
Variability Specification and Resolution of Textual Requirements

Alberto Rodrigues da Silva and João Costa Fernandes
INESC-ID, Instituto Superior Técnico, Universidade de Lisboa, Portugal

Keywords: Requirements Specification, Variability Modelling, Reusability, Software Product Line.

Abstract: Since software product lines emerged, various techniques have provided for commonality and variability

modelling of functionally similar products within a given domain. However, so far the emphasis of

variability modelling proposals has mostly been on the solution rather than the requirements level, which is

mainly due to stakeholders often associating variability with the software implementation instead of the

problem analysis. Taken into consideration the positive impact that a high-quality system requirements

specification plays within a software project, this paper proposes and evaluates an innovative approach for

the modelling and management of variability at the requirements level, based on the Common Variability

Language (CVL), the OMG proposal for a domain-independent variability modelling standard. This

approach has been implemented as a core feature of the ITBox system, a Web-based collaborative platform

for the management of technical documentation.

1 INTRODUCTION

In order to meet specific customer needs, companies

often begin with developing customer-specific

versions of their original products by changing

and/or adding features. On one hand, defining a

product by a hierarchized structure of functional

capabilities, such as a feature model, does not

include neither cross-cutting capabilities, nor

multiple abstraction levels and constructs or views

(for instance, a traditional billing system can be

break-down into features such as customers,

suppliers, invoices, payments, products and services,

whereas a requirements specification for the same

product would involve not only those functional

capabilities, but also cross-cutting capabilities such

as non-functional requirements like security,

availability, usability, etc.) On the other hand, a high

number of customer-specific versions demands for a

high effort in variability and even project

management e.g. the specification of variation points

and respective variants. OMG’s CVL (Common

Variability Language) is the proposal of a domain-

independent language for specifying and resolving

variability (OMG, 2012).

Diverse authors argue that the activity of

variability modelling shall be initiated as early as

during the RE (Requirements Engineering) stage

(Coplien et al., 1998; Verelst et al., 2013; Silva et

al., 2014; Blanes et al., 2014). Given the vital role

that a well-defined SRS (System Requirements

Specification) document plays in the success of a

project (Davis, 2005), rigorous means of expressing

variability concerns in those documents are of

extreme importance. Despite this, little research has

investigated ways of applying the concepts of CVL

to the RE spectrum, which does not stand for a

recognition of OMG’s effort to establish a standard

targeted at the representation of variability. The

approach proposed in this paper, however, is

targeted at specifying the C&V (Commonalities and

Variabilities) of RE concepts.

Fernandes (2016) and Silva, Fernandes, and

Azevedo (2017) proposed an approach for

leveraging the concepts of CVL and its domain-

independence to the specification and resolution of

variability in the context of RE, specifically in

structured SRS documents defined with a rigorous

RSL (Requirements Specification Language). This

paper discusses how this approach was translated

into a core feature of the ITBox system, a Web-

based collaborative platform for the management of

SRSs. That feature is focused on the reusability of

requirements starting from C&V modelling.

The remainder of this paper is structured as

follows. Section 2 refers to the ITLingo initiative,

the RSL and the OMG’s CVL. Section 3 introduces

the ITBox collaborative platform. Section 4 details

the CVL-based variability approach to requirements

modelling supported by the ITBox. Section 5

Rodrigues da Silva, A. and Fernandes, J.
Variability Specification and Resolution of Textual Requirements.
DOI: 10.5220/0006810801570168
In Proceedings of the 20th International Conference on Enterprise Information Systems (ICEIS 2018), pages 157-168
ISBN: 978-989-758-298-1
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

157

provides for a demonstration case of that approach.

Section 6 presents and discusses the evaluation of

the proposed approach. Section 7 analyses some

related work. Finally, section 8 presents some

concluding remarks and future work.

2 BACKGROUND

2.1 RSLingo Initiative

RSLingo is a long-term research initiative in the

Requirements Engineering area (Ferreira and Silva,

2012; Silva, 2017). It is a linguistic approach to

improve the quality of requirements specifications.

