
Dynamic Cloud-based Vehicle Apps 
Information Logistics in Disaster Response  

Oleg Gusikhin1, Ayush Shah1, Omar Makke1, Alexander Smirnov2 and Nikolay Shilov2 
Research and Advanced Engineering, Ford Motor Company, 20300 Rotunda Drive, 48121, Dearborn, Michigan, U.S.A. 

2SPIIRAS, 39, 14 Line, 199178, St.Petersburg, Russia 

Keywords: Disaster Response, Dynamic Vehicle Applications, Disaster Ontology, Connected Vehicle. 

Abstract: The efficient management of transportation networks during disruptions caused by manmade accidents or 
natural disasters is a major attribute of the Resilient Smart City Transportation.  There have been extensive 
research and development towards intelligent automatic disaster response systems. The majority of the 
proposed systems provide information logistics to the response team. In general, motorists caught in the 
disaster area typically tend to “go with the flow” or operate in an unorganized manner that may hamper the 
emergency response efforts. Connected vehicle technology and interactive vehicle applications enable the 
possibility to provide personalized information to individual motorists. This paper proposes the concept of 
dynamic vehicle applications integrated with cloud-based intelligent disaster response command and control 
system to facilitate evacuation, personalized routing, volunteering, and information gathering. The 
intelligent back end extends the knowledge based disaster response system for professional responders to 
automatically generate the guidance for the individual participant. The proposed dynamic vehicle 
applications leverage open source SmartDeviceLink interface and Node.js. 

1 INTRODUCTION 

Information Logistics is one of the crucial aspects 
of an efficient and effective evacuation and 
disaster response efforts.  Information logistics is a 
field of business information systems that are 
focused on the concepts, methods and tools to 
provide the right information at the right time, in 
the right quality, in the right format and at the right 
place to the right actors (Smirnov et al. 2005b, 
Sandkuhl, K., 2008).  

In the past two decades there have been 
significant R&D activities to address centralized 
control and coordination of disaster response 
activities resulting in the development of next 
generation command and control systems (e.g., 
Chaudhury et al., 2012). The majority of such 
Command and Control (C&C) systems target the 
support of professional responders. There has not 
been as much progress in the development of the 
efficient information logistics infrastructure for 
general population, specifically information 
logistics to the motorists caught in the disaster 
area.  

The emergence of connected vehicles 
technologies enables to integrate the individual 
motorists with the C&C to further improve the 
efficiency of the disaster response. Such 
information logistics allow the increase of the 
evacuation efficiency by taking into account the 
attributes of individual vehicles, provide methods 
to receive automatic reports about the conditions of 
the road and surrounding area in the given 
location, and even incorporate volunteers into 
certain disaster response efforts.     

Connected vehicles technologies can 
personalize evacuation, e.g. four-wheel drive truck 
or SUV may take certain shortcuts during an 
evacuation that may be inaccessible to front wheel 
sedans and sports vehicles. The evacuation route 
may also be affected by the available fuel, electric 
vehicle battery charge, and the availability of 
refueling and recharging options on the possible 
evacuation routes  

In some situations, supporting certain areas is 
constraint by the availability of resources and the 
ease of accessibility of the areas. However, in 
many cases, the affected people do not strictly 
need professional assistance in order to resolve 
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their challenges, e.g., transportation from the 
disaster area, starting a vehicle with battery failure, 
or pulling a vehicle out of a gutter. In these cases, 
the participation of volunteers can fill the gaps, 
assuming these volunteers have access to the 
proper information and coordinate properly. This 
reduces the demand for professional rescuers who 
can concentrate on more critical locations. 
Nevertheless, the volunteers are usually 
unorganized, and in many cases their efforts to 
help cause more problems. For example, “…what 
they do is just to create more traffic on the roads 
and they impede the flow of the critical goods 
getting to the area” (Gehr, 2017).  

Therefore, providing efficient means to 
incorporate the disjointed volunteer resources into 
a centralized disaster response C&C center has the 
potential to transform these resources to valuable 
assets to complement the efforts by the 
professional responders (or at least prevent these 
volunteers from “getting in the way”) and increase 
efficiency of the response effort (e.g., FEMA, 
2017). 

This paper tackles the challenge of bringing 
information logistics and automation in disaster 
response to motorists in order to help them 
organize in an effective and efficient manner. The 
concept of “Dynamic Cloud-based Vehicle 
Applications” is introduced in section 4, which is a 
new type of vehicle applications, and an example 
is provided to demonstrate how these applications 
may function in real scenarios.  

