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Abstract: Even if recent advances in public key cryptography tend to focus on algorithms able to survive the post quan-
tum era, at present, there is an urgent need to propose fast, low power and securely implemented cryptography
to address the immediate security challenges of the IoT. In this document, we present a new set of Binary
Edwards Curves which have been defined to achieve the highest security levels (up to 284-bit security level)
and whose parameters have been defined to fit IoT devices embedding 32-bit general purpose processors. We
optimized the choice of the point generator with the w-coordinate to save a multiplication in the addition and
doubling formulae. We manage to compute one step of the Montgomery Ladder in 4 multiplications and
4 squares. On top of the performance benefits, cryptography over such curves have some intrinsic security
properties against physical attacks.

1 INTRODUCTION

Security and privacy have already been identified as
vital issues of the “Internet of Things” (IoT) and as
key to its adoption and deployment (Skarmeta and
Moreno, 2014) (Rubens, 2014). End-to-end secu-
rity has to be enforced, which means that the end-
nodes of an IoT infrastructure shall also embed se-
curity features and applications. Asymmetric cryp-
tography is one of such security tools and given the
size, power and performance constraints on IoT end-
nodes, Elliptic Curves Cryptography (ECC)(Koblitz,
1987) (Miller, 1986) is by far the best fit for such
use cases and this despite the recently growing fear
of quantum computers: since the latter are thought to
be able one day to efficiently solve the Discrete Log-
arithm Problem (DLP), post-quantum cryptosystems
are currently being studied. However, these cryp-
tosystems as they exist today, cannot be used in the
constrained IoT nodes due to the large keys and long
computing times. ECC is still, in our opinion, the best
short and mid term answer to address the immediate
security needs for the IoT.

The main standardization effort for ECC has
been through the FIPS 186-4 (Information Tech-
nology Laboratory, 2013) by the NIST. Alterna-
tive approaches have been proposed like (Brainpool,

2005)(Bernstein et al., 2011). The latter pieces of
work open a new vision in the landscape of applied
ECC. The so-called “NIST curves” were proposed in
1999 where “low power devices” were not as common
as today and hence these curves were not designed
for today’s IoT constraints. Elliptic Curves usually
used for cryptography are defined by the Weierstrass
equation y2 + a1xy+ a3y = x3 + a2x2 + a4x+ a6 and
defined over a prime field with large prime charac-
teristic or over binary extension fields of character-
istic 2. However, the arithmetics of the Weiesrtrass
form are not adapted to the low resource constraints
of IoT devices with the additional constraint of being
resistant to side channel attacks and fault attacks (Fan
et al., 2010b). Adding countermeasures against these
attacks severely downgrade the performance and effi-
ciency of such ECC implementations, which can be a
heavy drawback for the IoT end-nodes. This is why
it would be more interesting to look for curves that
could avoid such weaknesses. For example curves
like Curve25519, (Bernstein et al., 2011) (Edwards,
2007) have a complete group law providing one same
formula for point addition and point doubling. An-
other important aspect for an ECC implementation is
the choice between curves over Fp or F2m . Curves
over large prime characteristics are usually preferred
to those over binary fields due to claims that there may
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be sub-exponential algorithms for solving the discrete
logarithm problem for elliptic curves on binary fields.
However even if the best optimistic conjectures of
the DLP claim to have a complexity of L2n( 2

3 )
1 or

even L2n( 1
2 ), (Galbraith and Gaudry, 2016) recalls

that they are still “hypotheses” and that recent exper-
iments “raise the doubt about the subexponentiality
claims”. One of the main performance and security
(Fouque et al., 2008b) advantages of arithmetics in
binary fields is the carry-less operation involved.

Our approach consists in investigating about Bi-
nary Edwards Curves (BEC) (Bernstein et al., 2008)
which, given the constraints of IoT devices, are one
of the best choices for implementing ECC resistant to
physical attacks: they are fast, have a complete group
law and the underlying carry-less arithmetics would
require low power and compact dedicated hardware
accelerators. So far, only one such BEC has been pro-
posed in the literature, which does not even offer what
is the admitted reference of “128-bit security level”.
Hence we generated BECs, with higher security lev-
els (112-bit to 284-bit) and with parameters tailored
to fit the hardware constraints of IoT devices (work-
ing on data paths of 32 bits or 64 bits).

