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1 RESEARCH PROBLEM

Software systems form an integral part of the most
complex artifacts built by humans, and we have be-
come totally dependent on these complex software ar-
tifacts (van der Aalst, 2015). Communication, health-
care, education and government all rely on software
systems that take over more and more duties. Modern
enterprises continue to invest in the creation, main-
tenance and change of complex software systems.
However, numerous software projects still experience
significant problems. Moreover, the complexity of
modern software containing millions of lines of codes
and thousands of dependencies among components is
extremely high (Rubin et al., 2014), (Liu et al., 2016),
(Liu et al., 2018c), (Liu et al., 2018d). This complex-
ity makes it difficult to understand, maintain, evolve,
improve, and etc.

During the execution of software systems, many
crashes and exceptions may occur, and it is a real chal-
lenge to understand how a software system is behav-
ing. By exploiting the data recorded during the execu-
tion of software systems, one can discover behavioral
models to describe the actual execution of software.
The discovered behavioral models provide extensive
insights into the real usage of software, enable new
forms of model-based testing and improvements. Re-
playing execution data on such models helps to lo-
calize performance problems and architectural chal-
lenges.

To help understanding the runtime behavior of
a software system, we aim to discover an architec-
tural model from the execution data. An architectural
model typically structures a software system in terms
of components, interfaces and interactions. Generally
speaking, our research aims to answer the following
questions:

• How does the software system behave at run-
time?

– How many components are involved during the
execution of the software system and how they
really behave?

– How many interfaces does a component contain
and do they adhere to a typical (pre-defined) be-
havioral contract?

– How do components interact with each other
during execution?

– What does the architectural model discovered
from the execution data look like?

• How is the quality of the architectural model that
we discovered from the execution data? Does it
conform to the reality (i.e., execution data)?

2 OUTLINE OF OBJECTIVES

To answer the research questions, our research aims
to target the following challenges:

• Challenge 1: propose automated approaches to
discover architectural model from software exe-
cution data.

– Challenge 1.1: propose a standardized format
for software execution data exchange.

– Challenge 1.2: propose effective approaches to
support the component identification and be-
havioral model discovery.

– Challenge 1.3: propose effective approaches to
support the interface identification and contract
model discovery.

– Challenge 1.4: propose effective approaches to
support the discovery of architectural models.

• Challenge 2: propose effective approaches to sup-
port conformance checking based on the discov-
ered architectural model and execution data.

• Challenge 3: evaluate and validate the applicabil-
ity and effectiveness of the previous approaches
using real-life software cases.
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3 STATE OF THE ART

In this section, we briefly review the state-of-the-art
from the following three perspectives: (1) software
dynamic analysis; (2) software process mining; and
(3) software architecture reconstruction.

3.1 Software Dynamic Analysis

Software dynamic analysis is used to understand
the behavior of software by exploiting its execution
data. Several techniques and tools have been pre-
sented to extract information from running software.
Most existing approaches, such as (Lo et al., 2009)
and (Walkinshaw and Bogdanov, 2008), generate
automaton-based models using different variants of
the K-Tail algorithm which was first defined by Bier-
mann and Feldman (Biermann and Feldman, 1972).
However, these techniques cannot discover concur-
rency explicitly, resulting in a so-called state explo-
sion for complex models. Although automaton-based
models are popular in software analysis, there are sev-
eral other techniques to learn other types of models.
For example, some techniques visualize software ex-
ecution traces as sequence diagrams (McGavin et al.,
2006) and some of them are extended with loops
(Briand et al., 2006). Similar to automaton based
models, the (classic) sequence diagram-based mod-
els also lack concurrency description. Moreover, each
sequence diagram or automaton-based model only
describes the behavior of a single execution trace.
Given software execution data referring to thousands
of traces, these existing approaches will obtain an ex-
cessive number of behavioral models rather than a
compact model for the whole data. In addition, con-
sidering the hierarchical nature of software, the dis-
covered flat sequence diagrams or flat automation-
based models cannot accurately capture the real be-
havior in a meaningful way.

3.2 Software Process Mining

With the development of process mining (van der
Aalst, 2016) on the one hand, and the growing avail-
ability of software execution data on the other hand, a
new form of software analytics comes into reach, i.e.,
applying process mining techniques to analyze soft-
ware execution data. This inter-disciplinary research
area is called Software Process Mining (SPM) (Liu
et al., 2016), (Rubin et al., 2007), and aims to analyze
software execution data from a process-oriented per-
spective. One of the first papers addressing SPM is
(van der Aalst et al., 2015). For the mining of soft-
ware systems, the recorded events explicitly refer to

parts of the system (components, services, etc.). Ref-
erences to system parts facilitate the generation of lo-
calized event logs. A generic process discovery ap-
proach is proposed based on such localized event logs.
Experimental results show that location information
indeed helps to improve the quality of the discovered
models.

