<=C-1
47 Return(C)}

Listing 1: Adaptation behavioural.

5 CASE STUDY ‘Znn.com’

In this section, a case study is used to demonstrate
the feasibility of our approach. We have selected a
Znn.com scenario. Znn.com is an example that
motivates the need for dynamic adaptation of
elasticity system for cloud computing. It is one of
the exemplar case studies proposed by the Software
Engineering for Adaptive and Self-Managing
Systems (SEAMS) research community. It is a web-
based N-tier client-server system that provides news
content to its customers. The main business
objectives of Znn.com are (Cheng et al., 2009):
 News content provision in a reasonable response

time
 Minimization of operating server costs
 High quality content presentation

5.1 Structural Variability

In the structural phase, we have defined four
functions of Znn.com application (Figure 5):
Response time (represent a property), Server pool
(represent a physical component), Server cost
(represent a property) and Server content mode
(represent a software component). The Response
time function is represented by three states (Analyze
component): low, medium, and high. This function
can only be observed by sensors. In addition, the
server pool function has two actions (Execute
component): Increment server pool and decrement
one.

The first action increments the number of servers
in the pool size. The second action is responsible for
decrementing the number of servers in the pool size.
However, the server cost function determines if we
can increase the pool size (if the budget is under or
over). In this function, we define two states: under
budget and over budget. The last function specifies
the server content mode: graphics and text. With this
function, we can switch from graphical to textual
mode, or from textual to graphical mode. The Plan
component represents the different rules that can be

ICSOFT 2018 - 13th International Conference on Software Technologies

720

executed to adapt Znn.com application. In the next
section, we show the behaviour of this component.

Figure 5: Structural representation of Znn.com application.

5.2 Behavioural Variability

In Znn.com application, we define four states. Each
state is represented by three components: two
components for two servers (physical components)
and one component for server content mode
(software component). For the server components,
we can find two configurations: enable and disable.
However, the server content mode component, we
can find also two configurations: textual and
graphical mode.

We represent three examples of scenarios
(behaviours) of Znn.com (Cheng et al., 2009) with
elasticity actions:
 Scenario 1: if the response time is high, Znn.com

will increment the number of servers in the pool
if the budget is not over (scaling out); otherwise,
Znn.com will switch the servers to textual mode
(scaling down);

 Scenario 2: if the response time is low, Znn.com
will decrement its server pool size if it is near
budget limit (scaling in); otherwise Znn.com
will switch the servers to graphical mode if they
are not already in that mode (scaling down);

 Scenario 3: if the response time is in the medium
range, Znn.com will switch to graphical mode if
it the mode is textual (scaling down), if the
server pool size may either be incremented to
decrease response time or decremented to reduce
cost (scaling out).

In Figure 6, we present all the (behaviours) scenarios
of Znn.com.

Figure 6: Behavioural representation of Znn.com
application.

6 IMPLEMENTATION AND
EVALUATION

We give some implementation aspects of elasticity
in Znn.com.

6.1 Implementation

CaesarJ is selected as a language to implement
Znn.com application. This language is an aspect-
oriented language that supports reusability (Nunez
and Gasiunas, 2015). It is an extension of Java and
integrates the features model. This language defines
five concepts to implement the application:
Collaboration Interfaces, Implementation, Binding,
Weavlets and Weavlet Deployer (Figure 7).

Figure 7: Znn.com application with CaesarJ language.

The modularity in CasearJ is materialized by
Collaboration Interfaces. In these interfaces, one
can separate the reusable parts from the application
specific ones.

Variability Modelling for Elastic Scaling in Cloud Computing

721

The Znn.com architecture is defined by the
Collaboration Interface (Listing 2). In this Interface
(represented by cclass concept), we define the
different principal components of Znn.com
application: Servers and Clients. In addition, this
interface is split in a provided part and an expected
one.

1 package znn;
2 abstract public cclass ZnnArch {
3 abstract public cclass Serveur {
4 abstract public void AdaptAction
(Client cl);}
5 abstract public cclass Client {
6 abstract public float Request();} }

Listing 2: Znn.com Architecture with Collaboration
Interface.

The provided part is implemented with reusable
CaesarJ components “Implementation”. This part
implements the different actions related to Znn.com
application (Listing 3). For server pool actions, we
can find two actions: increment server pool and
decrement one. However, the server content mode
actions, we can find: textual and graphical mode.