2 DISASTER RESPONSE 
AUTOMATION 

Usually, disaster response operations involve a 
large number of different heterogeneous teams 
(sometimes multinational), which have to 
collaborate in order to succeed. Such teams may 
include medical brigades, firefighters, rescuers, 
military personnel, commercial / governmental / 
non-commercial organizations, volunteers, etc. 
Besides, during such operations it may be 
necessary to use external sources to get the 
required information (e.g., medical databases, 
transport availability, weather forecasts). Their 
coordination requires intensive information 
exchange in order to achieve the necessary level of 
the situational awareness, create ad-hoc action 
plans, and continuously update relevant 
information (Smirnov et al., 2010). 

In (Smirnov et al. 2005a) a conceptual 
framework and hybrid technology for operational 
decision support based on the concept of 
information logistics was developed. The main 
idea behind the conceptual framework was using 
an ontology-based context model for modelling the 
current situation and solving incoming problems. 
Ontology properties of this model make the 
context a sharable model that can be accessible by 
its components for the purposes of exchanging and 
integrating the right information and providing 
knowledge at the right place and time. The context 
components are related to various resources of 
information and knowledge. Context properties of 
the context model enable the decision support 
system to process and interpret the dynamic 
information flow at the right time. 

In (Smirnov et al., 2010) an approach to 
organizing resources in a smart environment for 
disaster response was proposed, and is shown in 
figure 1. It is based on the above conceptual model 
and assumes Web-services forming an ad-hoc 
service network according to the context of the 
current situation. The Web-services are responsible 
for producing real-time picture of the disaster 
situation, receiving diverse information resources, 
and problem solving. These Web-services provide 
an ontology-based model of a disaster situation 
that embeds models for problems requiring 
solutions in this situation. Harmonization of Web-
service descriptions and the ontology allows the 
Web-services to exchange information about their 
needs and possibilities in terms of the ontology 
vocabulary. The functions of the identifying 
problems to be solved and distribution of actions 
or tasks between acting agents can be implemented 
in a unit called “task manager”. 

The ontology-based problem model 
represented as context following the idea of 
information logistics provides the Web-services 
with awareness about the problems to be solved in 
the disaster situation and information needed for 
this. The response members’ profiles allow the 
Web-services to take into account specific 
information about the members as well as their 
tacit and explicit preferences. As a result, the Web-
services become capable to form a service network 
for a common purpose (Smirnov et al., 2010). If 
the service assumes the presence of a human 
behind it, it renders information through an 
adaptive interface provided by a “front end 
generator” in the right form. For example, the 
“front end generator” can generate information 
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using HTML5 which can be viewed by operators 
using web browsers. 

 

Figure 1: Ontology-based automated disaster response 
system. 

Although the system in figure 1 was designed to 
address the information logistic needs for 
professional responders (Smirnov et al., 2010), this 
system can be extended to include the general 
population, specifically motorists. 

3 CONNECTED VEHICLES 
SERVICES 

Proliferation of connected vehicle technologies 
facilitates information support of the motorists 
caught in disaster area. In general, the term 
connected vehicle refers to the technologies that 
enable two-way communication between vehicle 
systems and outside world, including cloud, 
roadside infrastructure, and other vehicles. Today, 
there is a variety of different approaches to 
implement connected vehicle, such as OEM 
installed embedded modem, OBDII plug-in 
(Kolmanovsky et.al. 2011), integration with 
customer mobile phone (Yeung et. al. 2017), or 
DSRC Vehicle to Vehicle (V2V) or Vehicle to 
Infrastructure (V2I) technologies (Kenney 2011). 
In many cases the vehicle combines several of 
these technologies that allow improving robustness 

of telematics tasks through a multiprotocol 
connectivity manager (Zaborovski et. al. 2013). 

There are a number of connected vehicle 
services to help the motorists in emergency or 
hazardous situations or environments. One way to 
provide the emergency assistance is through OEM 
installed embedded modem. For example, OnStar, 
ERA-GLONASS and E-Call utilize the vehicle’s 
embedded modem to connect vehicle occupants to 
the dispatcher and transmit the vehicle status data. 
OnStar connects the vehicle driver with the OnStar 
advisor who can direct emergency services to 
vehicle location, and provide evacuation routes or 
other necessary assistance in case of accident, 
disaster or severe weather. ERA-GLONASS and 
E-Call are government regulated systems that 
connect the vehicle occupants to the local Public 
Safety Answering Point (PSAP) and transmit the 
critical data in case of accident. (Öörni et al. 2015).  