Leemans and van der Aalst (Leemans and van der
Aalst, 2015) discover and analyze the operational pro-
cesses of software systems using process mining tech-
niques. They propose to discover flat behavioral mod-
els using Inductive Miner (Leemans et al., 2013). By
taking full consideration of component-based archi-
tecture and hierarchical structure of a software sys-
tem, Liu et al. (Liu et al., 2016) propose to dis-
cover a hierarchical behavioral model for each com-
ponent. The discovered component model describes
the software behavior from the perspective of indi-
vidual component. However, this work neglects the
functions (interfaces) that each component provides
to other components as well as the interaction among
components.

3.3 Software Architecture
Reconstruction

Software architecture reconstruction aims to abstract,
identify, and present high-level views from low-level
data to help understanding software. The recovered
architectural views play a pivotal role in software un-
derstanding, reuse, evolution, maintenance, etc. (Gar-
lan, 2000), (Stéphane and Damien, 2009). Crnkovic
et al. (Ivica et al., 2011) discuss fundamental prin-
ciples of software architectural models and compare
a large number of existing architectural models, such
as Enterprise JavaBeans, Microsoft Component Ob-
ject Model and CORBA Component Model.

For software systems that are implemented by
object-oriented technology, a component is composed
of a set of classes and an interface is composed of a
set of methods. Various clustering-based techniques
are proposed to identify components based on dif-
ferent criteria such as coupling, cohesion and mod-
ularity. According to the required input, these ap-
proaches can be classified as development documents
based approaches (e.g., (Lee et al., 2001), (Kim and
Chang, 2004), (Chang et al., 2005), (Hashemine-
jad and Jalili, 2015)), source code based approaches
(e.g., (Washizaki and Fukazawa, 2005), (Kebir et al.,
2012a), (Kebir et al., 2012b), (Cui and Chae, 2011),
(Luo et al., 2004), (Chiricota et al., 2003), (Man-
coridis et al., 1999) ), and execution data based ap-
proaches (e.g., (Qin et al., 2009), (Allier et al., 2009),
(Allier et al., 2010)). A common drawback of many
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Figure 1: Research Overview.

of these approaches is the lack of tool support which
hinders their applicability.

As for interface identification, Simon et al. (Allier
et al., 2011) propose to identify interfaces by group-
ing methods of the same class, i.e., one interface for
each class if this class has methods that are used by
other components. Hence, this approach defines inter-
faces based on the internal structure of components.
Seriai et al. (Seriai et al., 2014) give an approach to
identify interfaces of a component by grouping meth-
ods that are called by another component. Methods
that are used by the same component(s) are grouped
as an interface. Hence, this approach leads to dif-
ferent components using a single interface regard-
less of the functions they need. With respect to ar-
chitectural model reconstruction, Simon et al. (Al-
lier et al., 2011) propose to discover an architectural
model from source code to help understand the be-
havior of a software system. The components are ex-
tracted as a set of classes and interfaces are identified
by grouping methods of same classes and the interac-
tions among components are represented by binding
interfaces in a static way. Differently, Seriai et al.
(Seriai et al., 2014) also presents an approach to dis-
cover architectural model from source code whereas
interfaces of a component are identified by grouping
methods that are called by the same component.

By taking execution data as input, Dragomir and

Lichter (Dragomir and Lichter, 2013) try to present an
architectural description by visualizing object-level
interactions based on sequence diagrams. However,
object-level information are too fine-grained and not
understandable for large-scale software. In addition,
the interactions among components are also repre-
sented by simply binding interfaces in a static manner,
which neglects the behavioral aspects.

4 METHODOLOGY

Figure 1 gives an overview of our methodology, based
on which we describe the approaches adopted in the
research. Generally speaking, we start from the in-
strumentation and standardization of software execu-
tion data (see 1 in Fig. 1). By taking the standard-
ized execution data as input, we identify components
and discover component behavioral models as shown
in Fig. 1 2 . Then, we identify interfaces and dis-
cover interface contract models for each component
as shown in Fig. 1 3 . Next, the architectural model
can be discovered as shown in Fig. 1 4 . Finally,
we evaluate the conformance between the architec-
tural model and the execution data (see 5 in Fig. 1).

Software Architectural Model Discovery from Execution Data
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4.1 Standardization of Software
Execution Data

The input of our research is software execution data,
which can be obtained by instrumenting and monitor-
ing real software execution. The software execution
data consist of method calls. Normally, a method call
records software-specific information, including the
method name, the class name, the object that invokes
this method, the package name, the line number of
the method, the input parameter types and values of
the method, the start time (in nanosecond precision),
complete time (in nanosecond precision), the caller
method name, the caller class name, the caller object,
the caller package name and etc.