1 package znn;
2 abstract public cclass ScreenMode
extends ZnnArch {
3 abstract public cclass Serveur {
4 private float resptime;
5 public void AdaptAction (Client
cl){
6 float diff = cl.Resptime();
7 resptime -= diff; }}

Listing 3: Implementation part of Znn.com.

The expected part is implemented with CaesarJ
“Binding”. It implements the variabilities of system
(Listing 4). In this part, we can find two properties
response time and server cost. The response time is
represented by three states: low, medium, and high.
In addition, the server cost is represented by two
states: budget is under or over.

1 package bindingPart;
2 import znn.*;
3 import client.*;
4
5 abstract public cclass RTHigh extends
ZnnArch {
6 public cclass RequestClient extends
Client wraps InfoRequest {
7 public float resptime () {
8 return 5;}}}

Listing 4: Binding part of Znn.com.

The Weavlets are implemented through an empty
CaesarJ class that extends the Implementation and
the Binding. These Weavlets are deployed in the
application by “Weavlet Deployer”.

6.2 Evaluation

In this section, we evaluate the proposed approach
using two criteria: reusability and energy
consumption.

6.2.1 Reusability

Reusability refers to the degree to which existing
applications can be reused in new applications. In
this property, we compare a Java and CaesarJ
implementation of Znn.com application with some
criteria: separation of concerns (with two attributes:
concern diffusion over components CDC and
concern diffusion over operations CDO), coupling
(with coupling between modules attribute CBM)
and cohesion (with lack of cohesion attribute LCO)
(Cacho et al., 2006).

CDC counts the number of modules whose main
purpose is to contribute to the implementation of a
concern and the number of other classes and
collaboration interfaces that access them. CDO
counts the number of operations whose main
purpose is to contribute to the implementation of a
concern and the number of other methods and
advices that access them. CBM counts the number
of modules to which a module is coupled. LCO
counts the number of operations within a module
that does not access the same instance variable
(Cacho et al., 2006).

Figure 8: separation of concerns, coupling and cohesion in
Znn.com application.

The implementation of Znn.com application with
CaesarJ presents better results in terms of the
number of diffusion over components (CDC), the

ICSOFT 2018 - 13th International Conference on Software Technologies

722

number of operations whose main purpose is to
contribute to the implementation of a concern
(CDO) and the number of modules to which a
module is coupled (CBM).
In addition, the number of operations within a
module that does not access the same instance
variable (LCO) is not reduced (Figure 8).

6.2.2 Energy Consumption

This property represents the amount of energy
consumed in a system. We evaluate the energy
consumption in the client machine (with laptop) by
two properties: screen (by brightness) and battery.

We consider the battery level before adaptation
in 92% (175 minutes remaining). The level of the
battery is decreasing to the level 7% after 124
minutes without adaptation (Figure 9).

Figure 9: Level of battery without adaptation.

After the adaptation, the level of the battery is
decreasing to the level 7% after 157 minutes. We
have a gain of 33 minutes (Figure 10).

Figure 10: Level of battery with adaptation.

7 RELATED WORK

This section overviews selected efforts conducted by
researchers to facilitate the modelling of elasticity.

(Buyya et al., 2010) propose an architectural for
utility-oriented federation of Cloud computing
environments. They provide a federated cloud
infrastructure approach to represent elasticity for
applications. However, their solution does not
separate the components of architecture. In our case,
we have used MAPE-K component to represent the
components of system.

The authors in (Vaquero et al., 2011) present an
approach that manages the elasticity with both a
controller component and a load balancer one.
However, the authors do not clearly present the
behaviour of elasticity. In our solution, we have
combined the feature model with state transition
diagram into a single solution to show the behaviour
of elasticity system.

(Marshall et al., 2010) develop a model that
adapts services provided within a site, such as batch
schedulers, storage archives, or Web services to take
advantage of elastically provisioned resources.
However, their approach does not support adding
additional resources managers. With the
extensibility of our approach, we can easily add new
resource managers (functions or components in
horizontal axis or configuration in vertical axis).

(Paraiso et al., 2014) present an approach that
support portability, provisioning, elasticity, and high
availability across multiple clouds. The authors use
the annotations notion to express elasticity rules that
ensure the appropriate decisions. In addition,
(Berkane et al., 2015) propose an approach for
developing self-adaptive systems at multiple levels
of abstraction. This approach allows the combination
of variability with feature model and reusability with
design pattern into a single solution. In our solution,
we have used the feature model and MAPE-K
components to express the elasticity. The rules have
modelled by using the feature model with state
transition diagram.