Another way to provide assistance to the 
motorist is through mobile applications integrated 
with the vehicle’s head unit. For example, 
KATWARN system provides smart phone 
application that can be integrated with Ford 
SYNC3 system using Applink. The service 
provides warnings and behavioral advices for the 
user’s current location, as well as for seven freely 
selectable locations, and offers topic-related safety 
information quickly to the Ford SYNC GEN3 
infotainment system (Katwarn, 2017; Ford 2017a). 
Another example of such app is HAAS Alert 
(HAAS Alert R2V, 2017). HAAS Alert alerts 
motorists when emergency responders are in the 
vicinity or en route, responding to a call. HAAS 
Alert has partnered with Waze to provide users 
with emergency incident locations and warnings 
when emergency services (Firefighters, Police, 
EMS) are on the scene to warn and/or re-route 
drivers to avoid collisions and delays. HAAS Alert 
has demonstrated Applink integration of their 
mobile application at SmartDeviceLink Hackathon 
2017 (Ford, 2017b).  

With the help of these applications, drivers can 
make decisions on how to avoid collisions, select 
alternative routes and reduce traffic delays. 
However, in order to take advantage of these 
applications the app needs to be already loaded 
into the driver phone. 

These connected vehicle services provided the 
motorists with new methods to handle uncommon 
situations, and were a step closer to dynamic 
cloud-based vehicle applications. 
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4 DYNAMIC CLOUD-BASED 
VEHICLE APPLICATIONS 

4.1 Motivation 

The existing connected vehicle emergency services 
have certain limitations to support effective and 
efficient information logistics for motorists in the 
affected area. These services are either requiring 
preinstalled application or involve human 
operators that may increase response time, and are 
designed to solve specific problems. Moreover, the 
vast majority of mobile applications do not 
integrate with the vehicle’s head unit, and 
therefore are not suitable for motorists to operate 
while driving, and therefore they lack in providing 
the right information in the right format and at the 
right place. The second section of this paper 
discussed ontology based systems for disaster 
recovery automation. The system operates in a 
command and control center and initiates tasks to 
concerned parties. The limitations of this system is 
extending it to motorists by providing the right 
information at the right time in the right place, 
whether they are volunteers or part of official 
rescue teams. This is due to the fact that the right 
time and the right place may depend on the 
vehicle’s location, fuel range, and its field 
capabilities (towing, reverse electric flow, has 
jumper cables, etc.). The need to extend the 
ontology based system to include vehicle ontology, 
and to combine the system with connected services 
become evident. Dynamic cloud-based vehicle 
applications combine an extended ontology based 
system in the cloud with connected vehicle 
services to dynamically interact with motorists 
while considering their location, vehicle 
capabilities based on the current situation in their 
location.  

4.2 Foundational Technologies 

The specific example of implementing dynamic 
cloud based applications described in this paper 
utilizes open source SmartDeviceLink (SDL) and 
cloud Node.js as a reference platform. 

SmartDeviceLink (SmartDeviceLink, 2017) is 
an open source project pioneered by Ford Motor 
Company that connects in-vehicle infotainment 
systems to smartphone applications allowing 
automakers the opportunity to provide customers 
with highly integrated connected experiences, and 
application developers with new ways of 

connecting with their customers (Yeung et. al. 
2017). SmartDeviceLink is currently available on 
all Ford vehicles equipped with SYNC GEN3 
infotainment or above, and will likely be integrated 
with the head units of other OEMs in the SDL 
consortium, such as Toyota., Suzuki, Mazda and 
Subaru. SmartDeviceLink enables mobile 
developers to integrate their applications with the 
vehicle’s head unit. As of now SDL SDK’s are 
available for Android and iOS mobile application 
developers. SmartDeviceLink uses Remote 
Procedure Calls (RPC) to interact with the vehicle 
system. This interaction includes showing 
information on the head unit, speaking through the 
audio system using text-to-speech embedded 
software, add buttons, list, and other interactive 
widgets to the head unit based on the content, and 
respond to the user’s interactions. These RPCs are 
used to trigger a specific action defined by the 
application developer. The RPC is issued by the 
mobile application and the called procedures are 
executed by SDL. Notifications and responses to 
the RPCs are sent back from the vehicle’s head 
unit to the mobile application. These RPCs use 
JSON format to exchange information between the 
vehicle and the mobile application. Unlike other 
In-Vehicle Infotainment systems (IVI), SDL RPCs 
are lightweight and language independent; any 
application developer can generate and trigger the 
defined RPCs in any language, even though only 
Android and iOS SDK are made readily available. 
Figure 2 shows a simplified architecture diagram 
of current implementation of SDL with Mobile 
devices. SmartDeviceLink’s Mobile SDK 
generates all the RPCs on behalf of mobile 
Application. 

