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Abstract: The mortality models are of fundamental importance in many areas, such as the pension plans, the care of 
the elderly, the provision of health service, etc. In the paper, we propose a new class of mortality models 
based on a fuzzy version of the well-known Lee–Carter model (1992). Theoretical backgrounds are based 
on the algebraic approach to fuzzy numbers  (Ishikawa, 1997, Kosiński, Prokopowicz, Ślęzak, 2003, Rossa, 
Socha, Szymański, 2015, Szymański, Rossa, 2014). The essential idea in our approach focuses on 
representing a membership function of a fuzzy number as an element of quaternion algebra. If the 
membership function µ(z) of a fuzzy number is strictly monotonic on two disjoint intervals, then it can be 
decomposed into strictly decreasing and strictly increasing  functions Φ(z), Ψ(z), and  the inverse functions  
f(u)=Φ−1(u) and  g(u)=Ψ−1(u), u ∈ [0, 1] can be found. Thus, the membership function µ(z) can be 
represented by means of a complex-valued function f(u) + ig(u), where i is an imaginary unit. Then the pair 
(f, g) is a quaternion. The quaternion-valued, square integrable functions form a tool for constructing the 
new class of mortality models. 

1 INTRODUCTION 

Mortality models presented in the literature can be 
classified into two categories consisting of the so-
called static or stationary models and dynamic 
models, respectively. Among models in the first 
group three main approaches can be identified:  
extrapolation (the well-known Lee-Carter model can 
serve as an example), expectation (e.g. some 
scenario models adopted by the United Nations) and 
explanation (e.g. the bit-string Penna model among 
others). The most common approaches are 
extrapolative methods which use a real or fuzzy 
variable functions of age and time to describe 
patterns and trends in death probabilities, specific 
mortality rates or other life-table measures. Models 
in the second group express the force of mortality in 
terms of stochastic differential equations.  

The widely used Lee–Carter model (1992) is 
considered to belong to the first group, similarly as 
its fuzzy version published by Koissi and Shapiro 
(2006). In the paper we propose a new class of 
mortality models based on the fuzzy version of the 
standard Lee–Carter model. 

The paper is organized as follows. In sections 2 
and 3 both the Lee–Carter and Koissi–Shapiro 
models are presented. The theoretical backgrounds 

for a new class of mortality models are introduced in 
section 4. Two next sections describe model 
estimation and data fuzzification procedures. Section 
7 is focused on the model evaluation. Especially, the 
ex post prediction accuracy based on the real data is 
studied and compared with analogous results 
obtained for the standard Lee–Carter model. The last 
section contains final remarks. 

2  THE LEE–CARTER MODEL 

One of the most popular mortality models is the 
Lee–Carter model (1992). Let ݉௫(ݐ)	denote an age-
specific death rate for the subset of a population that 
is between ages x and x+1 years 

 ݉௫(ݐ) = ஽ೣ(௧)௅ೣ(௧),       (2.1) 

where: ܦ௫(ݐ) – the number of deaths at age x last 
birthday in the calendar year t, ܮ௫(ݐ) – the mid-year population alive at the age 
x in the year t, ݔ = 0,1, … , ܺ	–  index of one-year age groups, ݐ = 1,2, … , ܶ  – years of observation period. 
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The measure ݉௫(ݐ)	is the ratio of deaths 
between ages x and x + 1 years to the mid-year 
population alive at age x in the year t, also referred 
to as the mean population in the year t. Therefore, ݉௫(ݐ)	is often described as the central rate because 
the mid-year population is used in the denominator.  

The Lee–Carter model (LC) can be written as 
 ln	݉௫(ݐ) 	= ௫ߙ	 ௧ߢ௫ߚ	+	 	+ ߳௫௧,  (2.2) 

or, equivalently, as  

 ݉௫(ݐ) 	= 	exp{ߙ௫ ௧ߢ௫ߚ	+	 	+	߳௫௧}, (2.3) 

where	݉௫(ݐ) are age-specific mortality rates,	ߙ௫, ߚ௫, ߢ௧  are some model parameters, of which 	ߙ௫, ߚ௫	 (ݔ = 0,1, … , ܺ) represent age-related effects and ߢ௧ ݐ)  = 1,2, … , ܶ) – time-related effects. The double-
indexed terms ߳௫௧  are random components, assumed 
to be independent and have the same normal 
distribution with an expected value of 0 and constant 
variance.   

The system of equations (2.2) or (2.3) cannot be 
explicitly solved unless normalizing constraints are 
imposed. For full model identification, it is assumed 
that the sum of parameters ߚ௫	is 1 and the sum of 
parameters ߢ௧  is equal to 0, i.e. 