8 CONCLUSION

In this paper, we have presented an approach for
modelling elasticity system for cloud computing in a
modular way. Based on self-adaptive systems and
feature modelling, our approach supports the
modularity of applications in structural and
behavioural phases. The first phase consists to
provide the skeleton for the overall structure of the
application by separating it into distinct components
based on functions of the application and MAPE-K
architecture. In the second phase, we have combined
the feature model with state transition diagram into a

Variability Modelling for Elastic Scaling in Cloud Computing

723

single solution to represent the different
configurations of applications. As for future work,
we are considering the dynamic variability of feature
model in systems. This dynamic variability permits
to represent the system at run-time (during
execution). We will also try to specify the elasticity
in a formal way by redefining the constraint of
system. This formal specification will open the door
to the reuse of features in the different system
contexts.

REFERENCES

Bahga, A., Madisetti, V., 2013. Cloud Computing: A
Hands-On Approach, CreateSpace Independent
Publishing Platform.

Berkane, M.L., Seinturier, L., Boufaida, M., 2015. Using
variability modelling and design patterns for self-
adaptive system engineering: application to smart-
home. In International Journal of Web Engineering
and Technology, 2015 Vol.10, No.1, pp.65

Buyya, R., Ranjan, R., Calheiros, R., 2010. Intercloud:
Utility-oriented federation of cloud computing
environments for scaling of application services. In
International Conference on Algorithms and
Architectures for Parallel Processing, pp. 13–31.

Cacho, N., Sant Anna, C., Figueiredo, E., Garcia, A.,
Batista, T., Lucena, C., 2006. Composing design
patterns: a scalability study of aspect-oriented
programming. In the 5th International Conference on
Aspect-Oriented Software Development, pp.109–121,
ACM.

Cheng, S.-W., Garlan, D., Schmerl, B., 2009. Evaluating
the effectiveness of the Rainbow self-adaptive system,
In 4th ICSE Workshop on Software Engineering for
Adaptive and Self-Managing Systems, SEAMS, IEEE.

Czarnecki, K., Eisenecker, U., 2000. Generative
Programming Methods, Tools, and Applications,
Addison-Wesley, Boston, MA, USA.

Czarnecki, K., Helsen, S., Eisenecker, U., 2005.
Formalizing cardinality-based feature models and their
specialization. Software Process Improvement and
Practice, Vol. 10, No. 1, pp.7–29.

Greenfield, J., Short, K., Cook, S., Kent, S., Crupi, J.,
2004. Software Factories: Assembling Applications
with Patterns, models, Frameworks and Tools, John
Wiley & Sons, New York.

Herbst; N. R., Kounev, S., Reussner. R., 2013. Elasticity
in Cloud Computing: What It Is, and What It Is Not. In
the 10th International Conference on Autonomic
Computing (ICAC 2013), San Jose, CA, June 24–28.

IBM, 2006. An Architectural Blueprint for Autonomic
Computing, Technical Report.

Marshall, P., Keahey, K., Freeman, T., 2010. Elastic site:
Using clouds to elastically extend site resources. In:
Proceedings of the 2010 10th IEEE/ACM

International Conference on Cluster, Cloud and Grid
Computing, pp. 43–52. IEEE Computer Society.

Mell, P., Grance, T., 2011. The NIST Definition of Cloud
Computing, National Institute of Standards and
Technology, U.S. Department of Commerce, NIST
Special Publication 800-145.

Nunez, A., Gasiunas, V., 2015. ECaesarJ User’s Guide
http://ample.holos.pt/gest_cnt_upload/editor/File/publi
c/ECaesarJ-manual.pdf [online], 2009, (accessed 2
March 2015).

Paraiso, F., Merle, P., Seinturier, L., 2014. soCloud: A
service-oriented component-based PaaS for managing
portability, provisioning, elasticity, and high
availability across multiple clouds, In Springer
Computing, Springer.

Vaquero, L., Rodero-Merino, L., Buyya, R., 2011.
Dynamically scaling applications in the cloud. In ACM
SIGCOMM Computer Communication Review 41(1),
45–52, 2011.

ICSOFT 2018 - 13th International Conference on Software Technologies

724