Although being the most common and preferred

form of representing requirements, natural language

is prone to producing ambiguous and inconsistent

documents, hard to automatically validate or

transform into other kinds of artefacts.

Originally, RSLingo proposed two languages:

the RSL-PL (Pattern Language) (Ferreira and Silva,

2013a), designed to support the encoding of RE

linguistic patterns, and RSL-IL (Intermediate

Language) (Ferreira and Silva, 2013), a domain-

specific language designed to primarily support the

elaboration of SRSs. Together, these two languages

allow domain knowledge written in natural language

to be extracted, parsed and converted into a more

structure format, reducing its original ambiguity, and

creating a new and more rigorous SRS document

(Silva, 2015a). This process of extracting knowledge

and converting it into a more rigorous representation

has in itself a way of providing business

stakeholders with a better understanding of natural

language statements that represent requirements.

2.2 RSL

Recently, broader language, called RSL, has been

designed (Silva, 2017; Silva, 2018). It is a

comprehensive domain-specific language (Silva,

2015) designed to address general-purpose RE

activities such as the rigorous specification,

automatic validation, persistence and management

of software requirements. It is based on other

languages such as Pohl’s (Pohl, 2010), XIS* (Silva

et al. 2007; Ribeiro and Silva, 2014; Ribeiro and

Silva, 2014a) and SilabReq (Savić et al., 2015).

RSL is, in fact, a controlled natural language to

help with the production of SRSs in a more

systematic, rigorous and consistent way. It is a

language that includes a rich set of constructs

logically arranged into views according to multiple

RE-specific constructs situated either at the business

or at the system abstraction levels. These constructs

are defined as linguistic patterns and textually

represented by mandatory or optional fragments

(text snippets). For example, people and

organizations that can influence or can be affected

by the system are represented by the construct

Stakeholder. Likewise, the goals of business

stakeholders towards the system and the value it

represents to them are represented by the construct

BusinessGoal.

RSL is a process- and tool-independent language

that can be used and adapted by multiple users or

organizations with different processes, as well as

supported by multiple types of software tools.

However, in practical terms, RSL has been

implemented with the Xtext (http://www.eclipse.org/

Xtext/) framework (Bettini, 2016), which means that

RSL specifications are rigorous, and can be

automatically validated and transformed into other

representations and formats. A lightweight tool

support is provided with the ITLingo RSL Excel

Template (https://github.com/RSLingo/RSL-Excel-

Template) publicly available at GitHub. This Excel

template encloses different viewpoints (shortly

views) organized into sheets and described by a set

of properties for each one of them. As an example,

the key properties of the Goals view are shown in

Table 1.

Table 1: Properties of the Goals view from RSL.

Name Description Type/Values

Id Unique identifier of

the goal

string

Name Descriptive name of

the goal

string

Type Type of goal Concrete;

Abstract

Source Reference to the

stakeholder who has

or defined the goal

<stakeholder id>

PartOf Reference from the

current goal to its

parent goal

<parent goal id>

Description Description of the

goal

string

Priority Level of priority for

the goal

Must; Should;

Could; Won’t

Progress Current status of the

development

process

Plan; Design;

Develop; Test;

Deploy;

Concluded

ICEIS 2018 - 20th International Conference on Enterprise Information Systems

158

2.3 CVL

CVL is the OMG’s proposal of a domain-

independent language for specifying and resolving

variability over models of any MOF-based language

(OMG, 2012). Figure 1 shows the CVL execution

(or materialization) process, which involves the

following models: the Base Model, the Variability

Model, Resolution Models and Resolved Models.

Although involved in the CVL execution process,

the Base Model is not part of the CVL. It consists of

the definition of the product line in any MOF-

compliant language. This compliance makes of CVL

a domain-independent language. The Variability

Model is a collection of variation points, VSpecs

(further explained in section 3) and constraints used

in the specification of variability over the Base

Model. These concepts and the integration between

them constitute the core of the CVL. The Resolution

Model consists of a collection of VSpec resolutions

that resolve the VSpecs of a Variability Model.

Finally, the Resolved Model is a model produced by

the materialization of the Base Model according to a

Resolution Model.

