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Ensuring the qualities of modern software systems, such as the Internet of Things, is challenging due to various
uncertainties, such as dynamics in availability of resources or changes in the environment. Self-adaptation is an
established approach to deal with such uncertainties. Self-adaptation equips a software system with a feedback
loop that tracks changes and adapts the system accordingly to ensure its quality goals. Current research in this
area has primarily focussed on the benefits that self-adaptation can offer. However, realising adaption can also
incur costs. Ignoring these costs may invalidate the expected benefits. We start with demonstrating that the
costs for adaptation can be significant. To that end, we apply a state-of-the-art approach for self-adaptation
to an Internet of Things (IoT) application. We then present CB@R (Cost-Benefit analysis @ Runtime), a
novel model-based approach for runtime decision-making in self-adaptive systems. CB@R is inspired by the
Cost-Benefit Analysis Method (CBAM), which is an established approach for analysing costs and benefits of
architectural decisions. We evaluate CB @R for a real world deployed IoT application and compare it with the
conservative approach applied in practice and a state-of-the-art self-adaptation approach.

1 INTRODUCTION

Modern software systems often operate in very dyna-
mic environments. Examples are [oT systems, such as
unmanned underwater vehicles (UUVs) that are used
for oceanic surveillance to monitor pollution levels
(Gerasimou et al., 2017), and supply chain systems
that ensure sufficient, safe, and nutritious food to the
global population (Bennaceur et al., 2016). The dyna-
mics of such systems introduce uncertainties that may
be difficult or even impossible to anticipate before de-
ployment. Hence, these systems need to resolve the
uncertainties during operation.

A common technique to deal with uncertainties in
modern software systems is self-adaptation (Salehie,
2009; Cheng et al., 2009; De Lemos et al., 2013;
Weyns, 2018; de Lemos et al., 2017) that equips a
system with one or more feedback loops. The aim
of self-adaptation is to let the system collect additi-
onal knowledge about itself and its environment, and
adapt itself to satisfy its goals under the changing con-
ditions, or if necessary degrade gracefully.

Current self-adaptation approaches tend only to
look at the benefits that can be gained by adaptation
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(Weyns and Ahmad, 2013). These benefits are typi-
cally improvements in terms of system qualities (self-
optimisation, self-healing, etc. (Kephart and Chess,
2003)). However, applying adaptations to a system
may also incur costs. These costs are domain speci-
fic and may be expressed in terms of the extra use of
resources or the time or energy that it takes to apply
the adaptation actions. For example, in an [oT system
with battery-powered motes, the cost may be expres-
sed as the energy required to communicate adaptation
actions to the motes that need to adapt their network
settings.

Examples of initial work in this direction are (Ber-
tolli et al., 2010) that uses an adaptation cost model
for quantifying the overhead introduced by autono-
mic behaviour in an adaptive parallel application, and
(Cailliau and van Lamsweerde, 2017) that performs
a tradeoff analysis in a runtime adaptation approach
to increase the satisfaction rate of system goals. Ho-
wever, to the best of our knowledge, no systematic
approach exists today that considers both the benefits
and costs for adaptation as first-class citizens in the
decision-making for self-adaptation. Hence, the rese-
arch problem tackled in this paper is:
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How to enable decision-making in self-
adaptive systems that considers both the be-
nefits of adaptation and the costs for realising
adaptation as first-class concerns?

To underpin the relevance of the research ques-
tion, we start with demonstrating that the costs for
adaptation can be significant. To that end, we ap-
ply a state-of-the-art approach for self-adaptation (If-
tikhar and Weyns, 2014) to DeltaloT, an Internet of
Things (IoT) application that has been proposed as an
exemplar for research in the field of engineering self-
adaptive systems (Iftikhar et al., 2017).

To tackle the research problem of this paper,
we then introduce CB@R (Cost-Benefit analysis @
Runtime), a new cost-benefit analysis method for
decision-making in self-adaptive systems that exploits
models at runtime (Blair et al., 2009). CB@R le-
verages on the principles of the Cost-Benefit Analy-
sis Method (CBAM), which is an established appro-
ach for analysing costs and benefits of decisions in ar-
chitectural design (CBAM, 2018). CB@R considers
both the expected benefits produced by adaptation and
the expected cost implied to realise adaptation as first
class concerns when selecting a configuration to adapt
the system and realise the adaptation goals.

We evaluate CB@R with a real world setup of
an IoT application, called DeltaloT (Iftikhar et al.,
2017), and compare it both with a conservative ap-
proach that is applied in practice and a state-of-the-art
adaptation approach.

The remainder of this paper is structured as fol-
lows. Section 2 provides background on CBAM, the
basics of self-adaptation, and DeltaloT. In Section 3,
we illustrate the relevance of costs for adaptation with
a state-of-the-art self-adaptation approach applied to
DeltaloT. Section 4 introduces CB @R, the novel cost
benefit analysis approach for decision-making at run-
time in self-adaptive systems. In Section 5, we evalu-
ate CB @R and compare it with two other approaches.
Section 6 discusses related work. Finally, Section 7
draws conclusions and outlines ideas for future work.

2 BACKGROUND

2.1 CBAM

The Cost Benefit Analysis Method (CBAM) is an es-
tablished method for analysing the costs and bene-
fits of architectural designs of software-intensive sy-
stems (CBAM, 2018). CBAM takes into account the
uncertainty factors regarding costs and benefits, pro-
viding a basis for informed decision-making about

architectural design or upgrade. The concepts of
CBAM are used as inspiration for CB@R.