The rest of this paper details each step used for
generating those curves. First Section 2 presents the
concept of friendly polynomials and the associated
advantages. Then Section 3 introduces the BECs with
a focus on those curves having efficient arithmetics
and fulfilling the security requirements 3.2. Section 4
details how we built the generator of the elliptic curve
subgroup used aiming at performance gains. Sec-
tion 5 provides the performance results and summa-
rizes the expected intrinsic security properties against
physical attacks. Some concluding remarks and per-
spectives are finally provided in the last section of this
paper.

2 OPTIMAL FINITE BINARY
FIELDS

The first step for generating a new set of elliptic
curves for cryptography is to build “friendly” (i.e. for
which calculations can be done rapidly) finite fields
with an optimal arithmetic (i.e. for which some cal-
culation “tricks” can be used for fast and compact im-
plementations) for the targeted IoT devices. Arith-
metics over elliptic curves depend on the representa-
tion of the base finite field which in turn depends on
the choice of the modulus, represented under a poly-
nomial form, used to define the finite field.

1Lq(a) = ec log(q)a log log(q)1−a

A choice usually made for polynomials in binary
fields F2n is a trinomial or a pentanomial of the type:

p(x) = xn + xa +1, n > a > 0

p(x) = xn + xa + xb + xc +1, n > a > b > c > 0

As suggested in (Scott, 2007), the construction of
the binary field is important for the efficiency of the
implementation and this depends on the architecture
used. Let w be the length in terms of bits of the reg-
isters of the targeted architecture, Scott then defines a
Lucky Trinomial with n−a≡ 0 mod w; a Lucky Pen-
tanomial with n− a ≡ 0 mod w, n− b ≡ 0 mod w
and n− c ≡ 0 mod w; and a Fortunate Pentanomial
such that at least two of these equations are verified
: n− a ≡ 0 mod w, n− b ≡ 0 mod w and n− c ≡ 0
mod w.

With a simple script in Sage (The Sage Develop-
ers, 2017) we searched all lucky trinomials and pen-
tanomials for fields of bit lengths between 163 and
571: we found only 6 lucky trinomials compliant with
a 32-bit architecture (except for F2257 kept as an inter-
mediate field between F2223 and F2313 ). As for pen-
tanomials fitted for 32-bit architectures, we have a
larger number of them over several finite fields. We
also realised that most of those polynomials would
also be compatible with 64-bit platforms, except for
the trinomials of F2479 and F2521 . So we did the ad-
ditional effort of looking for polynomials compatible
with 64-bit data widths for the latter levels of secu-
rity, hence the two additional pentanomials in F2487

and F2569 . The list of generated polynomials is as fol-
lows:

F2223 : x223 + x159 +1

F2257 : x257 + x65 +1

F2313 : x313 + x121 +1

F2431 : x431 + x303 + x239 + x111 +1

F2479 : x479 + x255 +1

F2487 : x487 + x295 + x167 + x39 +1

F2521 : x521 + x489 +1

F2569 : x569 + x441 + x313 + x121 +1

3 BINARY EDWARDS CURVES

Among the recently proposed models of elliptic
curves for cryptography, Binary Edwards Curves
(BEC) exhibit several interesting properties for IoT
applications. First, these curves favour implementa-
tions that will be intrinsically safe against a set of
side channel and fault attacks (see Section 5). Sec-
ond, these curves allow an efficient arithmetic when
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using the correct coordinates’ representations and fast
arithmetics in binary fields.

In (Edwards, 2007), Harold Edwards introduced a
new model for elliptic curves allowing efficient com-
putations with a complete group law. In (Bernstein
et al., 2008) (Bernstein, 2009), Bernstein et al. con-
structed an equivalent to Edwards curves onto binary
fields.

Definition 1. Binary Edwards Curves (BEC): Let K
be a field of characteristic 2 and let d1,d2 ∈ K with
d1 6= 0 and d2 6= d2

1 +d1. The Binary Edwards Curve,
with coefficients d1 and d2, is the affine equation:

Ed1,d2 : d1(x+y)+d2(x2+y2) = xy+xy(x+y)+x2y2

This curve is symmetric and we have ∀P ∈ E(K),P =
(x,y)⇒−P = (y,x). We define the neutral point of
the group law by (0,0).
Definition 2. Projective Closure: The projective clo-
sure of the BEC Ed1,d2 is:

d1(X +Y )Z3 +d2(X2 +Y 2)Z2 = XY Z2 +XY (X +Y )Z +X2Y 2

The last important aspect of this construction is that
each BEC is birationally equivalent to a Weierstrass
form.