Figure 1: Overview of the models involved in the CVL

execution process (extracted from (OMG, 2012)).

3 THE ITBox PLATFORM

ITBox is a Web-based collaborative platform for the

management of SRSs and other technical

documents. Although ITBox can support multiple

types of documents, this paper focuses only on

SRSs. Figure 2 shows a screenshot of ITBox. The

users of this platform can author, review and

validate requirements based on the constructs of the

RSL. Given that RE processes involve an intense

cooperation between many stakeholders (e.g.

customers, domain experts, requirements engineers

and software developers), the key design goals of

ITBox were the following.

Figure 2: The ITBox (variability point’s selection screen).

Provide for a collaborative environment to

support the management of SRSs with an easy to

learn and easy to use interface

The major purpose of ITBox is to provide for a

collaborative editor of SRS documents. Spreadsheet

editors, although lacking many of the fundamental

features of the commercial RE-dedicated tools, have

always been a popular choice to manage SRSs due

to their widespread availability and simple interface,

making them a good baseline tool for nontechnical

stakeholders. Until recently, one of the main

problems with this desktop software was to maintain

synchronized and updated versions of documents in

decentralized projects that require multiple

concurrent changes. However, recent cloud storage

services, such as Google Drive or OneDrive, offer

collaborative means to manage this type of

documents like automatic synchronization and

lightweight versioning. In that sense, ITBox uses

Google Drive and Google Sheets APIs to provide for

authoring in a cooperative environment. The first is

used for uploading the local copies of SRS

documents, sharing them and granting access

permissions to its users, whereas the second offers

all the data manipulation functions for extracting and

editing the information contained within the

documents.

Integrate with ITLingo concepts and

technologies

This key design goal is related to the adoption of

the constructs defined in the RSL. Although ITBox

allows for the usage of any format of SRS

document, all the features that involve data

manipulation expect the current version of the RSL

Excel template.

Variability Specification and Resolution of Textual Requirements

159

Figure 3: The ITBox Variability Modelling approach (represented as a BPMN diagram).

Include reusability and variability capabilities

The variability features have to do with the

variability modelling approach based on the CVL

that this paper reports, which is described in more

depth in the next section. It is of utter importance to

note that a model in not necessarily a graphical,

rather a representation of requirements and their

variability, in the case of this paper. The reusability

features provided by the ITBox contemplate the

management of SRS templates and of SRS libraries.

The former (management of SRS templates) allows

any previously developed template (defined in the

format of a spreadsheet) to be uploaded into the

platform and later used to create new SRSs based on

the structure of that template. The later

(management of SRS libraries) allows the creation

of libraries of coarse grained and potentially generic

requirements that can afterwards be added (and

edited if necessary) to any new project. The ITBox

variability modelling process is intimately related to

the management of SRS libraries.

4 THE ITBox VARIABILITY

MODELLING APPROACH

The ITBox variability modelling process closely

follows the approach proposed by CVL, as Figure 3

depicts. Complementarily, Figure 4 illustrates the

main concepts of the approach and the relationships

between them. A detailed description of the process

is presented below.

4.1 Create Variability Model

The variability modelling process begins with the

user selecting the SRS document (or SRS library) to

be used as Base Model. In ITBox the Base Model is

a SRS document based on the RSL Excel Template.

That document can either be part of a project already

in the platform or manually uploaded into the

platform (it has, though, to conform to the RSL).

ITBox, then, automatically parses the document and

extracts the requirements for each of the views

supported by RSL (e.g. Goals, Functional

Requirements and Quality Requirements).

Afterwards, the user can define variation points over

the extracted requirements. As defined by CVL,

variation points are specifications of “concrete”

variability in the Base Model and are part of

Variability Models. They indicate modifications that

the Base Model suffers during materialization.

Variation points are bound to VSpecs, which means

that the application of a variation point to a Base

Model, during materialization, implies the resolution

of a VSpec.