Given that the resources for building and main-
taining a software-intensive system are finite, soft-
ware architects require a rational process to help them
choose among architectural options. An architectu-
ral option refers to a candidate design of a software-
intensive system that is based on applying a particu-
lar architectural approach (for example a peer-to-peer
style or a client-server style). Different architectu-
ral options will have different technical and econo-
mic implications. Technical implications are the va-
rious implemented features and the qualities associa-
ted with them, each of which brings some benefit to
the organisation. A direct economic implication is the
cost of implementing the system.
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Figure 1: Context for CBAM process.
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CBAM models the benefits and costs of architec-
tural design decisions providing a mean for optimi-
sing such decisions. We illustrate CBAM functiona-
lity by using Figure 1. In the example, the relevant
qualities may be performance, availability and secu-
rity, each with a particular importance. Each archi-
tectural design (resulting from a set of architectural
decisions) will yield different values for these quali-
ties, resulting in some benefit for the system stakehol-
ders. Each architectural design will also incur a cost.
For example, using redundant hardware to achieve a
desired level of availability has a cost, while check
pointing to a disk file has a different cost. As shown
in the figure, the goal of CBAM is to maximise the
difference between the benefit derived by the system
design and the cost of implementing the design.

Using the benefit and cost of each architectural de-
sign, CBAM allows the stakeholders choosing among
architectural designs based on their Value For Cost
(VFCQ), the ratio of utility to cost:
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VFC— TotalBenefit 0
Cost

TotalBenefit stands for the overall utility produced
by an architectural design. This total benefit is defined
as the weighted sum of the utility values for the exa-
minated quality attributes. The VFC values are used
to rank the architectural designs (and thus design de-

cision), from which the stakeholders can choose.

2.2 Self-adaptation

In this research, we apply architecture-based self-
adaptation (see Figure 2), where a self-adaptive sy-
stem consists of a Managed System that operates in
an Environment providing the domain functionality to
users of the system and a Managing System that mo-
nitors and adapt the Managed System realising some
Adaptation Goals (Oreizy et al., 1998; Garlan et al.,
2004; Kramer and Magee, 2007; Weyns et al., 2012).
At a given time, the Managed System has a parti-
cular configuration that is determined by the arrange-
ment and settings of its running components. We re-
fer to the different choices for adaptation from a given
configuration as the adaptation options. Adapting the
managed system means selecting an adaptation option
and changing the current configuration accordingly.
The Environment in which the system operates can be
the physical world or computing elements that are not
under control of the system. The Environment and the
Managed System may expose stochastic behaviour.
A common approach to realise the Managing Sy-
stem is by means of a MAPE-K feedback loop (Kep-

Self-Adaptive System
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Goals o Managing
System
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Managed System
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Figure 2: Basic conceptual model of self-adaptive system
(Weyns, 2018).
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hart and Chess, 2003; Dobson et al., 2006; Salehie,
2009; Weyns et al., 2013) that comprises four compo-
nents: Monitor, Analyse, Plan, and Execute that share
common Knowledge. Knowledge comprises models
of the managed system referring to its structure, beha-
viour, goals, and other relevant aspects of the system
or its adaptation (Weyns et al., 2012). The Monitor
collects runtime data from the Environment and the
Managed system to keep the models up to date. The
Analyser analyses the qualities of the different adap-
tation options and compares these with the qualities of
the current configuration to determine whether adap-
tation is required. If so, the Planner select the best
adaptation option based on the adaptation goals and
composes a plan to adapt the system. Finally, the Exe-
cuter executes the plan.

2.3 DeltaloT

DeltaloT is a reference Internet of Things application
(IoT) that has been developed to evaluate new appro-
aches to self-adaptation and compare their effective-
ness with other solutions (Iftikhar et al., 2017). Del-
taloT compromises both a simulator for offline expe-
rimentation as well as real physical setup.

DeltaloT has been set up by VersaSense, a
provider of industrial IoT products and services
(www.versasense.com/). The network consists of 15
Long-Range IoT motes (LoRa) that are deployed at
the campus of KU Leuven as shown in Figure 3. The
motes are strategically placed to provide access con-
trol to labs (via RFID sensor), to monitor the mo-
vements and occupancy status (via passive infrared
sensor) and to sense the temperature (via heat sensor).
Each mote in the network relays its sensor data to
the gateway using wireless multi-hop communication.
Communication in the network is time-synchronised
and organised in cycles. Each cycle comprises a fixed
number of communication slots. Each slot defines a
sender mote and a receiver mote that can communi-
cate with one another. The communication slots are
fairly divided among the motes. For example, the sy-
stem can be configured with a cycle time of 570 se-
conds (9.5 minutes), each cycle comprising 285 slots,
each of 2 seconds. For each link, 40 slots are allocated
for communication between the motes.

Two key qualities of DeltaloT are energy con-
sumption and reliability. Since motes are battery po-
wered and sending messages is the dominant energy
cost, it is crucial for the system to optimise commu-
nication. Two factors determine the critical quality
properties: the transmission power settings used by
the motes for communication (ranging from 1 for min
power to 15 for max power) and the distribution of
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Figure 3: DeltaloT deployment at KU Leuven Campus.

the messages sent by each mote over the links to its
parents (e.g., for motes with two parents: 0% to one
parent and 100% to the other, 20/80, 40/60, 60/40,
80/20 and 100/0). DeltaloT offers a user interface for
operators to set both the power settings of the motes
and the distribution of messages in the network. This
interface shows the status of user defined properties.
The DeltaloT network is subject to various uncer-
tainties. We consider in this paper two types of uncer-
tainties: network interference (e.g. due to activities of
neighbouring computing systems, or due to changing
whether conditions) and fluctuating load of messages
(the load of messages generated by motes may depend
on various factors, such as the presence of people).
These uncertainties make guaranteeing the system re-
quired properties a complex problem. To deal with
these uncertainties, current practice typically applies a
conservative approach, where the transmission power
is set to maximum and all messages are forwarded to
all parents. Operators may tune some of the settings
based on experiences. This approach guarantees high
reliability, but implies high energy consumption and
thus reduced lifetime of the network.