To the best of our knowledge, there is no standard-
ization of software execution data which supports re-
producibility and shareability of existing research re-
sults. The XES standard (Verbeek et al., 2011) de-
fines a grammar for a tag-based language whose aim
is to provide designers of information systems with
a unified and extensible methodology for capturing
systems behaviors by means of event logs and event
streams. It is supported by XES Working Group1. To
provide a unified format for software execution data
exchange, we introduce a standardized XES-based
extension, i.e., Software Event Extension.

The software extension defines the called class
name, the called package name, the line number of
the called method, the input parameter types and val-
ues of the called method, the caller method name, the
caller class name, the caller object, the caller package
name, and the timestamp for software events within
a log. For more detailed information, please refer to
(Leemans and Liu, 2017).

4.2 Component Identification and
Behavioral Model Discovery

Generally speaking, the identification of components
from software execution data is based on clustering
classes (Liu et al., 2018a). To understand the behav-
ior of each component, we propose to discover a be-
havioral model per component using process mining
techniques.
• Component Identification.

– Step 1: Class Interaction Graph Construction.
Starting from the software execution data, we
propose to construct a class interaction graph
(CIG). In the CIG, each node represents a class
and each edge represents the calling relation
among the connected two classes.

1http://www.win.tue.nl/ieeetfpm/doku.php

– Step 2: Component Identification from Class
Interaction Graph. By taking the constructed
CIG as input, we partition it into a set of sub-
graphs using community detection algorithms
(e.g., Newman’s algorithm (Newman, 2006)).
Classes that are grouped in the same cluster nat-
urally form a component, known as component
configuration.

– Step 3: Quality Evaluation of the Identified
Components. After identifying a set of com-
ponents, we want to evaluate the quality of the
identified components. Several quality metrics,
e.g., size, cohension, coupling, and modularity,
will be evaluated.

• Component Behavioral Model Discovery.
– Step 1: Component Instance Identification.

Starting from the original software execution
data, we first propose a novel approach to iden-
tify component instance. It serves as the ba-
sic case notion to generate a software event log
for each component. Here, a component in-
stance refers to one independent run of a soft-
ware component.

– Step 2: Hierarchical Software Event Log
Construction. Because a software (component)
usually has a hierarchical structure represented
as multi-level nested method calls, the discov-
ered behavioral model should depict this hier-
archy nature. For each component, we recur-
sively transform its event log to a hierarchical
one using calling relations among methods.

– Step 3: Component Behavioral Model Dis-
covery using Process Mining. For each com-
ponent, we discover a hierarchical behavioral
model from its corresponding hierarchial soft-
ware event log. Given the hierarchy of a
software event log, we only need to traverse
through different levels of the log and discover
a process model for each sub-log. Note that
we can use any existing process discovery ap-
proach (e.g., Inductive Miner (Leemans et al.,
2013)) in this step.

4.3 Interface Identification and
Contract Model Discovery

Starting from the software execution data and com-
ponent configuration, we propose to first identify a
set of interfaces for each component by clustering its
methods (Liu et al., 2018b). Normally, when an in-
terface is used by a component, the execution of its
methods should follow a specific contract. This con-
tract defines the behavior of the interface by explic-
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itly specifying in which order the methods should be
invoked. Therefore, for each identified interface, we
then discover a behavioral model to represent the ac-
tual behavior using process mining techniques.
• Component Interface Identification.

– Step 1: Candidate Interface Identification.
For each component, we identify a set of can-
didate interfaces by grouping methods with re-
spect to their caller methods. Note that identi-
fied candidate interfaces may have duplication
problem, i.e., some methods may be included
in different interfaces.

– Step 2: Similar Interface Candidate Merge.
To solve the method duplication problem
among candidate interfaces within the same
component, we merge similar candidates in
a way such that the overlap of shared meth-
ods among interfaces is limited to a reasonable
range.

– Step 3: Quality Evaluation of the Identified
Interfaces. After identifying interfaces of each
component, we want to evaluate the functional
consistency of each interface.

• Interface Contract Model Discovery.
– Step 1: Interface Event Log Construction.

To enable the discovery of interface contract
model using process mining techniques, we ob-
tain the event log from the software execution
data for each identified interface.

– Step 2: Interface Contract Model Discovery
using Process Mining. For each interface, we
discover a contract model using existing pro-
cess mining techniques (e.g., Inductive Miner
(Leemans et al., 2013)).

4.4 Formal Specification and Discovery
of Software Architectural Model

After identifying components and interfaces (as well
as their behavioral models), we then try to recover
the architectural model of software. The architec-
tural model is composed of components, interfaces
and interactions. A component can interact with other
components by interaction methods (or interfaces).
Each interaction is described by an interaction model
that contains a connector behavioral model (a process
model describing the behavior of the invoked inter-
faces) and the interface instance cardinality informa-
tion. It can be discovered by performing the following
steps:
• Interaction Method Identification. An interac-

tion method is a method of an interface that can in-
voke methods (or interfaces) of other components.