3.1 Arithmetics on BEC

There are special cases where the arithmetics asso-
ciated with the BEC can be optimised. For the case
where d1 = d2 we have the following equation for a
BEC:

d(x+ y+ x2 + y2) = xy+ xy(x+ y)+ x2y2 (1)

with the condition @t ∈ K ⇒ d = t2 + t. In the fol-
lowing sections, we consider this particular case of
BECs.
Addition and Doubling: Efficient arithmetics on el-
liptic curves depend on the choice for the coordinates’
representation. In the case of BECs, the projective w-
coordinate with differential additions and doublings
(Bernstein et al., 2008) is the fastest way for doing
points addition and point doubling. The idea of the
differential w-coordinate is to represent a point P(x,y)
of the curve by w(P) = x+y. This kind of coordinates
is well suited for implementing the Montgomery lad-
der (Joye and Yen, 2002) to compute the exponenti-
ation of a point. The Montgomery ladder computes
w(kP) and w(kP + P) with an addition and a dou-
bling at each step. For the addition and doubling
we use a scalar w1 = w(Q−P) which is constant at
each step of the ladder. Using the Co-Z trick (Kim
et al., 2014)(Koziel et al., 2015) yields Algorithm 1
for adding and doubling operations taking 5 multipli-
cations, 4 squares and 1 multiplication by d.

Algorithm 1: w-coordinates Adding and Doubling revisited
with the Co-Z trick.

Require: W2,W3,Z, 1
w1

1: C← (W2 +W3)
2

2: D← Z2

3: E← 1
w1

C
4: U ← E +C
5: V ← E +D
6: S← (W2(Z +W2))

2

7: T ← S+dD2

8: W4←UT
9: W5←V S

10: Z′←V T
11: return W4,W5,Z′

3.2 Generating Secure BECs

We implemented methods and tools to generate and
propose a set of BECs with different field sizes for
different security levels in order to match a targeted
device’s requirements and the best security/efficiency
(power and performance) trade-offs for a minimum
security level of 128 bits. In (Bernstein, 2009) the au-
thors also enumerate the following security require-
ments for a BEC (and ECC in general):

• Prime degree of the finite field extension: A large
prime degree has to be chosen due to the birth-
day paradox and has to provide a sufficient level
security (Gaudry et al., 2002).

• Number of points: The curve E shall have a cardi-
nal of 2c p where p is a large prime and c shall be
small (1, 2 or 3).

• Number of points on the Twist: We have the same
requirement on the number of points of the twist
of the curve E in order to ensure resistance against
some fault attacks on the original curve.

• j-invariant: The j-invariant of the BEC, 1/d8,
shall generate the extension field.

• Avoiding small discriminants: The discriminant
∆E = Tr(E)2 − 4q shall be divisible by a large
prime exactly once.

• Avoiding pairing attack: The multiplicative order
k of 2m modulo the large prime of |E| shall be
large. We have the same condition with the prime
of the twist. We used an embedding degree greater
than l−1

100 as proposed in (Brainpool, 2005).

Based on these requirements, we can check, for
each d, if a given curve is secure. We implemented
the AGM method (Cohen et al., 2006) to perform
the point counting. Moreover, to avoid counting the
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Table 1: Performances of a kP operation without countermeasures over new BECs on a RISC-V processor at 100 MHz.

Curves w-coor., optimal generator w-coor., random generator proj. coor., random generator

BEC223 32 ms 39 ms 137 ms

BEC257 46 ms 57 ms 201 ms

BEC313 79 ms 96 ms 342 ms

BEC431 188 ms 231 ms 821 ms

BEC479 242 ms 299 ms 1064 ms

BEC487 264 ms 326 ms 1156 ms

BEC521 316 ms 390 ms 1388 ms

BEC569 396 ms 489 ms 1744 ms

Table 2: SCA and Fault Attacks against BEC-based ECC.

Physical Attacks
Intrinsic Resistance Remaining vulnerability

Due to choice of parameters of
BEC

Due to implementation done Additional countermeasure im-
plemented

Timming Attack (Kocher, 1996) Unified arithmetics Use of Montgomery ladder -
SPA (Fan et al., 2010b) Constant time programming

DPA (Kocher et al., 1999) - - Randomization

Template Attack (Herbst and Med-
wed, 2008)

of coordinates (Coron, 1999)

Relative Doubling Attack (Yen
et al., 2005)

- - Blinded scalar (Coron, 1999)

RPA/ZPA (Akishita and Takagi,
2003)

w-coordinates arithmetics Direct implementation of the gener-
ator

-

Carry-based Attack (Fouque et al.,
2008b)

Binary curves chosen - -

Horizontal Attack (Clavier et al.,
2010)