For the evaluation with DeltaloT, we define two
concrete quality requirements that need to be realised
regardless of possible network interference and fluc-
tuating load of messages generated in the network:

R1: The average packet loss over 15 hours should not
exceed 10%.

R2: The average energy consumption over 15 hours
should be minimized.

When self-adaptation is applied, these two quality
requirements become the adaptation goals.

3 RELEVANCE OF COSTS FOR
ADAPTATION

First we demonstrate the relevance of the cost for
adaptation using an example. Concretely, we ap-
ply ActivFORMS (Active FORmal Models for Self-
adaptation) (Iftikhar and Weyns, 2014), a formally
founded-model driven approach for self-adaptation,
to the DeltaloT exemplar. ActivFORMS applies
architecture-based self-adaptation, where the mana-
ging system is realised with a MAPE-K feedback
loop. The Knowledge compromises a runtime model
for each quality property that is subject of adaptation
(corresponding to the adaptation goals). Each quality
model is specified as a stochastic timed automaton (or
network of these). The monitor updates variables in
these models that represent uncertainties using data
collected at runtime. The Analyzer dynamically com-
putes the adaptation options based on the variability
in transmission power settings of the motes and the
distribution factors for the links in the network (see
Section 2.3). For each adaptation option, the Analyser
estimates the expected qualities by running a number
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of simulations on the quality models. The results for
the qualities of the adaptation options are used as se-
lection criteria in the Planner. In particular, the Plan-
ner selects the best option by applying rules that ex-
press the system quality requirements for DeltaloT.
For the best option a plan is composed. This plan de-
fines the adaptation actions per mote (change power
setting and/or distributed factor) that are required to
adapt the current configuration to the configuration of
the selected best adaptation option. The Executor then
executes the actions of the plan.

When applied to DeltaloT, the approach descri-
bed above only considers the benefits of adaptation
(i.e. the contribution of adaptation to the adaptation
goals). To determine the importance of the cost for
realising adaptations, we start with defining this cost.
In DeltaloT, there is an upstream communication of
messages with data from the motes to the gateway.
The benefits are defined for this upstream communi-
cation. The adaptation actions are sent downstream,
from the gateway to the motes. We define the cost as
the energy that is consumed for sending and receiving
the adaptation message downstream. Default, Acti-
vFORMS does not take into account this cost when
selecting adaptation options. We study the impact of
the cost based on two definitions:

CostV1 = ZpLenA(x) xR+ (pLenA(x) —1)%S (2)

CostV2 = ZpLenL(y) xR+ (pLenL(y) —1) xS (3)
y

With x referring to a distinct adaptation action
(e.g. change the power setting of mote m; along the
link to my, to 6), while y refers to all the adaptation
actions of a link (e.g. change the power of mote my
along the link to mote m; to a setting of 6, and change
the distribution factor of this link to 40%). R and S
refer to the energy consumption of receiving or sen-
ding a message respectively. pLenA() and pLenL() re-
turn the length of the path from the gateway to the
source mote of the link that is subject of adaptation.
Since the gateway is directly connected to the elec-
tricity net, the cost of downstream communication of
the first link is not relevant; this explains the minus
symbol in both definitions. In the first version of the
cost, the information for each adaptation is (naively)
sent as a separate message; in the second definition,
adaptations per link are sent in one message.

To determine the impact of the cost for adaptation,
we compute the total energy cost as follows:

TotEnergyConsV; = EnergyCons + CostV;  (4)

Where i can be either 1 or 2 referring to one of
the cost functions. EnergyCons refers to the energy
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Figure 4: Impact of cost for ActivFORMS on DeltaloT.

consumption for downstream messages, while CostV;
refers to the energy required for transmitting the adap-
tation actions upstream. Hence, the total energy con-
sumption is defined as the sum of both.

To determine the impact of the cost for adaptation,
we test the following hypothesis:

Hr : The total energy cost for communication, inclu-
ding up- and downstream, is higher as the cost to
transmit the message with data to the gateway.

We used a setup with 15 motes (as shown in Fi-
gure 4) and 256 adaptation options. The IoT net-
work was initialised using the reference configuration
(max. power settings and duplication of messages sent
to all parent motes). We performed four runs of 96 cy-
cles on the simulator. Figure 4 shows the results.

When comparing the energy consumption using
plain ActivFORMS (EnergyCons) with the approa-
ches that take into account the cost for adaptation
(TotEnergyConsV;), we observed a statistically sig-
nificance difference (p-values smaller as 2.2 % 10710
using Wilcox rangsum test). For the first definition
of cost the average reduction of energy consumption
is 5.60% (mean 14.07 compared to 12.98 for plain
ActivFORMS), while for the second definition the
average reduction of energy consumption is 7.75%
(mean 13.75). In practice, the increase of the life-
time of the network may be smaller as not all motes
consume the same amount of energy over time, but of
course this applies to all evaluated approaches. Since
the total cost for V5 is lower as for V;, we use the V,
definition for the evaluation in Section 5.

To conclude, we can accept hypothesis Hr. For
ActivFORMS, a state-of-the-art adaptation approach,
applied to the DeltaloT exemplar, realising adaptation
has a significant cost and cannot be ignored.
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4 CB@R

We now present a novel method, called CB@R (Cost-
Benefit analysis @ Runtime). CB @R enables runtime
decision-making in self-adaptive systems that expli-
citly considers benefits and costs. The approach is
inspired by CBAM. However, in contrast to CBAM,
CB@R is an automated approach that makes (archi-
tectural) reconfiguration decisions of the system at
runtime to deal with uncertainties. Hence, CB@R
can be considered as a runtime extension of CBAM,
where reconfiguration of the system is necessary du-
ring operation to guarantee the best Value For Cost
(VFEC). Figure 5 shows how CB@R is integrated in a
MAPE feedback loop.