These RPCs can be sent to the vehicle over 
Bluetooth, TCP/IP, or even through USB. RPCs 
are executed the IVI and creates a user interactive 
UI individually for each of the applications. 
SmartDeviceLink uses a template based approach 
where each OEM can implement a set of defined 
templates with respect to their driver distraction 
guidelines and policies. These templates define 
“what” widgets can be on the screen, and the 
OEMs define “how” these widgets are located on 
the screen. SmartDeviceLink SDK’s can be 
extended to other platforms. For example, a C/C++ 
SDK can be developed to allow sensors to 
communicate with the vehicle and present an 
interactive interface on the head unit. For this 
paper, an SDK for Node.js has been developed to 
bring web applications to the vehicles. The 
popularity of programming in JavaScript has been 
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increasing recently, and more developers are 
becoming acquainted with Node.js (Stack 
Overflow 2017). SDL Node.js SDK issues the 
required RPCs in the cloud which triggers the 
respective reaction on the head unit directly, 
without requiring a mobile phone.  

 

Figure 2: Current SDL Implementation with Mobile 
Applications. 

SmartDeviceLink has security features which can 
be extended if needed to meet specific 
requirements. Its default security settings are based 
on policy tables which are securely downloaded 
and updated from the cloud, and which contain the 
access levels for each OEM approved application. 
During the process of approval, the OEM issues an 
application ID (App ID) to the developers. When 
SDL application starts communicating with the 
head-unit, the App ID is sent to the head unit. The 
head unit will then look in a local policy table, 
which resides in the head unit, to see which RPCs 
are allowed to be executed by the application, 
based on the App ID. The head unit checks for 
policy table updates on regular basis, and 
whenever a new App ID is detected. This allows 
the OEM to add or revoke permissions at any time. 
There are few methods to secure the App ID which 
are beyond the scope of this paper. 

The local policy table residing in the head unit 
contains what the application can execute. 
SmartDeviceLink allows the customers to select 
which RPCs will actually execute, which allows 
users to have full control on what the application 
can actually do. For example, an application may 
be allowed to extract vehicle data, call 911 in case 
of emergency, stream music over Bluetooth, 
stream video for navigation applications, trigger 
alerts and popups, control radio, climate media or 
other modules. Figure 3 shows how SDL is 
typically integrated with a local policy table and 
the vehicle. This security mechanism applies to all 
SDL based applications, including the cloud based 
applications which will be discussed in the 
following section. 

4.3 Cloud-based Vehicle Applications 

The architecture of the cloud based vehicle 
applications is shown in figure 4. The Head Unit 
Service (HUS) is a service which runs in the 
vehicle and uses the in-vehicle connectivity 
manager to connect to an authentication server and 
Node.js server. The HUS can also be implemented 
in a mobile application and act as a relay between 
the cloud and SDL. The connectivity manager’s 
core functionality is to provide connectivity to the 
vehicle using any available device or combination 
of devices, utilizing multipath TCP if necessary. 
(Chari et. Al. 2018). The connectivity manager 
may use a telematics unit and a mobile phone at 
the same time, or use DSRC V2I for example. The 
authentication server in figure 4 has a list of cloud 
applications and the required information to access 
of the Node.js server for a given user and VIN 
number, such as IP address and other 
authentication information. This information is 
used when the vehicle starts, to notify the cloud 
about its status and presence. The List of 
applications can be dynamically updated based on 
geographical location or time and date.  

For example, when a driver approaches a drive-
through to order food, an application for that 
restaurant appears on the application list in the IVI. 
The Node.js server is the server where multiple 
web SDL applications can be running. These 
applications are accessed and controlled as soon as 
the vehicle is started and HUS is initialized. 
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Figure 3: Typical SDL Integration Within  a Head Unit. 