 ∑ ௫ߚ = 1,௑௫ୀ଴ 		∑ ௧ߢ = 0.௧்ୀଵ   (2.4) 

The age-related effects	ߙ௫	indicate the age 
profile of mortality, the effects ߢ௧ represent the 
general mortality trend, whereas ߚ௫ indicate the 
pattern of deviations from the age profile in response 
to change of the general trend ߢ௧. It is worth noting 
that ߚ௫ could be negative at some ages, indicating 
that mortality rates at those ages tend to rise when 
falling at other ages. In other words, parameters ߚ௫  

tell which age-specific rates	݉௫(ݐ)	decline (or rise) 
fast and which slow in response to change of ߢ௧. 

The method of parameter estimation proposed by 
Lee and Carter (1992) is based on the so-called SVD 
method (Singular Value Decomposition), further 
developed by Wilmoth  (1993) as weighted SVD. 

Parameters 	ߙ௫  and ߚ௫  do not depend on time t, 
which means that once derived can also be used for 
future periods ݐ > ܶ. The time-varying effects are ߢ௧. They can be predicted for	ݐ > ܶ using, for 
instance, the time series analysis. 

 Lee and Carter (1992) proposed a random walk 
model to predict ߢ௧, but the range of proposals 
discussed in the literature is wider. A random walk 
process with a drift is given by the formula 

௧ߢ  = ߜ + ௧ିଵߢ +  ௧, (2.5)ߦ

where ߜ is a constant (a drift), and ߦ௧  is a normal 
random term. 

With predicted values of ߢ௧ for ݐ > ܶ	and 
estimates of 	ߙ௫  and ߚ௫ the central death rates 	݉௫(ݐ)		can be easily forecasted from (2.2) or (2.3), 
and subsequently other life-table measures. 

3 THE KOISSI–SHAPIRO 
MODEL 

One of the most interesting modifications of the 
Lee–Carter model, referring to the algebra of fuzzy 
numbers, was proposed by Koissi and Shapiro 
(2006). Their version of the Lee–Carter model 
assumes fuzzy representation of log-central death 
rates as well as model parameters. It allows taking 
account of uncertainty involved in mortality rates 
and including a random term into the fuzzy structure 
of the model. 

The Koissi–Shapiro approach builds on the 
assumption that the observed mortality rates ݉௫(ݐ)	are in fact not exactly known, as they are 
subject to reporting errors of several kinds. They 
may be reported for incorrect year, area, age or 
assigned statistics that are incorrect, etc. For these 
reasons, fuzzy representation of central death rates 
seems to be justified. 

Koissi and Shapiro proposed the fuzzification  
procedure (see Koissi, Shapiro, 2006 for details) to 
convert the log-central age-specific mortality rates ln݉௫(ݐ)	into symmetric, triangular fuzzy numbers 

 	 ௫ܻ௧ = 	 ,௫௬ݕ) ݁௫௧), (3.1) 

where ݕ௫௧ = ln݉௫(ݐ) and ݁௫௧	represent spreads of 
the membership functions of triangular fuzzy 
numbers. 

Next, they defined the fuzzy version of the Lee–
Carter model in the following form 

 	 ௫ܻ௧ =  (3.2)  ,(௧ܭ⨂௫ܤ)⨁௫ܣ

where 	 ௫ܻ௧ are fuzzified log-central mortality rates, ܣ௫, ,௫ܤ  represent symmetric, triangular fuzzy		௧ܭ
numbers, playing an analogous role as parameters in 
the model (2.2), and ⨁, ⨂ are addition and 
multiplication operators of fuzzy numbers in the 
norm ௪ܶ (see Koissi, Shapiro, 2006 for the definition 
of ௪ܶ). 

The authors assumed that the model parameters 
can be estimated by minimizing a criterion function 
based on the Diamond distance measure between 
fuzzy variables. However, this estimation method 
poses major problems in the optimization algorithm, 
because expression  
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 max൛ݏ஺ೣ, |ܾ௫|ݏ௄೟, |݇௧|ݏ஻ೣൟ,    (3.3) 

appearing in this criterion function prevents the use 
of standard non-linear optimization methods.  

In the rest of the paper, a modification of the 
fuzzy mortality model using fuzzified mortality rates 
with exponential membership functions will be 
proposed. The essential idea in this approach is 
representing exponential membership functions of 
fuzzy numbers as elements of the quaternion 
algebra. It simplifies both operations on fuzzy 
numbers and model estimation.  