Knowledge Runtime Models. Central to the realisa-
tion of CB @R are a set of runtime models maintained
in the Knowledge repository of the MAPE feedback
loop. The models include a system model that provi-
des an abstraction of the managed system relevant to
realise the adaptation goals, and a context model that
provides an abstraction of the relevant parts of the en-
vironment in which the system operates.

Next, the Knowledge repository contains a qua-
lity model for each quality property that is subject to
adaptation. These quality models (possibly combined
with a system model and/or a context model) allow a
runtime verifier to estimate the quality properties for
a particular configuration of the managed system (i.e.,
an adaptation option as explained next).

To make an adaptation decision, CB@R requires a
set of adaptation options. Each adaptation option de-
fines a particular configuration of the system that can
be reached through adaptation from the current con-
figuration. The set of adaptation options defines all
such possible configurations of the managed system.
In this research, we assume that the managed system
has a limited, potentially high number of adaptation
options. This set may dynamically change over time.
This implies that system parameters with a continuous
domain that determine configurations need to be dis-
cretised. Heuristics can be applied to select the adap-
tation options in case of a very large set, but this is
out of scope of this paper. Note that this assumption
is not a restriction of CB@R in itself.

To determine the benefits of adaptation with
CB@R, a set of runtime utility response curve mo-
dels are required, one for each quality property that is
subject of adaptation. A utility response curve model
(Len et al., 2013) for a particular quality expresses the
utility for the range of possible values of that quality
property. In a response curve model, the utility va-
lues can range from O to 100, while the values for the
qualities range from relevant minimum to maximum

values of the quality property. The utility response
curve models are defined in consultation with the sta-
keholders and express how the utility for different va-
lues of the quality property changes as valued by the
stakeholders. Hence, capturing the utilities of alter-
native responses of adaption options enables CB@R
to make trade-off decisions in relation to the different
quality properties. Utility response curves can vary
linearly, nonlinearly, as a step function, or combinati-
ons of these.

To determine the cost of adaptation with CB@R,
the approach requires a cost model. Cost models
are domain specific and may represent various im-
plications of realising adaptation, such as delay cau-
sed through adaptation, resources required to realise
adaptation, etc. The cost model should allow to de-
termine the cost for each adaptation option, so that
CB @R can perform a cost-benefit analysis for the dif-
ferent adaptation options.

Finally, the Knowledge repository contains a plan
that is produced by the Planner after an adaptation de-
cision is made. A plan consists of the adaptation acti-
ons that are required to adapt the system as required.

Realisation of CB@R. The MAPE elements exploit
the runtime models to realise CB@R as follows. The
Monitor tracks quality properties and uncertainty pa-
rameters of the managed system and the environ-
ment. The collected data is used to update the system
model, the context model, and the different quality
models (1). When the Analyzer is triggered (2) it de-
termines the adaptation options @, i.e., all relevant
configurations of the managed system that can be re-
ached through adaptation from the current configura-
tion. For each adaptation option, the Analyzer deter-
mines the expected qualities that are relevant for adap-
tation using the Runtime Verifier . To that end, the
verifier uses the runtime models of the different qua-
lities, possibly combined with the system and context
models, and computes estimates for the different qua-
lities of each adaptation option . The verification
results, i.e., the expected values of the quality proper-
ties associated with the different adaption options, are
then updated in the Knowledge repository (5).

Next @, the Planner determines the Value For
Cost (VFC) for each adaptation option (7). To calcu-
late the total benefit of an adaptation option the Plan-
ner first computes the utility for each quality. To that
end, the Planner uses the estimates for each quality as
determined by the Analyzer. The Planner determines
the utility for each estimated quality property using
the utility response curves model for the quality. This
is repeated for each quality that is subject of adapta-
tion. As different quality attributes will have different
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Figure 5: MAPE feedback loop with runtime decision-making using CB @R.

importance to the stakeholders, each quality is assig-
ned a weight (the weights express the relative impor-
tance of a qualities, so the sum of the weights should
be equal to one). The Planner determines the expected
overall benefit B; for each adaptation option i by sum-
ming the utility associated with each quality weighted
by the importance of that quality attribute as follows:

Bi =) (Uj(xj) = Uj(cj) =W )
J

Where the Planner takes the sum over each quality
j» with x; ; the value for the ;" quality of the i adap-
tation option and U;(x(; ;) the expected utility for this
quality (determined by the utility response curve mo-
del). Cj is the value for the j™ quality in the current
configuration and Uj(c;) the corresponding utility. W;
is the weight for the quality. To determine the ex-
pected benefit for an adaptation option, the Planner
takes the sum of the difference between the expected
utility and the current utility for each quality taking
into account the respective weights.

Next, the Planner uses the domain-specific cost
model to determine the expected cost for each adap-
tation option. With the estimates for the benefits and
the costs for each adaptation option, the Planner can
finally calculate the VFC. As introduced in Section 2,
for each adaptation option, VFC is defined as the ratio
benefit B;, to cost C;:

B
VFCi = — 6
C (6)
The values for VFC are then used to rank the adap-
tation options under consideration. CB @R selects the
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adaptation option with the highest VFC value. For this
option, the Planner generates a plan and updates
the Knowledge repository. Finally, when the Executor
is triggered (9), it starts executing the plan produced
by the Planner, adapting the managed system accor-
ding to the selected adaptation option .

Example — We illustrate the principles of CB@R by
applying them to the DeltaloT exemplar.

The two adaptation goals in DeltaloT correspond
with the two requirements: energy consumption and
packet loss. Figure 6 shows the runtime model that
the Analyzer uses to estimate energy consumption.