It can be detected directly from the software exe-
cution data.

• Connector Behavioral Discovery. For each in-
teraction method, we first generate its interaction
log where each event refers to an interface. A con-
nector behavioral model can be discovered from
this interaction log.

• Interface Instance Cardinality Identification.
Interface instance cardinality information reveals
the instance level relationships between the inter-
action method and the invoked interfaces. The
cardinality information for each interface can be
obtained by investigating the number of inter-
face instances that is invoked by the interaction
method.

• Multi-view Architectural Models. Besides a de-
tailed architectural view with interface protocol
model, cardinality information and connector be-
havioral model, we provide multiple views to al-
low users navigate from fined-grained architec-
tural models to coarse-grained ones.

4.5 Conformance Checking based
Architectural Model Quality
Evaluation

In this section, we propose to evaluate the quality of
the discovered architectural model with respect to the
execution data. Conformance checking based qual-
ity evaluation measures the fitness of the architectural
model against the execution data. It involves the fol-
lowing steps:

• Mapping Execution Data to Architectural El-
ements. Given software execution data and an
architectural model, we first create the mapping
from method calls in the execution data to ar-
chitectural elements (e.g., interface, interaction
model) in the architectural model.

• Compute Alignment between Software Exe-
cution Data and Architectural Model. Based
on the mapping, we compute the alignment be-
tween software execution data and the architec-
tural model.

• Measure the Fitness Between Software Execu-
tion Data and Architectural Model. Based on
the computed alignment between the software ex-
ecution data and an architectural model, we com-
pute the fitness of the architectural model with re-
spect the execution data. It reveals how well the
architectural model fits the execution data.

Software Architectural Model Discovery from Execution Data
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Table 1: Stage of The Research.

Stage Period Description

Stage 1 2015-08 ∼ 2016-12 (1) Standardize software execution data; and
(2) Component identification and behavioral model discovery.

Stage 2 2017-01 ∼ 2018-03 (1) Interface identification and contract behavior discovery; and
(2) Formal specification and discovery of architectural model.

Stage 3 2018-04 ∼ 2019-07
(1) Conformation checking based architectural model evaluation;
(2) Empirical evaluation using real-life software systems; and
(3) Finish the Ph.D thesis.

4.6 Empirical Evaluation using
Real-life Software Systems

Based on open-source software systems and their ex-
ecution data (e.g., JUnit 3.72, JGraphx3, JHotdraw4),
we perform a comprehensive empirical evaluation of
all proposed approaches. In addition, we also plan to
contribute some real-life case studies where the feed-
back from stateholders are available. The evaluation
should involve the following aspects:

• For component identification, we evaluate the co-
hesion and coupling metrics for different com-
munity detection or graph clustering algorithms (
e.g., (Qin et al., 2009), (Allier et al., 2009), (Allier
et al., 2010)).

• For interface identification, we compare our ap-
proach with existing interface identification ap-
proaches (e.g., (Allier et al., 2011) (Seriai et al.,
2014)).

• For architectural model discovery, we evaluate
our approach that combining different compo-
nent/interface identification strategies. In addi-
tion, we also compare our discovered architec-
tural model with existing ones if possible (e.g.,
(Dragomir and Lichter, 2013)).

5 EXPECTED OUTCOME

This section describes in detail the expected outcome
of our research. It includes the following:

• An XES-based software extension to support the
standardization of software execution data.

• An extensible framework to support the identifica-
tion of components from software execution data.
This framework should implement various com-
munity and clustering algorithms.

2http://essere.disco.unimib.it/svn/DPB/JUnit%20v3.7/
3https://github.com/jgraph/jgraphx
4http://www.inf.fu-berlin.de/lehre/WS99/java/swing/JHotDraw5.1/

• A process mining based approach to discover hi-
erarchical behavioral models for each identified
component.

• An extensible framework to support the interface
identification. This framework should implement
various of interface identification strategies.

• A process mining based approach to discover con-
tract models for each identified interface.

• An effective approach to support the discovery of
multi-view architectural models from software ex-
ecution.

• An effective approach to support conformance
checking between the discovered architectural
model and software execution Data.

• A set of user-friendly software tools that support
the previous techniques.

6 STAGE OF THE RESEARCH

This research is fully supported by the NIRICT
3TU.BSR (Big Software on the Run) research project5.
This high-profile project is a collaboration between 3
universities, 6 research groups. It starts from August
1, 2015 and runs four years until July, 2019. My role
in the project is mainly on creating more abstract rep-
resentations of the massive amounts of software event
data. We aim to develop techniques for generating
models and visualizations showing what is really go-
ing on in a software system or collection of systems.
Generally, we organize the whole research into three
stages, as shown in Table 4.4.
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