 

Figure 4: Web SDL Applications Architecture. 

The system in figure 4 works as follows.  A 
Node.js server is hosted in the cloud. The 
authentication server is populated with IP 
address/port, geo locations, and other necessary 
parameters to bring dynamic content. Whenever 
the vehicle is started, HUS creates a request with 
vehicle’s VIN number and geo location and sends 
a request to authentication server. Authentication 

server will respond with list of application 
associated with VIN number and geo location. 
HUS will then use the list of application received 
from the authentication server and causes SDL to 
create a session for each application. Once session 
is successfully created, Node.js will start 
registration process for the applications. The 
registration process allows the applications to 
appear on the head unit, and from that point, the 
driver can start interacting with the application.  
SDL Node.js applications receive call-backs such 
as button pushes, or notifications about events, 
such as fuel level change, gear shift, etc. 
Developers can use these notifications to create an 
interactive cloud based SmartDeviceLink 
applications. 

4.4 Dynamic Cloud-based Vehicle 
Applications 

Dynamic Cloud Applications form a special class 
of web applications. The back end is ontology 
based context aware intelligent system. At its core 
is a Task Manager as seen in figure 5. It receives 
user interactions and real-time data as input, and 
using an ontology description of both the input 
data and the set of problems to be solved (the 
objectives), produces an optimized output. The 
optimized output is either a new Task description 
of a task to be solved, or a modification to a 
currently existing Task description. The Task 
description feeds into a front end generator which 
generates or modifies existing Node.js applications 
or the data associated with these applications. 
These applications are the Dynamic Applications. 
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A notable difference between this approach and the 
classical approach of web applications is that there 
is no front end code such as JavaScript to be 
downloaded onto the vehicle. The backend uses 
RPCs and the application on the user’s device is 
rendered just-in-time, which makes the concept of 
dynamic applications possible. The benefits of 
using templates become evident at this point. The 
UI design elements, such as colors, font size, 
button locations, list menus, etc. is known 
beforehand (the selected template). This ensures 
that the requirements that the government 
regulations and recommendations and the 
company’s driver distraction requirements are met. 
The use of templates also simplifies the process of 
dynamically generating an application because the 
UI layout is predefined. 

 

Figure 5: System structure. 

Different geographical areas may have different 
objectives. As vehicles pass through an affected 
geographical area, the drivers are prompted 
through the Dynamic Node.js Applications to opt 
in to use the application to support in the disaster 
recovery efforts and/or to utilize the application’s 
functions. Upon acceptance, the application 
displays several options to the drivers which are 
generated by the Front End Generator. An example 
is shown in figure 6. Drivers may use the 

application for their own benefit, such as to check 
gas prices, water and food availability, and in 
return, they provide valuable vehicle data for that 
period of time. 

The drivers can also use the application to 
report incidents which are analyzed by the 
knowledge based system which, in turn, interacts 
with the Task Manager in the cloud and add to the 
objectives. The drivers may also select the option 
to volunteer, and then a menu appears, showing the 
tasks which are optimized for that vehicle. This is 
shown in figure 7.  

 

Figure 6: Dynamically Generated Main Menu. 

If the driver chooses to jump start a vehicle, further 
information appears about the task. This is shown 
in figure 8. The driver may choose to navigate to 
that location, view next task, or go back to the 
menu. All this HMI logic is generated by the Front 
End Generator, and is communicated to the vehicle 
using RPCs.  

 

Figure 7: Dynamically Generated Tasks List 

The benefit of using SDL becomes evident at this 
point. The application appears to be integrated 
with the vehicle, and the data is presented in a 
controlled fashion. The driver may choose to 
navigate to the location. In this case, the address, 
via SDL, is pushed to the embedded navigation 
system if available. The driver may also call a 
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phone number provided through the backend using 
the vehicle’s hands free system. 

 

Figure 8: An Example of Dynamically Generated Task 
Information. 

The Task Manager in figure 5 is the major 
component of the back end system. It is the 
component which uses the real-time input from the 
connected vehicles and users who are involved in 
the disaster recovery efforts. The data received 
contains sensory information such as rain sensor 
data, fuel level, temperatures, dust, pressure, 
camera, etc. and user information such as a list of 
available equipment, VIN number which maps to 
vehicle’s capabilities (towing, all-wheel drive, …) 
volunteering time window etc. This information is 
received by the Dynamic Application and is 
forwarded to the Task Manager for use. 