The verifier uses this model to estimate the energy
consumption for the different adaptation options. In
DeltaloT the adaptation options are determined by
the power settings used by the motes to communicate
messages and the distribution of messages sent to pa-
rent motes (see Section 2.3). Hence, the parameters
of the models are configured for each adaptation op-
tion accordingly. Furthermore, the values of the pa-
rameters that represent uncertainties tracked by the
Monitor are set; e.g., the values of pTraffic(motelD)
represents the traffic that a mote with a given id is
expected to generate. Once the settings for an adap-
tation option are set, the estimated energy consump-
tion is determined. To that end, the System automaton
activates the motes one by one moteld = nextTurn().
Each Mote can then send messages to its parents in the
time slots dedicated to it (sendPackets(packets)). The
energy required to send the messages is then compu-
ted (calcSendEnergy(packets)). When the Gateway
gets its turn, it computes the total energy consumed
by the motes both to send and receive messages. This
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Figure 6: Runtime model to estimate energy consumption for different adaptation options.

process is repeated for 30 times to compute and es-
timated average energy consumption with a required
accuracy. For each simulation run the verifier assigns
uncertainty values for pTraffic(moteld) per mote.

The adaptation goals are defined with two utility-
response curve models, one for each quality of inte-
rest as shown in Figure 7 and Figure 8.

The utility response curve model for energy con-
sumption was defined in consultation with engineers
of VersaSense based on the results of the self-adaptive
solution presented in the previous section. From the
simulation runs on DeltaloT we know that the mean
value of the energy consumption is around 13mC.
This explains the first vertical drop on the graph. Va-
lues between 13mC and 12mC are progressively con-
sidered better, while any value below 12mC is consi-
der excellent. Values between 13mC and 15mC are
acceptable, but poor. Any value above 15mC is con-
sidered inferior. The utility response curve model for

Energy Consumption - Utility Response Curve

100

80+

60+

Utility

40

204

T T T T T
10 11 12 13 14 15 16 17
Energy Consumption (Coulomb)

Figure 7: Utility response curve for energy consumption.

the packet loss was defined in a similar way with the
VersaSense staff. The utility slowly decreases bet-
ween 0% and 5% packet loss. From 5% onwards, the
utility decreases faster and values above 10% are con-
sidered inferior.

The cost model in DeltaloT is determined by the
energy that is required to send the adaptation mes-
sages from the gateway to the respective motes. We
explained this in detail in Section 3.

To illustrate the computation VFC, consider that
we have two adaptation options, one with 2% as es-
timated value for the packet loss and one with 9%,
both satisfying the first quality requirement of Del-
taloT. Let us assume that the estimated energy con-
sumption for both options are about the same. In
CB @R, the expected utility induced by the 2% packet
loss (around 90% see Figure 8) will have a substantial
influence on the total benefit of the adaptation option
being considered (for packet loss 9% the expected uti-
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Figure 8: Utility response curve model for packet loss.
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Figure 9: CB@R applied to DeltaloT.

lity will be around 10%). In case the adaptation costs
for both options are similar, this will lead to a higher
VEC value for the option with 2% packet loss, and
consequently this configuration will be higher ranked
than the 9% option. However, in case the cost for
adaptation of the 2% option would be substantially
higher, this option may not be selected. Compared to
rule-based approaches this offers significant flexibi-
lity for decision-making.

Prototype realisation — Figure 9 shows the architec-
ture of the self-adaptive DeltaloT system realisation.

The Managed System that consists of the network
of motes connected to the gateway is connected to a
Client that provides an interface to the system. The
client offers an interface to the IoT system to monitor
various parameters and perform adaptations.

The Managing System is deployed on top of the
client. For the realisation of CB@R we have used
networks of timed automata (TA) for the specification
of MAPE feedback loop. We used a set of model tem-
plates for the specification and the verification of the
correctness of the MAPE feedback loop models (Igle-
sia and Weyns, 2015). We applied the approach pre-
sented in (Iftikhar and Weyns, 2014) that allows de-
ploying and directly executing these models to realise
self-adaptation at runtime using a virtual machine, as
shown in Figure 9. The Analyzer in the DeltaloT
realisation uses a Statistical Model Checker as veri-
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fier to make estimates for the different qualities of the
adaption options. Figure 10 shows the planner mo-
del used in the realisation. The planner waits in the
Waiting state to be triggered by the analyser (plan?).
It then selects the best adaptation option (selectBestA-
daptationOption()). The pseudo code of this function,
which is at the heart of the CB @R method, is shown
in Figure 1. If a valid adaptation option is found a
plan is created (per link of the DeltaloT network a
set of ChangePower and ChangeDistribution actions
are composed). If no valid option is found a fails-
afe strategy is applied. When the plan is ready, the
executer model is triggered to execute the plan (exe-
cute!). We provide all the models, verification proper-
ties and results, the implementation and the evalua-
tion here: https://people.cs.kuleuven.be/danny.weyns/
software/ActivFORMS/.

S EVALUATION

For the evaluation of CB @R we used the physical se-
tup of the DeltaloT network deployed at the KU Leu-
ven Campus, which is remotely accessible for use (If-
tikhar et al., 2017). We used a standard setting with 15
motes as shown in Figure 3 with communication cy-
cles of 9.5 minutes. We compared three approaches:
a conservative approach applied by VersaSense in si-
milar application domains (referred to as reference
approach), a rule based approach (that takes into ac-
count cost for adaptation similar to what we discussed
in Section 3), and CB@R (we applied equal weights
for the quality properties). Each approach ran for 15
hours on the physical network, i.e., 90 communication
cycles. In each cycle, the network can be adapted. As
mentioned in the previous section, the two quality re-
quirements are used as adaptation goals: (1) keep the
average packet loss under 10% and (2) minimise the
average energy consumption, both over 15 hours. We
test the following hypothesis:

Hi : The adaptation approaches outperform the refe-
rence approach for energy consumption

Hy\ : The rule-based approach achieves the packet
loss requirement

Hy, : CB@R achieves the packet loss requirement

H31 : CB@R has significantly better results than a
rule-based approach for the average energy con-
sumption

H3y : CB@R has significantly better results than a
rule-based approach for average packet loss.