According to CVL, a VSpec is a specification of

“abstract” variability and is also part of a Variability

Model. In order to materialize a Base Model, a

Variability Model is applied over it and VSpecs are

resolved. The nature of the dependency is specific to

Business Process REBox Variability Modeling Approach - Business Process View

«RSL Excel»
Base Model

Create Variability Model Complete Variability Model

with Constraints

Execute the Materialization

Process

«ITBox Variab...
Variability Model

«ITBox Resolu...
Resolution Model(s)

«RSL Excel»
Resolved Model(s)Create Resolution Model(s)

Variability model creation (executed once)

Resolved model creation (executed multiple times, once per project)

ICEIS 2018 - 20th International Conference on Enterprise Information Systems

160

Figure 4: The ITBox Variability Model (represented as a UML class diagram).

the type of variation point. In ITBox, variation

points can be defined over (1) requirements

themselves and (2) their properties. Variation points

defined over a requirement are of the Existence

type, meaning that, during materialization, they will

be bound to a Choice VSpec. Variation points

defined over a requirement property are of Value

Assignment type, meaning that, during

materialization, they will be bound to a Variable

VSpec. Once the user has defined all the variation

points over the Base Model, ITBox automatically

generates the first part of the Variability Model: the

VarSpecs view. In CVL, each variation point

references a single VSpec. Figure 4 details the

variability binding model used by ITBox. VarSpec is

the name given by the ITBox approach to the

concept of VSpec in CVL. Table 2 presents the key

properties of the VarSpecs view. This view

introduces a new concept associated with VarSpecs

(which refers also to the concept of VSpec in CVL):

the VarToken. VarTokens are children VarSpecs

associated with a particular property of the

requirement in the Base Model. Due to space

limitations, we are not presenting a table with the

key properties of the VarTokens view. A VarSpec

can have any number of VarTokens, depending on

the number of properties previously considered as

variation points. VarSpecs, which associated with

requirements, are defined as of type Choice, which

means that, during materialization, its resolution

requires a binary (yes/no, true/false) decision to

define if that particular requirement is going to exist

in the Resolved Model. VarTokens are of type

Variable, which means that, during

materialization, its resolution requires providing a

resolution value of their specified type.

Table 2: Properties of the VarSpecs view from RSL.

Name Description Type/Values

Id Unique

identifier

String

Name Descriptive

name

String

Type VarSpec type VSReqGoal;

VSReqFunctional;

VSReqQuality

ElementId The associated

Requirement id

<Requirement Id>

ElementName The associated

Requirement

Name

<Requirement

Name>

VarTokens List of

VarTokens

 List of

<VarTokens>

Description Description of

the VarSpec

String

4.2 Complete Variability Model with
Constraints

After the first part of the Variability Model is

generated, the user is able to define constraints over

the VarSpecs that were created. In CVL, constraints

are used to restrict the allowed resolutions of

VSpecs and can be defined either globally or in the

context of a particular VSpec. To achieve this, CVL

relies on a restricted subset of the OCL (Object

Constraint Language). Both parent VarSpecs, as

Requirement

Attribute

VSpec

VarSpec

- Id: string

- Name: string

- Description: string

- Type: enum

VarSpecConstraint

- Id: string

- Name: string

- Type: enum

- VSpecsIds: .var.spec.Id

VSpec

VarToken

- Token: Requirement Attribute

Requirement

Id; Name; Description;

Source; PartOf; Priority

Goals; Functional

Requirements;

Quality Requirements. etc.

Variability Model

1..*

0..*

+Existence

1

+Choice

0..1 1..* 0..*

*

1

*

1

1

+Variable

0..*

Variability Specification and Resolution of Textual Requirements

161

Figure 5: An example case of the definition of variation points in ITBox, and the associated VSpecs and constraints,

together with a representation of the corresponding VSpecs tree.

well as their children VarTokens can be used when

defining the logical formulas or expressions that

express those constraints. An in-depth example of

this process is shown in section 5, as well as the

VarSpecsConstraints view from RSL.