4 THE NEW CLASS OF 
MORTALITY MODELS 

4.1 Transformation of Exponential 
Membership Functions Into 
Complex-valued Functions 

Data fuzzification depends on the assumption about 
membership functions of fuzzy numbers. Koissi and 
Shapiro (2006) adopted triangular symmetric 
membership functions and used fuzzy least-squares 
regression model in order to fuzzify the data. We 
will adopt exponential membership functions of 
fuzzy numbers adjusted to relative frequencies of 
residuals in the least-squares regression. 

Suppose that the membership function (ݖ)ߤ of a 
fuzzy number is strictly monotonic on two disjoint 
intervals. Following Nasibov and Peker (2011), we 
will consider an exponential membership function of 
the form 

(ݖ)ߤ  = ൞exp ቄ−൫೎ష೥ഓ ൯ଶቅ ,						for		ݖ ≤ ܿ,
exp ቄ−൫೥ష೎ഌ ൯ଶቅ ,				for		ݖ > ܿ,    (4.1) 

where  ܿ, ߬,  .are scalars 	ߥ
Note that we can decompose (ݖ)ߤ into two parts, 

i.e. strictly increasing and strictly decreasing 
functions (ݖ) and  (ݖ) of the form 

 

(ݖ) = exp ቄ−൫೎ష೥ഓ ൯ଶቅ ,				for		ݖ ≤ ܿ,
(ݖ) = exp ቄ−൫೥ష೎ഌ ൯ଶቅ , for		ݖ > ܿ.    (4.2) 

Then there exist inverse functions  
 		ିଵ(ݑ) = ܿ + (ݑ)ିଵ		 ,(ݑ)߰ = ܿ +  (4.3) ,(ݑ)߮

where ψ(ݑ) and φ(ݑ) for ݑ ∈ [0,1] are expressed as 
follows 

(ݑ)߰ = −߬(−lnݑ)భమ,				߮(ݑ) = −)ߥ ln  భమ.  (4.4)(ݑ

Let us consider two complex functions  ݂(ݑ) = ܿ + (ݑ)݃  ,(ݑ)߰݅ = ܿ +  (4.5)  ,(ݑ)߮݅
where i = √−1 is an imaginary unit. 

Assuming that functions ߰(ݑ), ߮(ݑ) are expressed 
as in (4.4) we get 

(ݑ)݂  = ܿ − ݅߬(− ln  భమ,  (4.6)(ݑ

(ݑ)݃  = 	ܿ + −)ߥ݅ ln  భమ.  (4.7)(ݑ

The pair of two complex functions (݂(ݑ),  is ((ݑ)݃
called a quaternion. 

The modules of ݂(ݑ) and ݃(ݑ) are as follows 

ଶ|(ݑ)݂|       = ܿଶ + ߬ଶ(− ln  (4.8)  ,(ݑ

ଶ|(ݑ)݃|   = ܿଶ + −)ଶߥ ln  (4.9) .(ݑ

After integration both sides of (4.8) and (4.9) on [0,1] we find 

׬    ଵ଴ݑଶ݀|(ݑ)݂| = ܿଶ + ߬ଶ < ∞,   (4.10) 

׬  ଵ଴ݑଶ݀|(ݑ)݃| = ܿଶ + ଶߥ < ∞.  (4.11)  

4.2 Basic Properties of Quaternions 

It is well known that the complex numbers could be 
viewed as ordered pairs of real numbers. By 
analogy, the quaternions can be treated as ordered 
pairs (ݖ, ݖ  of complex functions (ݓ = ܽ + ݓ ,ܾ݅ =ܿ + ݅݀ where ݅ = √−1 is an imaginary unit.  

The algebra of quaternions is often denoted as ࡴ. 
Quaternions were first described by William 
Hamilton in 1843. The space ࡴ is equipped with 
three operations: addition, scalar multiplication and 
quaternion multiplication. 

The sum of two elements of ࡴ is defined as the 
sum of their components 

,ݖ)  (ݓ + ,ݑ) (ݔ = ݖ) + ݓ,ݑ +  (4.12)   .(ݔ

The multiplication of an element of ࡴ by a real 
number ߙ is defined as the product of both 
components and the scalar ߙ 

,ݖ)ߙ  (ݓ = ,ݖߙ)  (4.13)    .(ݓߙ

To define the product of two elements in ࡴ a 
choice of a basis for ࡾସ is needed. The elements of 
this basis are usually denoted as 1, ݅, ݆ and ݇. Each 
element of ࡴ can be uniquely denoted as a linear  
combination 	ܽ ∙ 1 + ܾ݅ + ݆ܿ + ݀݇, where ܽ, ܾ, ܿ, ݀ 
are real numbers.  