First, we look at energy consumption. Figure 11
shows the results of the three approaches. The mean
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Figure 10: Planner model for CB@R used in prototype realisation.

Algorithm 1: Selection procedure of CB @R used in the planner model.

1: procedure SELECTBESTADAPTATIONOPTION
2: bestAdaptationOption < EMPTY
3 bestVFC <+ —MAXVALUE
4 for each x € Knowledge.AdaptationOptions do
5: benefit + calculateBene fit(x)
6: cost < calculateCost(x) + 1
7: VFC < benefit /cost
8 if VFC > bestVFC then
9: bestVFC «+ VFC
10: bestAdaptationOption < x
11: end if
12: end for
13: end procedure

> Knowledge
> Knowledge

value for the average energy consumption of the re-
ference approach is 17.07mC, while the value for
the rule-based approach is 13.10mC and for CB@R
12.98mC. Clearly, both adaptation approaches out-
perform the reference approach (p-value 2.2¢~1® Wil-

Energy Consumption Comparison
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15 16
1 1

14
I

|-

Reference Rule_Based CBatR

Figure 11: Evaluation results for energy consumption.

cox rangsum test). Hence, we can accept hypothesis
Hl.

The mean values for energy consumption of the
rule based approach and CB @R are similar. Although
there is a significant difference of the data distribution
in favour of the rule-based approach (p-value 0.044
with Wilcox rangsum test), from a practical point of
view the difference is irrelevant (the relative gain in
energy consumption of rule-based is versus CB@R is
0.8%). Hence, we have to reject hypothesis H31.

Let us now look at the packet loss. Figure 12
shows the results. The mean value for the average
packet loss for the reference approach is 5,39%. The
mean value for the rule-based approach is 15.32% and
for CB@R it is 9.96%. Given that the average packet
loss should be below 10%, we have to reject hypothe-
sis H21 (the rule-based approach achieves the packet
loss requirement) and we can accept hypothesis H22.
With a significant difference between the results for
both approaches (p-value 6.258¢~® with Wilcox rang-
sum test), we can also accept hypothesis H32 (packet
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Figure 12: Evaluation results for packet loss.

loss for CB@R is significantly better as for the rule-
based approach).

Discussion. For energy consumption, both self-
adaptive approaches are significantly better as the re-
ference approach. On the other hand, the rule-based
approach is not able to realise the packet-loss requi-
rement, while CB@R achieves the requirement alt-
hough with a small surplus. These results show that
substantial benefits can be gained by applying CB@R
compared to the conservative approach. Note that dif-
ferentiations to the weights for the quality properties
and adjustments to the quality response curve models
may help to further enhance CB@R and help impro-
ving the results for packet loss, possibly at a small
extra cost of energy consumption.

Feedback from the VersaSense staff confirmed
that the problem of finding and maintaining an opti-
mal configuration of low-power wireless networks for
a given problem domain is notoriously difficult and
that a self-adaptive solution that automates the ma-
nagement of the network is a major benefit. On the
other hand, the staff highlights the potential risks of
automation in terms of ensuring stability during the
adaptation process as well as handling outlier events.
The staff also noticed the need for domain-specific
models, including for different quality properties, that
may not be easy to design. However, building up ex-
perience over time can mitigate such risks.

6 RELATED WORK

Until recently, most research on self-adaptation has
largely ignored the negative implications of adap-
tation as documented by surveys, see for exam-
ple (Weyns and Ahmad, 2013). In this section, we
point to work that is related to the CB@R approach.
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We structure the discussion of related work in two
parts. We start with providing brief descriptions of
related approaches. Then we position CB@R in the
landscape of existing work.

Bertolli et al. define a cost model for quantifying
the overhead introduced by autonomic behaviour in
an adaptive parallel application, in particular a flood
emergency management (Bertolli et al., 2010). The
application is realised using components that are spe-
cified in multiple versions. Each component is dyn-
amically selected according to an adaptation strategy
to achieve the required quality of service levels. The
adaptation cost model is used to estimate the over-
head for reconfiguring a component when switching
between different versions.

Camara et al. propose a latency-aware adaptation
approach focusing on the interval between the time
when an adaptation is applied and the time when
the effects of the adaptation are observed (Camara
et al., 2016). At design time, the approach uses model
checking of Stochastic Multiplayer Games models to
quantify the maximum improvement a latency-aware
strategy is able to obtain. At runtime, a latency-aware
adaptation algorithm is applied that uses simulation to
support the adaptation decisions.

Cailliau and van Lamsweerde apply tradeoff ana-
lysis in an obstacle-driven runtime adaptation appro-
ach to increase the satisfaction rate of probabilistic sy-
stem goals (Cailliau and van Lamsweerde, 2017). The
approach uses obstacle/goal refinement trees. Leaf
obstacles are monitored at runtime to determine the
satisfaction rate of high-level goals. When the satis-
faction rate is below a threshold, a tradeoff analysis
guides the selection of alternatives to maximise satis-
faction rates under cost constraints.

Poladian et al. propose ‘anticipatory configura-
tion” to predict future resource availability to improve
the utility of concurrent adaptive applications (Pola-
dian et al., 2007). The approach is compared with re-
active configuration that reacts to changes in resource
availability as they occur. The results demonstrate
that anticipatory configuration provides better utility
to users when there is a cost (e.g., reconfiguration
cost) associated to certain adaptation operations.