4.3 Create Resolution Model and
Execute Materialization Process

The CVL-based variability modelling approach of

ITBox ends with the materialization process. As

stated in CVL, this process consists of transforming

a Base Model into a new document by resolving the

variation points in that model. Materialization is

driven by a Resolution Model which provides for

resolutions of VSpecs to which variation points are

bound. In ITBox, the information in the Variability

Model is stored in the database of the system. From

that moment on, whenever a new SRS document

creation process starts, the user is given the option

to, instead of creating a new empty document,

generate a new document by defining a set of

resolution values (i.e. creating the Resolution

Model) for an existing Variability Model. When this

happens, the platform crosses the information

contained in the Variability Model with the

Resolution Model provided by the user and checks

every constraint for possible inconsistencies. If no

inconsistency is found, a new Resolved Model is

produced.

5 RUNNING EXAMPLE

Figure 5 depicts a simple, yet effective example of

application of the proposed CVL-based variability

modelling approach of ITBox to a set of reliability-

specific quality requirements, which defines the

expected uptime of a system throughout a 1-year

period, required maintenance procedures and fault

logging details.

5.1 Create a Variability Model

5.1.1 Base Model

The first table in Figure 5 presents the Quality

Requirements view with the quality requirements

extracted from the SRS document of the example

case. This view uses a set of properties to

characterize each quality requirement: unique

identifier, name, type, subtype, metric and

corresponding value (if applicable), stakeholder who

owns the requirement, parent requirement (if

applicable), description and, finally, priority.

ICEIS 2018 - 20th International Conference on Enterprise Information Systems

162

5.1.2 Variability Model

The second table in Figure 5 shows an example of

the manual configuration of variation points. To

define a requirement as a variation point, the user

checks the VarPoint? field in the row

corresponding to that requirement. This action will

mark that requirement as an Existence variation

point, meaning that it will be bound to a Choice

VSpec. Furthermore, the field VarTokens is

intended for the user to select which of the

properties of that requirement will be modelled as

children variation points of the type Value

Assignment. In the example, from the five initial

requirements, two were selected as variation points:

QR_R_1 and QR_R_3. The first one has two

properties modelled as children variation points:

Description and Priority. However, not all

of the content from the Description field is to be

considered for variability purposes, only the

substring 99%, denoted by the suffix .value#99%.

The third table of Figure 5 depicts a simplified

version of the VarSpecs view (for the sake of space,

some of the properties mentioned in Table 2 were

omitted). This view is automatically generated by

the ITBox from the variation points previously

selected by the user. In the example, the user

selected the requirements QR_R_1 and QR_R_3,

which were transformed by ITBox into selected

variation points VS_1 and VS_2, respectively. This

process corresponds to the binding process of CVL,

in which each of the variation points is linked to its

abstract representation in the Variability Model (or

VSpec).

To the right of the third table in Figure 5 is the

tree representation of the VarSpecs, VarTokens and

VarSpecsConstraints in the example case. The

parent element corresponds to the system itself.

QR_R_1 and QR_R_3 requirements are represented

as Choice VSpecs. These elements are linked with

their parent by a dashed association, representing a

false IsImpliedByParent value, which means

that their materialization value is independent from

the one their parent takes. In the third level of the

tree three children VSpecs of type Variable

reside. They were generated by the VarTokens

defined in the third table and their corresponding

types.

The fourth table of Figure 5 illustrates a

simplified version of the VarSpecsConstraints view.

The constraints are neither generated by the ITBox

system, nor could they be since they are user-defined

by definition. The user defined constraints based on

the VSpecs defined in the VarSpecs table and on the

context of the system under specification. In Figure

5, a propositional constraint determines whether

(during materialization) the annual uptime of the

example case is greater than or equal to 99.9%. If so,

the value defined for the Priority VSpec has to

be Must. Note that both VSpecs involved in the

constraint are children of the same VSpec (QR_R_1,

with id VS_1). Thus, the constraint was defined in

the context of the parent node. It is possible,

however, to combine multiple parent VSpecs and

their children (e.g. VS_1->VS_2:Description

= “something”, which means that if QR_R_1

(VS_1) is resolved as true, then the Description

of QR_R_3 (VS_2) must be resolved to the string

“something”).