The basis element 1 could be viewed as the 
identity element of ࡴ. It means that multiplying by 1 
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does not change the value and any element of ࡴ can 
be uniquely written as 

,ݖ)  (ݓ = ܽ + ܾ݅ + ݆ܿ + ݀݇,   (4.14) 

where ܽ, ܾ, ܿ, ݀ are real numbers. Thus, each element 
of ࡴ is determined by four numbers and hence the 
term “quaternion” is used.   

Multiplication of quaternions could be defined in 
the form 

,ݖ)  ,ݑ)(ݓ (ݔ = ݑݖ) − ,ݔ̅ݓ ݔݖ +  ത),   (4.15)ݑݓ

where ̅ݔ,    .ݑ and	ݔ ത denote conjugations ofݑ
Multiplication of quaternions is associative and 

distributive with respect to addition, however it is 
not commutative. We have for example 

 (݅, 0)(0,1) = (0, ݅),	   (4.16) 
but 
 (0,1)(݅, 0) = (0,−݅).   (4.17) 

The norm of a quaternion q is denoted as ‖ݍ‖ and 
may be expressed as follows ‖ݍ‖ = √ܽଶ + ܾଶ + ܿଶ + ݀ଶ.         (4.18) 

The norm is always a non-negative real number and 
it is the same as the Euclidean norm on ࡴ	considered 
as the vector space ࡾସ. Multiplying a quaternion ݍ	by a real number ߙ scales its norm by the absolute 
value of this number 
‖ݍߙ‖  =  (4.19)   .‖ݍ‖|ߙ|

The norm (4.18) allows to define a distance ݀(݌,  (ݍ
between p and q as the norm of their difference 

,݌)݀  (ݍ = ݌‖ −  (4.20)   .‖ݍ

This defines ࡴ as a metric space.  

According to (4.5) we have 

(ݑ)݂  = ܿ + ݑ     ,(ݑ)߰݅ ∈ [0,1]  (4.21) 
and       
(ݑ)݃  = ܿ + ݑ      ,(ݑ)߮݅ ∈ [0,1],  (4.22) 

where ߰,߮ are defined in (4.4). 
Let us denote 
(ݑ)ܲ  = ൫݂(ݑ), ݑ				,൯(ݑ)݃ ∈ [0,1].    (4.23) 

The function ܲ is a quaternion-valued function.  
The norm of ܲ(ݑ) could be expressed as follows 

ଶ‖(ݑ)ܲ‖  = ଶ|(ݑ)݂| +  ଶ.   (4.24)|(ݑ)݃|

By integrating both sides of (4.24) and taking into 
account results (4.10) and (4.11), we receive  

׬  ଵ଴ݑଶ݀‖(ݑ)ܲ‖ < ∞.   (4.25) 

Thus, both functions ݂ and ݃ are elements of the  
space ܮଶ[0,1] and the quaternion-valued function ܲ 
is integrable with squared norm on the interval [0,1]. 
We will denote the space of such functions as ܮଶ(ࡴ). 
4.3 A Mortality Model Based  

on Quaternion-valued Functions 

Let us assume that ෨ܻ௫,௧ = ൫ ௒݂ೣ ,೟ , ݃௒ೣ ,೟൯ are 
quaternions with complex functions ௒݂ೣ ,೟ , 	݃௒ೣ ,೟defined as follows 

 ௒݂ೣ ,೟(ݑ) = ௫௧ݕ − ݅߬௫(− ln భమ,   (4.26)(ݑ

 ݃௒ೣ ,೟(ݑ) = ௫௧ݕ	 + −)௫ߥ݅ ln  భమ, (4.27)(ݑ

where ݑ ∈ ௫௧ݕ	 ,[0,1] = ln݉௫(ݐ), ݅ = √−1		is an 
imaginary unit, and ߬௫,  ௫ are some knownߥ
parameters determined by means of the Nasibov–
Peker method (see section 6 for more details). 

We will also assume that ܣሚ௫ = ൫ ஺݂ೣ, ݃஺ೣ൯, ෩௧ܭ	 =൫ ௄݂೟, ݃௄೟൯ are quaternions determined by the 
following complex functions defined for ݑ ∈ [0,1]  
(ݑ)ݔܣ݂	  = ݔܽ − ݅(− lnܮݔܣݏ12(ݑ ,  (4.28) 

              			݃஺ೣ(ݑ) = ܽ௫ + ݅(− ln ஺ோೣݏభమ(ݑ ,          (4.29)