There are a number of related approaches that use
elastic controllers in cloud-based applications to ad-
just the allocation of resources with awareness of the
cost of adaptation. Jamshidi et al. use an elastic con-
troller to handle unpredictable workloads in cloud ap-
plications (Jamshidi et al., 2014). The elastic control-
ler aims at reducing the cost of ownership of the ser-
vice level agreements, while auto-scaling the dynamic
resources. The approach uses fuzzy logic to specify
elasticity rules and handle conflicting requirements.
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Gambi et al. propose a framework that explicitly ta-
kes into account the time each control action takes to
complete, called actuation delay (Gambi et al., 2013).
The proposed framework estimates actuation delay
using change point detection algorithms. Fokaefs et
al. use a business ecosystem of cloud computing as
an economy of scale in a set of experiments (Fokaefs
et al., 2016). The goal is to take into the account cost
of infrastructure with revenue from service delivery
and the profit of the service provider. The experiment
results show that the economic-driven resource scala-
bility is applicable on real cloud environments with
satisfying results during elasticity operations. Finally,
Jung et al. present a holistic controller framework cal-
led Mistral that uses a utility-based model to predict
power consumption, cost of the adaptation, and wor-
kload prediction to maximise overall utility in cloud
applications (Jung et al., 2010).

In summary, a variety of approaches have been
devised to deal with the implications and costs of
self-adaptation. Contrary to existing approaches that
do not clearly distinguish between costs and benefits,
CB@R treats cost and benefits as first-class citizens
in the decision-making of adaptation. Furthermore,
most of the existing approaches focus on specific ty-
pes of cost for self-adaptation, ranging from over-
head, latency, required resources, time for adaptation,
and cost of infrastructure. CB@R does not focus on
any particular type of cost, but provides a reusable
framework that considers the cost for adaptation as
a first-class concern that can be instantiated for the
domain and problem at hand.

7 CONCLUSIONS AND FUTURE
WORK

Applying self-adaptation may incur costs, which are
often ignored. We applied a state-of-the-art approach
for self-adaptation to a community exemplar showing
that the cost for realising adaptation can be signifi-
cant. This observation demonstrates that it is impor-
tant for any self-adaptation solution to reflect on the
cost for realising adaptation and take this into account
when the cost is significant.

This paper presents CcB@R — Cost-Benefit @
Runtime — a reusable approach for decision-making
in self-adaptive systems that considers both the bene-
fits of adaptation and the cost to realise the adapta-
tion actions as first-class citizens. The approach takes
inspiration from CBAM, an established approach to
deal with the economics of benefits and costs in archi-
tectural design. CB@R defines the benefits of adap-
tation options as the weighted utility of the qualities

that the options can provide to the stakeholders. The
approach defines cost as a domain-specific property
that needs to be defined for the problem at hand.

We applied CB@R to a real world deployment
of an IoT application. The results show that CB@R
outperforms a conservative approach that is currently
used by an industry partner. The results also show
that contrary to a rule-based approach, CB@R achie-
ves the adaptation goals under various uncertainties.

In future work, we plan to study different topics
on cost-benefit analysis for self-adaptive systems. We
plan to study the influence of varying the utility re-
sponse curve models as well as the weights assig-
ned to the different quality properties on the Value
For Cost. We plan to look into methods that allow
to fine tune the curves and the weights automatically
using learning algorithms combined with direct or in-
direct feedback from stakeholders. We plan to study
the scalability of the approach in terms of the number
of adaptation options and adaptation goals that can
be handled. In this context, we plan to study online
learning techniques to select adaptation options from
large sets. As for the cost of adaptation, we plan to
study more systematically the types of costs that ap-
ply to self-adaptation, derive a classification for these
costs, and apply this knowledge to define methods to
support different types of costs in self-adaptation.

REFERENCES

Bennaceur, A., McCormick, C., Garcia-Galdn, J., Pe-
rera, C., Smith, A., Zisman, A., and Nuseibeh, B.
(2016). Feed me, feed me: An exemplar for engineer-
ing adaptive software. In Software Engineering for
Adaptive and Self-Managing Systems (SEAMS), 2016
1EEE/ACM 11th International Symposium on. IEEE.

Bertolli, C., Mencagli, G., and Vanneschi, M. (2010). A
cost model for autonomic reconfigurations in high-
performance pervasive applications. In Proceedings
of the 4th ACM International Workshop on Context-
Awareness for Self-Managing Systems, page 3. ACM.

Blair, G., Bencomo, N., and France, R. B. (2009). Models @
run. time. Computer, 42(10).

Cailliau, A. and van Lamsweerde, A. (2017). Runtime mo-
nitoring and resolution of probabilistic obstacles to sy-
stem goals. In 2017 IEEE/ACM 12th International
Symposium on Software Engineering for Adaptive and
Self-Managing Systems (SEAMS), pages 1-11.

Cédmara, J., Moreno, G. A., Garlan, D., and Schmerl,
B. (2016). Analyzing latency-aware self-adaptation
using stochastic games and simulations. ACM
Transactions on Autonomous and Adaptive Systems
(TAAS), 10(4):23.

CBAM (2018). Cost Benefit Analysis Method, SEI,
CMU https://www.sei.cmu.edu/architecture/tools/
evaluate/cbam.cfm.

489



MDI4SE 2018 - Special Session on Model-Driven Innovations for Software Engineering

Cheng, B., de Lemos, R., Giese, H., Inverardi, P., Magee,
J., Andersson, J., Becker, B., Bencomo, N., Brun, Y.,
Cukic, B., Di Marzo Serugendo, G., Dustdar, S., Fin-
kelstein, A., Gacek, C., Geihs, K., Grassi, V., Karsai,
G., Kienle, H., Kramer, J., Litoiu, M., Malek, S., Mi-
randola, R., Miiller, H., Park, S., Shaw, M., Tichy, M.,
Tivoli, M., Weyns, D., and Whittle, J. (2009). Soft-
ware Engineering for Self-Adaptive Systems: A Rese-
arch Roadmap. Springer Berlin Heidelberg, Lecture
Notes in Computer Science vol. 5525.

de Lemos, R., Garlan, D., Ghezzi, C., Giese, H., Anders-
son, J., Litoiu, M., Schmerl, B., Weyns, D., Baresi,
L., Bencomo, N., Brun, Y., Camara, J., Calinescu, R.,
Chohen, M., Gorla, A., Grassi, V., Grunske, L., Inver-
ardi, P., Jezequel, J., Malek, S., Mirandola, R., Mori,
M., Miiller, H., Rouvoy, R., Rubira, C., Rutten, E.,
Shaw, M., Tamburrelli, G., Tamura, G., Villegas, N.,
Vogel, T., and Zambonelli, F. (2017). Software Engi-
neering for Self-adaptive Systems: Research Challen-
ges in the Provision of Assurances. Springer Berlin
Heidelberg, Lecture Notes in Computer Science vol.
9640.