5.2 Create Resolved Models

As depicted in Figure 3, various Resolved Models

can semiautomatically be produced from a pair of

Base and Variability Models, and various resolution

models, with an appropriate tool support. For

instance, considering the example case, two

Resolved Models could be produced for two distinct

systems (system A and system B) as suggested in the

Tables 3 and 4, where the yellow background (or

grey in grayscale printings) of some text snippets

corresponds to the materialization process.

Table 3: Resolved Model for system A.

Id (*) Name (*) Description

QR_R_1 System

Uptime

The system should assure an

annual Uptime of 66%.

QR_R_3 Fault

Logging

The system shall register all

the faults occurred at runtime

in the log file of system A.

… … …

Table 4: Resolved Model for system B.

Id (*) Name (*) Description

QR_R_1 System

Uptime

The system should assure an

annual Uptime of 90%.

… … …

6 ITBox EVALUATION

To evaluate the approach to the modelling and

management of variability at the SRS level

supported by the ITBox platform, a pilot user test

session was conducted. The assessment focused on

three aspects of ITBox: (1) the overall usability and

Variability Specification and Resolution of Textual Requirements

163

the quality of its features; (2) its capabilities in what

requirements variability is concerned; and (3) the

general approach enclosed in the platform.
The session involved a group of 7 participants

with ages ranging from 22 to 28 years-old and with
at least a Bachelor of Science degree. All
participants had previous knowledge and academic
experience in the field of RE and half of them had
professional experience in the same field. The
session was conducted under the following
conditions: (1) it took place in a laboratory, therefore
a controlled environment; (2) the assigned tasks
were performed without previous use or learning of
the platform; (3) all participants had a computer with
a Web browser and Internet access; (4) while
participants performed the assigned tasks, their
behaviour and performance was directly observed;
and (5) participants were free to think out loud and
share ideas. All participants received a 20-minute
presentation of the ITBox fundamentals (concepts
and features), particularly its variability modelling
capabilities. Afterwards, they were given a script
describing a simple case study (the Billing System
example) and its corresponding SRS document in
the RSL-IL Excel template. The task consisted in
uploading the template into ITBox and used it to test
all the features of the platform within 40 minutes. In
the end, participants were asked to fill in a
questionnaire to rate the ITBox platform, its
variability capabilities and the overall RE approach.
The answers were expressed in the following scale:
0 (Not Applicable or Do Not Know), 1 (Very Low),
2 (Low), 3 (Medium), 4 (High) and 5 (Very High).
The evaluation of the overall usability of ITBox and
the quality of its features included 4 questions:

QP.1. How do you rate the overall usability of the

Web platform?

QP.2. How do you rate the usefulness of the main

RE productivity features (RSDoc Spreadsheet

Editor, Template Manager and RSLibrary)?

QP.3. How easy to learn (or how familiar) was the

main document editing tool (Google Sheets)?

QP.4. How suitable is the platform for a

collaborative management of Requirements

Specifications?

Table 5 summarizes the average score of the

answers to the questions regarding the overall

usability of ITBox and the quality of its features. In

general, scores were very positive, which implies

that the platform was successful at accomplishing its

general goals. The lowest score was given to

question QP.1, which demonstrates that the usability

of ITBox can still be improved, however the answers

to the other three questions were very positive,

which indicates that the participants considered the

features of ITBox to be useful and easy to learn.

Furthermore, the platform itself was considered very

suitable for the collaborative management of SRSs.

Table 5: Average score (in a scale of 0-5), by question, for

the overall usability of ITBox and the quality of its

features.

QP.1 QP.2 QP.3 QP.4

4 4.29 4.29 4.71

The evaluation of the capabilities of ITBox in

what requirements variability is concerned included

5 questions:

QV.1. How easy to understand was the overall

variability modelling process?

QV.2. How easy to understand were the concepts

(VarSpecs, VSpecs, VarTokens,

VarSpecsConstraints, etc.)?

QV.3. How do you rate the usefulness of the

variability modelling approach?

QV.4. How do you rate the simplicity of the

Variability Model creation phase?

QV.5. How do you rate the simplicity of the

Resolved Model creation phase?