 		 ௄݂೟(ݑ) = ݇௧ − ݅(− ln  ,  (4.30)	భమs௄೟(ݑ

    ݃௄೟(ݑ) = ݇௧ + ݅(− ln  భమs௄೟.      (4.31)(ݑ

As in other models of the functional analysis, we 
postulate the following mortality model based on 
quaternion-valued functions  

 ෨ܻ௫,௧ = ሚ௫ܣ + ܾ௫ܭ෩௧,   (4.32) 

where ௫ܻ,௧ are fuzzified log-central mortality rates 
expressed in terms of quaternion-valued functions in 
the space	ܮଶ(ࡴ), ܾ௫ ∈ ݔ for 	ࡾ = 0,1, … , ܺ is a set 
of scalar parameters, ܣሚ௫,  – determined by the complex functions (4.28) (ࡴ)ଶܮ are quaternions in		෩௧ܭ	
(4.31). The proposed model (4.32) will be termed 
Complex Number Mortality Model (CNMM). 

Note that the quaternions  ܣሚ௫ = ൫ ஺݂ೣ, ݃஺ೣ൯, ෩௧ܭ	 =൫ ௄݂೟, ݃௄೟൯ on the right-hand side of (4.32) reflect 
also some fuzzy numbers ܣ௫,	ܭ௧ with exponential 
membership functions ߤ஺ೣ(ݖ) and ߤ௄೟(ݖ)  as follows 

(ݖ)஺ೣߤ = ۔ۖەۖ
expۓ ቊ−൬ೌೣష೥ೞಲೣಽ ൰ଶቋ 		for		ݖ ≤ ܽ௫,
exp ቊ−൬೥షೌೣೞಲೣೃ ൰ଶቋ 	for		ݖ > ܽ௫,   (4.33) 
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(ݖ)௄೟ߤ = ۔ۖەۖ
expۓ ൜−ቀೖ೟ష೥ೞ಼೟ ቁଶൠ 		for		ݖ ≤ ݇௧,
exp ൜− ቀ೥షೖ೟ೞ಼೟ ቁଶൠ 	for		ݖ > ݇௧.     (4.34) 

Using properties (4.12) and (4.13) the complex 
functions defining the quaternion ܣ௫ + ܾ௫ܭ௧	on the 
right-hand side of (4.32) are as follows 

஺݂ೣା௕ೣ௄೟(ݑ) = ܽ௫ + ܾ௫݇௧ − ݅(− ln ஺ೣ௅ݏభమ൫(ݑ + ܾ௫ݏ௄೟൯, ݃஺ೣା௕ೣ௄೟(ݑ) = ܽ௫ + ܾ௫݇௧ + ݅(− ln ஺ோೣݏభమ൫(ݑ + ܾ௫ݏ௄೟൯.	 
It means that ܣሚ௫ + ܾ௫ܭ෩௧ reflects a fuzzy number ௫ܹ௧		with an exponential membership function (ݖ)ߤ 

equal to 

(ݖ)ߤ = ۔ۖەۖ
expۓ ቊ−൬ೌೣశ್ೣೖ೟ష೥ೞಲೣಽ శ್ೣೞ಼೟൰ଶቋ , ݖ ≤ ܽ௫ + ܾ௫݇௧
exp ቊ−൬೥షೌೣష್ೣೖ೟ೞಲೣೃ శ್ೣೞ಼೟൰ଶቋ , ݖ > ܽ௫ + ܾ௫݇௧									(4.35) 

5 ESTIMATION OF THE MODEL 
PARAMETERS 

In order to estimate the parameters ܽ௫, ܾ௫, ݇௧ and ݏ஺ೣ௅ , ஺ோೣݏ ,  (4.35) we will use the	in	௄೟appearingݏ
norm (4.24) defined in the space of quaternion-
valued functions. Thus, the following distance 
between left- and right-hand sides of the model 
(4.32) will be defined for some fixed  ݔ		and  ݐ ݀௫,௧ = ׬ ฮ ෨ܻ௫,௧(ݑ) − ൫ܣሚ௫(ݑ) + ܾ௫ܭ෩௧(ݑ)൯ฮଶ݀ݑଵ଴ .   (5.1) 

Let us find two functions ௒݂ೣ ,೟ି(஺ೣା௕ೣ௄೟)(ݑ)	and ݃௒ೣ ,೟ି(஺ೣା௕ೣ௄೟)(ݑ)	which determine the difference of 

quaternions ෨ܻ௫,௧ − ൫ܣሚ௫ + ܾ௫ܭ෩௧൯.	We have 

 ௒݂ೣ ,೟ି(஺ೣା௕ೣ௄೟)(ݑ) = ௫,௧−(ܽ௫ݕ + ܾ௫݇௧) −݅(− ln భమ൫߬௫(ݑ − ஺ೣ௅ݏ − ܾ௫ݏ௄೟൯,   (5.2) 