De Lemos, R., Giese, H., Miiller, H. A., Shaw, M., An-
dersson, J., Litoiu, M., Schmerl, B., Tamura, G., Vil-
legas, N. M., Vogel, T., et al. (2013). Software engi-
neering for self-adaptive systems: A second research
roadmap. In Software Engineering for Self-Adaptive
Systems 11, pages 1-32. Springer.

Dobson, S., Denazis, S., Fernandez, A., Gaiti, D., Gelenbe,
E., Massacci, F., Nixon, P, Saffre, F., Schmidt, N.,
and Zambonelli, F. (2006). A survey of autonomic
communications. ACM Transactions on Autonomous
and Adaptive Systems, 1(2):223-259.

Fokaefs, M., Barna, C., and Litoiu, M. (2016). Economics-
driven resource scalability on the cloud. In Internatio-
nal Symposium on Software Engineering for Adaptive
and Self-Managing Systems (SEAMS). ACM.

Gambi, A., Moldovan, D., Copil, G., Truong, H.-L., and
Dustdar, S. (2013). On estimating actuation delays in
elastic computing systems. In Software Engineering
for Adaptive and Self-Managing Systems (SEAMS).
IEEE.

Garlan, D., Cheng, S., Huang, A., Schmerl, B., and Steen-
kiste, P. (2004). Rainbow: Architecture-Based Self-
Adaptation with Reusable Infrastructure. Computer,
37(10):46-54.

Gerasimou, S., Calinescu, R., Shevtsov, S., and Weyns, D.
(2017). Undersea: an exemplar for engineering self-
adaptive unmanned underwater vehicles. In Procee-
dings of the 12th International Symposium on Soft-
ware Engineering for Adaptive and Self-Managing Sy-
stems (SEAMS). 1IEEE Press.

Iftikhar, M. U., Ramachandran, G. S., Bollansée, P., Weyns,
D., and Hughes, D. (2017). Deltaiot: a self-adaptive
internet of things exemplar. In Software Engineering
for Adaptive and Self-Managing Systems (SEAMS),
2017 IEEE/ACM 12th International Symposium on,
pages 76-82. IEEE.

Iftikhar, M. U. and Weyns, D. (2014). ActivFORMS: Active
formal models for self-adaptation. In International

490

Symposium on Software Engineering for Adaptive and
Self-Managing Systems (SEAMS). ACM.

Iglesia, D. G. D. L. and Weyns, D. (2015). Mape-k for-
mal templates to rigorously design behaviors for self-
adaptive systems. ACM Transactions on Autonomous
and Adaptive Systems (TAAS), 10(3):15.

Jamshidi, P., Ahmad, A., and Pahl, C. (2014). Autono-
mic resource provisioning for cloud-based software.
In International Symposium on Software Engineering
for Adaptive and Self-Managing Systems (SEAMS).
ACM.

Jung, G., Hiltunen, M. A., Joshi, K. R., Schlichting, R. D.,
and Pu, C. (2010). Mistral: Dynamically managing
power, performance, and adaptation cost in cloud in-
frastructures. In International Conference onDistribu-
ted Computing Systems (ICDCS). IEEE.

Kephart, J. O. and Chess, D. M. (2003). The vision of auto-
nomic computing. Computer, 36(1):41-50.

Kramer, J. and Magee, J. (2007). Self-Managed Systems:
An Architectural Challenge. In Future of Software En-
gineering, (FOSE). IEEE Computer Society.

Len, B., Paul, C., and Rick, K. (2013). Software architec-
ture in practice. Addison-Wesley.

Oreizy, P., Medvidovic, N., and Taylor, R. (1998).
Architecture-based Runtime Software Evolution. In
International Conference on Software Engineering,
(ICSE). IEEE Computer Society.

Poladian, V., Garlan, D., Shaw, M., Satyanarayanan, M.,
Schmerl, B., and Sousa, J. (2007). Leveraging re-
source prediction for anticipatory dynamic configu-
ration. In International Conference on Self-Adaptive
and Self-Organizing Systems (SASO). IEEE.

Salehie, Mazeiar, T. L. (2009). Self-adaptive software:
Landscape & research challenges. ACM transactions
on autonomous and adaptive systems (TAAS), 4(2).

Weyns, D. (2018). Software engineering of self-adaptive
systems: an organised tour and future challenges. In
Software Engineering Handbook. Springer. (Eds.)
Taylor, R. and Kang, K. C. and Cha, S.

Weyns, D. and Ahmad, T. (2013). Claims and evidence for
architecture-based self-adaptation: A systematic lite-
rature review. In European Conference on Software
Architecture, pages 249-265. Springer.

Weyns, D., Iftikhar, M. U., and Soderlund, J. (2013). Do
external feedback loops improve the design of self-
adaptive systems? a controlled experiment. In In-
ternational Symposium on Software Engineering for
Adaptive and Self-Managing Systems, (SEAMS).

Weyns, D., Malek, S., and Andersson, J. (2012). FORMS:
Unitying reference model for formal specification of
distributed self-adaptive systems. ACM Transactions
on Autonomous and Adaptive Systems (TAAS), 7(1):8.