The Task Manager can also connect to external 
data sources such as weather prediction for 
example, or retrieve information about functioning 
gas stations, clinics, etc. If necessary, the Task 
Manager can update any data table associated with 
Tasks, which then immediately feeds into the Front 
End Generator and update the Dynamic Node.js 
Application’s behavior and data in real-time. For 
example, a user may be scrolling through available 
tasks using the head unit, and then new items can 
be added to the scroll menu. It produces a Task 
description, which is an implementation 
independent description of tables and information 
required for a UI to be rendered. This is usually 
done as a tree data structure. The Front End 
Generator uses this data structure to generate new 
or modify existing code and data in the Dynamic 
Node.js Application. In summary, the Task 
Manager is the component which, based on 
ontology and available information, oversees the 
behavior of the entire system, independent from 
vehicle’s implementation details.   

The Dynamic Node.js Application which is 
generated by the front end generator is what 
appears to be as context aware discoverable 

service. The Dynamic Node.js Application 
contains all the possible tasks which the vehicle of 
a known VIN number with a given user can 
achieve. An F150 truck has more capabilities than 
a Ford Focus, and if towing capability is required, 
the task will not appear in the application within 
the Ford Focus. If there are two F150’s, the fuel 
level and GPS location can be used to find out 
which truck is most suited for what task at known 
locations.  

5 ILLUSTRATIVE EXAMPLE 

In this section, an illustrative example of how this 
system is utilized in the case of a stranded vehicle 
due to a dead battery is described. The system 
receives information about the stranded automatic 
transmission vehicle with two people due to dead 
battery through its web interface. This information, 
shown in figure 9, is processed based on the 
system’s internal ontology, and it represents a 
fragment of the ontology describing the 
“Accident” concept).  Then, the system identifies 
the appropriate available resources based on the 
situation description: for example, requirements of 
a jumper cable, the battery specifications, location, 
and instruction on how to start it and space for two 
extra passengers in case the battery cannot be jump 
started. 

The services involved and their interactions are 
shown in figure 10. It has two sub scenarios: 
volunteer registration and disaster response. The 
volunteer registration scenario takes place when 
the vehicle enters the area affected by the disaster. 
First, the gateway ping will return the reference to 
the emergency app. The vehicle head unit will 
access the application and the alert will be 
generated that new emergency assistance 
application is available. Then the driver opts in and 
the head unit will dynamically load the task 
description in the application. The example of the 
application is shown previously in figure 8. The 
specific implementation and UI may be different 
for different municipalities and types of the 
disaster. 

Similarly, using this application, it is possible 
to get road assistance, best personalized evacuation 
route; find the best place to get gas based on your 
current gas level; find the info and route where to 
get food and water; report accident; report animal 
danger; or volunteer to provide help to other 
people. 
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Figure 9: A fragment of disaster response ontology 
related to the “Accident” concept. 

6 CONCLUSIONS 

In this paper, connected vehicle technologies such 
as dynamic cloud-based vehicle applications are 
shown to enable the possibility to cohesively 
integrate disaster response efforts of individual 
motorists with existing rescue operations according 
to their individual capabilities. A novel approach 
to dynamically generate information which 
conforms to information logistics philosophy is 

discussed. This system is ontology based context 
aware system which maps problems to achievable 
objectives and assigns them to specific motorists 
based on their profile and feedback. The motorists 
can interact with these objectives using 
dynamically generated applications which are 
made possible by leveraging the capabilities and 
synergies of Node.js and SmartDeviceLink.  The 
presented approach extends the information 
logistics of cloud based system to vehicle 
environment, which allows a better coordination 
between first responders’ efforts and all other 
motorists in the affected area.   Enhancements to 
this platform can be made in the future by 
mitigating the effects connectivity issues. In 
theory, it is possible   to mobilize specialized 
vehicles which have local cloud infrastructure, 
which introduces the concept of cloud-on-vehicle. 
Using V2V such as DSRC, or V2I, the 
connectivity range can be extended by having the 
vehicles out of connected regions to communicate 
with a moving cloud-on-vehicle system.  The 
vehicle would move to areas with connectivity on 
daily basis to download new local updates for the 
area, and then moves to an affected connectionless 
area. A further investigation about the feasibility of 
this approach is required, and to see   how 
connectivity  plays in the geographical topology of 
the affected area to make this system possible.

 

Figure 10: Diagram showing the interactions between different components. 
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