 ݃ ௒ೣ ,೟ି(஺ೣା௕ೣ௄೟)(ݑ) = ௫,௧−(ܽ௫ݕ + ܾ௫݇௧) +݅(− ln భమ൫ν௫(ݑ − ஺ோೣݏ − ܾ௫ݏ௄೟൯. (5.3) 

Hence, 

 ห ௒݂ೣ ,೟ି(஺ೣା௕ೣ௄೟)(ݑ)หଶ = ൫ݕ௫,௧−(ܽ௫ + ܾ௫݇௧)൯ଶ +(− ln ൫߬௫(ݑ − ஺ೣ௅ݏ − ܾ௫ݏ௄೟൯ଶ,    (5.4) 

 ห݃௒ೣ ,೟ି(஺ೣା௕ೣ௄೟)(ݑ)หଶ = ൫ݕ௫,௧−(ܽ௫ + ܾ௫݇௧)൯ଶ +(− ln ൫ν௫(ݑ − ஺ோೣݏ − ܾ௫ݏ௄೟൯ଶ.    (5.5) 

After integration both sides of (5.4) – (5.5) on the 
interval [0,1] we receive  

  ݀௫,௧ =2൫ݕ௫,௧−(ܽ௫ + ܾ௫݇௧)൯ଶ + ൫߬௫ − ஺ೣ௅ݏ +−ܾ௫ݏ௄೟൯ଶ + ൫ߥ௫ − ஺ோೣݏ − ܾ௫ݏ௄೟൯ଶ.  (5.6) 

By analogy to the Lee–Carter model and 
constraints (2.4) we will assume that 

 ∑ ܾ௫ = 1,			௑௫ୀ଴ ∑ ݇௧ = 0.௧்ୀଵ   (5.7) 

Moreover, the additional restriction will be also 
imposed  

 ∑ ௄೟ݏ = (ܺ + 1)௧்ୀଵ ඥ∑ ത௧ݕ) − ത)ଶ௧்ୀଵݕ ,        (5.8) 
where 

=ത௧ݕ   ଵ௑ାଵ∑ ௫௧௑௫ୀ଴ݕ തݕ  , = ଵ்(௑ାଵ) ∑ ∑ ௫௧௑௫ୀ଴௧்ୀଵݕ .  (5.9) 

Thus, the criterion function ܨ	used to estimate 
model parameters takes the form ܨ = ∑ ∑ ݀௫,௧௧்ୀଵ +௑௫ୀ଴ ∑)ଵߣ ܾ௫ − 1௑௫ୀ଴ ) ଶߣ+ ∑ ݇௧ + ଷ௧்ୀଵߣ ቀ∑ ௄೟ݏ − (ܺ +௧்ୀଵ1)ඥ∑ ത௧ݕ) − ത)ଶ௧்ୀଵݕ ቁ, 

(5.10) 
where ߣଵ, ,ଶߣ    .represent Lagrange multipliers	ଷߣ

To minimize ܨ it is necessary to compute its first 
derivatives with respect to unknown parameters ܽ௫, ܾ௫, ݇௧, ஺ೣ௅ݏ , ஺ோೣݏ , ,௄೟ݏ ,ଵߣ ,ଶߣ  ଷ. We haveߣ

ەۖۖ
ۖۖۖ
۔ۖۖ
ۖۖۖ
ۓۖۖ ܽ௫ =

ଵ் ∑ ௫௧ݕ =௧்ୀଵ ܾ௫																																																ത௫ݕ = ∑ ൣଶ௞೟(௬ೣ೟ି௔ೣ)ା௦಼೟൫ఛೣାఔೣି௦ಲೣಽ ି௦ಲೣೃ ൯൧೅೟సభ ିഊభమଶ∑ ቀ௞೟మା௦಼೟మ ቁ೅೟సభ 							
݇௧ = ∑ ௕ೣ(௬ೣ೟ି௔ೣ)ିഊమర೉ೣసబ ∑ ௕మೣ೉ೣసబ ஺ೣ௅ݏ																																														 = ߬௫ − ଵ் ܾ௫ ∑ ௄೟௧்ୀଵݏ ஺ோೣݏ																																											 = ௫ߥ − ଵ் ܾ௫ ∑ ௄೟௧்ୀଵݏ ௄೟ݏ																																																																																																																																			 = ∑ ௕ೣ൫ఛೣାఔೣି௦ಲೣಽ ି௦ಲೣೃ ൯ିഊయమ೉ೣసబ ଶ∑ ௕మೣ೉ೣసబ 																															∑ ܾ௫௑௫ୀଵ = 1																																																																	∑ ݇௧௧்ୀଵ = 0																																																																	∑ ௄೟ݏ − (ܺ + 1)௧்ୀଵ ඥ∑ ത௧ݕ) − ത)ଶ௧்ୀଵݕ = 0													

								(5.11) 

Note, that the last three equations satisfy 
restrictions (5.7) and (5.8).  