- - Attack model to be tested

Safe error (Fan et al., 2010b) - Use of Montgomery ladder -
Invalid point analysis (Biehl et al.,
2000)

- - Verify that point in on the curve

Invalid curve analysis (Ciet and
Joye, 2005)

Curves’ parameters on Twist for eg Direct implementation of curve pa-
rameter

-

Twist Attack (Fouque et al., 2008a) Curves’ parameter for Twist - -
Differential Fault Attack (Biehl
et al., 2000)

- - Blinded scalar (Coron, 1999)

number of points on the twist, we use the relation-
ship between a curve E and its twist Etw such that
|E|+ |Etw|= 2q+2 to determine the number of points
on the twist. We implemented this curve generation
algorithm in C language and based on the FLINT li-
brary (FLINT, 2015). Curves with different sizes have
been generated as given in Appendix (parameters for
m = 223 and m = 569 have been removed due to page
limitations).

4 OPTIMAL GROUP
GENERATOR

In our case we have curves with a number of points
n = 2c p with c = 1,2 or 3 and p a large prime. So, we

look for a point of the curve of order p. In the “Add
and Double” formula of the BEC (Algorithm 1) we
have a multiplication by the scalar 1

w1
which is con-

stant due to the property of the Montgomery Ladder.
We hence looked for a generator G with a 1

w(G) hav-
ing a small Hamming Weight, hence saving 1 multi-
plication for each addition and doubling step. If we
consider w = x+ y, then from the equation 1 we have
a new equation of BEC:

d(w+w2) = x4 +(1+w+w2)x2 +(w+w2)x (2)

So, once we choose an inverse of w with a small Ham-
ming Weight, we can calculate the x coordinate of
G from the equation 2 and its y coordinate from the
equation 1.
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5 PERFORMANCES & SECURITY

We implemented this new set of elliptic curves on a
RISC V core running at 100 MHz. No special instruc-
tion has been added to the RISC V. We implemented
the differential w-coordinates system with two cases,
one with the optimized generator and the other with
a random generator. We added the projective coor-
dinates system for an interesting comparison and to
show how the w-coordinates could be useful. For the
finite field multiplication in GF(2n) we use a López-
Dahab multiplication (Aranha et al., 2010). The expo-
nentiation computation is performed by using a Pow-
ering Montgomery Ladder (Joye and Yen, 2002). All
functions for the finite field arithmetics are written
in Assembly Language and functions for ECC arith-
metics in C language. The performances are given in
Table 1. These performances are for a computation of
kP without additional countermeasures (we are theo-
retically secure against against a set of side channel
attacks and fault attacks). We can compare with per-
formances of MbedTLS on an ARM M3 running at
96MHZ presented in (Tschofenig et al., 2015) (one of
the rare public data available). For a security level of
128 bits, an ECDSA signature (where the main oper-
ation is the kP operation) takes 122 ms with the stan-
dard secp256r1 curve, which is to be compared to 46
ms (for the kP operation) in our case. Note that the
performances in (Tschofenig et al., 2015) are given
for a sliding window implementation, which is still
vulnerable to side channel and fault attacks. Table 2
summarizes the theoretical advantages of the BEC
model with respect to Side Channel Attacks (SCA)
and Fault Attacks (FA). We hard-coded the d parame-
ter of the curve and the 1

w parameter of the point gen-
erator to avoid any attack of invalid curve analysis and
invalid point analysis.

6 CONCLUSION

In this paper, we propose a new set of BECs which
might be efficient, secure and low power alternatives
for implementing ECC in IoT devices. The optimiza-
tion of the w-coordinate of the point generator al-
lows a speed up if these coordinates are used with
the Montgomery Ladder. This new set of curves cov-
ers different security levels to offer the possibility of
making the best trade-off between security and exe-
cution time, bearing in mind that those BECs have
some intrinsic protections against a set of side chan-
nel and fault attacks. Future work will consist in
validating the expected “physical security” properties
in practice. As the BEC model allows a complete

compliance with the Weierstrass model, we shall also
study how the use of BEC curves can be compliant,
in practice, with already deployed implementations of
ECDSA on Weierstrass curves. We shall also work on
the implementation of a dedicated hardware accelera-
tor in order to take advantage of the carry-less opera-
tions.
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APPENDIX
m is the size of the extension of F2
f is the modulus defining the representation of the

finite field
d is the parameter of the curve in BEC form,

equation 1
Gx, Gy and G1/w are the coordinates of a friendly (32-bit) generator

with G1/w = 1
w where w = Gx +Gy

n is the number of points of the curve
p is the prime order of the sub-group generated by G
h is the cofactor = 4

m = 257; f = x257 + x65 +1; d = t65 + t31 + t14 +1
Gx = 16b46e24aa4b12ab2289fcd3417615387810f083f43419d8c

ae38ad9ac640d960
Gy = 16b46e24aa4b12aba289fcd3417615383810f083f43419d8e

ae38ad9ac640d968
G1/w = 1000000000000000000000000000000000000

000000000000
n = 231584178474632390847141970017375815706332616967

362709021140632923291797618908
p = 578960446186580977117854925043439539265831542418