This set of normal equations can be solved 
numerically by means of an iterative procedure. 
After choosing a set of starting values, equations are 
computed sequentially using the most recent set of 
parameter estimates obtained from the right-hand 
side of each equation. In addition to numerical 
solution of the normal equations, there are also other 
minimizing algorithms, e.g. computer routines 
available in mathematical packages (e.g. quasi-
Newton or simplex methods).  
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Prediction of the log-central death rates with the 
CNMM can be performed in three steps. First, the 
random-walk model with a drift (2.5) should be used 
to predict parameters ݇௧ for future periods	ݐ > ܶ. 

Next, functions (5.2) and (5.3) should be 
determined using estimates of 	ܽ௫, ܾ௫, ஺ೣ௅ݏ , ஺ோೣݏ , ௄೟ݏ  
and the sequence of predicted time-related 
parameters ݇௧	for	ݐ > ܶ. Note, that the functions 
(5.2) and (5.3) define the right-hand side of the 
mortality model (4.32) for ݐ > ܶ, i.e. they determine 
quaternions ܣሚ௫ + ܾ௫ܭ෩௧	 for future periods. Finally, 
the quaternions ܣሚ௫ + ܾ௫ܭ෩௧ can be transformed into 
fuzzy numbers ௫ܹ௧	using exponential membership 
function (ݖ)ߤ defined in (4.35). Moreover, ௫ܹ௧ can 
be defuzzified into crisp numbers ݓ௫௧, if necessary, 
using i.e. the centroid defuzzification formula  

௫௧ݓ  = ∑ 	௭∙ఓೈೣ೟(௭)భ೥సച∑ ఓೈೣ೟(௭)భ	೥సച ,						   (5.12) 

where ߳ > 0 denotes a small positive number. 
The values ݓ௫௧ represent crisp predicted log-

central death rates for	ݐ > ܶ, whereas ௫ܹ௧ are their 
fuzzy counterparts. 

6 DATA FUZZIFICATION  

We propose fuzzification of the log-central death 
rates ln݉௫(ݐ) for each ݔ = 0,1, … , ݐ ,ܺ = 1,2, … , ܶ 
using the method proposed by Nasibov and Peker 
(2011) which leads to determine parameters ߬௫,  ௫ߥ
for a fixed ݔ based on an empirical distribution of a 
sequence of data. Main results of their work are 
introduced in this section. 

Let us assume that {ݎ௧, ݐ = 1,2, … , ܶ}		is a 
sequence of ܶ observations in a data set. Assume 
that observation are grouped into a frequency table 
with ݇ mutually exclusive class intervals. 

Let us consider  the exponential membership 
function (4.1). To find estimates of parameters ߬ ≡ ߬௫,  ߥ ≡  the following criterion function will	௫ߥ
be used 

 ܳ = ∑ ൫ln(− ln (෤௜݌ − 2 ln൫೎ష೥೔ഓ ൯൯ଶ +௠ିଵ௜ୀଵ∑ ൫ln(− ln (෤௜݌ − 2 ln൫೥೔ష೎ഌ ൯൯ଶ,௞௜ୀ௠ାଵ 		  (6.1) 

where c denotes the midpoint of m-th class interval 
with maximum relative frequency ݌௠ defined as max(݌ଵ, ,ଶ݌ … , ݅	,෤௜݌ ௞), and݌ = 1,2, … , ݇ represent 
normalized frequencies for separate class intervals 

෤௜݌  = ௣೔௣೘ , ݅ = 1,2, … , ݇.    (6.2) 

It is worth noting that normalized frequencies 
(6.2) are included in the criterion (6.1) in order to 
find an exponential membership function of a fuzzy 
number by analogy to an empirical histogram.  

The next two expressions (6.3) and (6.4) give the 
minimum of (6.1) with respect to the unknown 
parameters ߬, ߥ (see Nasibov, Peker, 2011 for more 
details). We have 

 ߬ = exp ቀଶ∑ ୪୬(௖ି௭೔)ି∑ ୪୬(ି ୪୬௣෤೔)೘షభ೔సభ೘షభ೔సభ ଶ(௠ିଵ) ቁ, (6.3) 

ߥ  = exp ቀଶ∑ ୪୬(௭೔ି௖)ି∑ ୪୬(ି ୪୬௣෤೔)೘షభ೔సభ೘షభ೔సభ ଶ(௞ି௠) ቁ. (6.4) 

7 MODEL EVALUATION  

To illustrate theoretical discussions presented in the 
previous sectors dealing with the mortality model 
CNMM based on quaternion-valued functions the 
estimates of model parameters will be derived using 
the real mortality data set to compare the ex-post 
forecasting errors with errors yielded by the standard 
Lee–Carter model (LC). 

The analysis is based on the log-central death 
rates for males and females in Poland from the years 
1958–2014. The necessary data were sourced from 
the Human Mortality Database (www.mortality.org) 
and from the GUS database (stat.gov.pl). The 2001–
2014 mortality rates served the purpose of 
evaluating the ex-post forecasting accuracy, 
therefore were not used in estimations.  

Estimates of the parameters ܽ௫, ܾ௫, ݇௧ in the 
mortality model (4.32) were obtained with the log-
central age-specific mortality rates registered for 
males and females from the years 1958–2000. 
Parameters ߬௫,  ݔ ௫ were derived for each separateߥ
using the Nasibov–Peker method described in 
previous section, with {ݎ௧, ݐ = 1,2, … , ܶ} represented 
by standardized residuals from the ordinary least 
squares regression. To ensure the clarity of data 
presentation, the parameter estimates are plotted as 
Figures 1–3. 

Interpretation of the model parameters’ estimates 
is similar as in the standard Lee–Carter approach, 
meaning that estimates of ܽ௫, ݔ = 0,1, … , ܺ indicate 
the overall shape of the mortality schedule, the 
estimates of the time-varying parameters ݇௧, ݐ =1,2, … , ܶ approximate the general mortality trend 
and	ܾ௫, ݔ = 0,1, … , ܺ indicate the pattern of 
deviations from the general age profile.  

The conclusion that can be drawn by comparing 
two curves plotted in Figure 1 is that average 
mortality in almost all age groups was higher for 
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men than for women. Despite of this fact, the shapes 
of mortality profiles for both sexes seem rather 
similar, i.e. with a high mortality among children 
under two years of age, relatively low mortality for 
children aged 8–12 years, rising rapidly in the older 
age groups.  

The arrangement of curves in Figure 2 shows 
that in some age groups the absolute values of ܾ௫ are 
higher for males than for females, i.e. for young or 
middle ages. It means that the log-central death rates 
clearly are more sensitive to the changes of ݇௧ for 
males than those noted for females. What is more, 
some negative values of ܾ௫ are found, i.e. for males 
at age group (34, 67) years. They indicate that male 
mortality rates at those ages grew in some years 
when declining at other ages. 

Figure 3 shows that the overall mortality trend 
was generally declining, but at a varying pace. It is 
also worth noting that this general mortality trend 
(expressed by ݇௧) was faster in the population of 
females. 

The ex-post errors for the CNMM model were 
determined using crisp forecasts of log-central death 
rates (5.12). Two types of prediction accuracy 
measures were used, i.e. a mean squared error 
(MSE) and a mean absolute deviation (MAD). The 
results obtained indicate that the CNMM model 
generates markedly smaller ex-post errors in terms 
of MSE or MAD measures than the LC model. For 

instance, for the prediction period 2010-2014 the ex-
post errors obtained with the CNMM model were 
less than half of what was obtained with the LC 
model. 

8 FINAL REMARKS 

We should explain to the reader why we have 
applied the exponential functions while building the 
theoretical function space as a basis of our new 
mortality model. This approach has theoretical and 
practical advantages. Practical ones are delivered in 
the paper of Nasibov and Peker (2011), where an 
easy and useful fitting algorithm is proposed. Based 
on this algorithm it is possible to fit an exponential 
function to the empirical distribution of the observed 
data, or – as in our case – to the normalized 
frequencies of residuals in the regression model. 

The theoretical advantage of applying such 
membership functions are lying also in the desirable 
theoretical properties, because exponential functions 
can be transformed into the Hilbert spaces of 
quaternion valued functions. 

 
 
 
 

 

Figure 1: Parameters ax, x = 0,1,...,100 estimated with the CNMM model (males and females). 
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Figure 2: Parameters bx, x = 0.1,...,100 estimated with the CNMM model (males and females). 

 

Figure 3: Parameters kt, t = 1958,...,2000 estimated with the CNMM model (males and females). 

Probably, other functions offer better fit to the 
observed data but this subject will be considered in 
our further research. 
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