40677255285158230822949404727

m = 313; f = x313 + x121 +1; d = t38 + t33 + t28 +1
Gx = 15c67e3024c7c27466e72a3391256e9a729fc158092053d89

087c0f38408b214b0ade57363ea938
Gy = 15c67e3024c7c27446e72a3391256e9a529fc158092053d8b

087c0f38408b214b0ade57363ea938
G1/w = 10000000000000001

n = 166873987181321100187111070794496258953336290808
16145622654549217988600018895406224309766337212

p = 417184967953302750467777676986240647383340727020
4036405663637304497150004723851556077441584303

m = 431; f = x431 + x303 + x239 + x111 +1; d = t83 + t66 + t17 +1
Gx = 4e1765c1f2f6140db17d5ef2f14c59a38a93e5b65ba9acca54

7bf2cc34f3d55bd85ccf4daeaf7ca1becaa8ee877b01f8d8ac
ae12b210

Gy = 4e1765c1f2f6140d317d5ef2f14c59a30a93e5b65ba9acca54
7bf2cc34f3d55b585ccf4daeaf7ca13ecaa8ee877b01f8d8ac
ae12b210

G1/w = 10000000000000001
n = 554533938824162971915682836828616740687287415075

163315034095916131188222853620417205051641025857
5498003250039698819164222488620692

p = 138633484706040742978920709207154185171821853768
790828758523979032797055713405104301262910256464
3874500812509924704791055622155173

m = 479; f = x479 + x255 +1; d = t73 + t29 + t3 +1
Gx = 7bdd9f19e11e888e80d7c093092d208b4fe996e8fcbdffa28c

c90173ece2c43673f1372e975ba9dcd3a06332abf15dbe9b67
9f6c63e30b884ab93272

Gy = 3bdd9f19a11e888e40d7c093492d208b8fe996e8bcbdffa24c
c90173ece2c436f3f1372e175ba9dc53a063322bf15dbe1b67
9f6ce3e30b88cab93272

G1/w = 10000000000000001
n = 1560874275157996115690798614896583152874299071332

4855754295784798126858694154480197179544588188676
30469346980324113959778896164309795945994558356

p = 3902185687894990289226996537241457882185747678331
2139385739461995317146735386200492948861470471690
7617336745081028489944724041077448986498639589

m = 487; f = x487 + x295 + x167 + x39 +1; d = t69 + t33 + t15 +1
Gx = 339b843c53c409543f396d39e57efde813f06e3099735004b

999b15776a75a4c3a22dcaf1e91e261fe479b89a64d651039
28195d727bd3d157735b2071

Gy = 339b843c53c40954bf396d39e57efde893f06e30997350043
999b15776a75a4c3a22dcaf1e91e261fe479b89a64d6510b9
28195d727bd3d1d7735b2071

G1/w = 10000000000000001
n = 3995838144404470056168444454135252871358205622611

1630730997209083204758260181862138226693854521544
4668253454986755337077661569719769645413325977844

p = 9989595361011175140421111135338132178395514056527
9076827493022708011895650454655345566734636303861
167063363746688834269415392429942411353331494461
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m = 521; f = x521 + x489 +1; d = t66 + t29 + t28 +1
Gx = 16b369b497b805e6199a342909aa4608cdcecb10e0988ba73

eb1f1186039c8b1f6d2a9db39b1302d29d9d449b9aa459cc5
d6bbb4e33a1eb8fcc056ce724cde5aaa8

Gy = 16b369b4b7b805e6199a342909aa4608cdcecb10e0988ba73
eb1f1186039c8b1f6d2a9db39b1302d29d9d449b9aa459cc5
d6bbb4e33a1eb8fcc056ce724cde5aaa8

G1/w = 100000001
n = 686479766013060971498190079908139321726943530014

330540939446345918554318339765708943950328983162
243962653943419778613112216264068985797800513224
0328602782204

p = 171619941503265242874547519977034830431735882503
582635234861586479638579584941427235987582245790
560990663485854944653278054066017246449450128306
0082150695551
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