Table 6 summarizes the average score of the

answers to the questions regarding the capabilities of

ITBox in what requirements variability is concerned.

Similarly to the previous questions package, in

general, scores were very positive, which means that

the platform was successful at accomplishing its

requirements variability goals. However, the scores

were slightly lower than the ones of the previous

questions package, especially those of questions

QV.1 and QV.2. This indicates that the participants

considered both the variability modelling process

and its concepts sometimes hard to understand,

which is relatively understandable since the proposal

is innovative and the participants were not

familiarized with it. Despite that, ITBox can still

incorporate informative tooltips and a detailed user

guide to better convey the variability process and its

terms.

Table 6: Average score (in a scale of 0-5), by question, for

the capabilities of ITBox in what requirements variability

is concerned.

QV.1 QV.2 QV.3 QV.4 QV.5

3.48 3.43 4.57 4 4.14

Finally, the evaluation of the general approach

enclosed in ITBox included 2 questions:

QA.1. How do you rate the productivity of ITBox

when compared to the traditional requirements

specification process?

ICEIS 2018 - 20th International Conference on Enterprise Information Systems

164

QA.2. How likely would you use this platform on

your own Requirements Engineering projects?

Finally, Table 7 summarizes the average score of

the answers regarding to the questions regarding the

general approach enclosed in ITBox. The score

obtained for both questions was highly positive,

which demonstrates that the participants considered

ITBox to be quite productive to specify requirements

as well as useful.

Table 7: Average score (in a scale of 0-5), by question, for

the general approach enclosed in ITBox.

QA.1 QA.2

4.43 4.43

As illustrated in Table 8, the results of the pilot

user test session were generally encouraging, with

positive scores in all of the 3 aspects of ITBox

analysed. Nevertheless, the variability modelling

process and its concepts can still be improved with

regards to its simplicity towards the user. Regarding

the relatively low number of participants, studies

have noted that a group of 5 testers is enough to

uncover over 80% of the usability problems in a

proposed solution (Nielsen and Landauer, 1993), so

the conclusion that the results extracted from the

pilot user test session are representative of what

could be expected from a bigger number of

participants can be drawn. Also, we believe 7

participants is a reasonable number for an

exploratory assessment to identify challenges

associated with the overall usability and features of

ITBox, its variability requirements approach and the

general approach enclosed in the platform.

Table 8: Average score (in a scale of 0-5) for each of the

aspects of ITBox analysed.

Platform Variability Approach

4.32 3.92 4.43

7 RELATED WORK

Coplien et al. (1998) argued that the analysis

decisions on C&V shall be made during the

requirements analysis stage, rather than during the

implementation stage by professionals who are not

so familiar with the implications and impact of such

decisions. They referred that early decisions on

C&V contribute to large-scale reuse and the

automated generation of family members. In 2002,

Bosch et al. also mentioned the need for describing

C&V within different modelling levels such as the

requirements one (Bosch et al., 2002).

Table 9 synthetizes prior research contributions

in what C&V at the analysis stage is concerned,

namely at the level of requirements representation

(e.g. with use case models). The most recent effort

to establish a unified variability language is CVL.

However, given that CVL is relatively new, not

much research has yet been conducted to define

clear ways of applying its concepts to the RE

domain. Research contributions referred in Table 9

between #1 and #9 are prior to the CVL, therefore,

they convey different approaches over variability

representation, including at the requirements point of

view, and they have contributed to the existence of

CVL.

Particularly research contribution #10, like RSL,

covers a comprehensive set of RE concepts and

relationships between them, and avoids having to

keep the consistency between requirements models

and variability models, yet it is not compliant with

CVL. The same goes for the research contribution

#11 in what compliance with the CVL is concerned.

So far, CVL has not been specifically applied to RE.

The approach proposed in this paper, however, is

targeted at specifying the C&V of RE concepts in

compliance with CVL. It achieves this because RSL

allows encoding rigorous SRSs, but also because it

is possible to associate variability points in a non-

intrusive way for many of the RSL constructs (e.g.

goals, quality requirements, actors and use cases).

8 CONCLUSION

This paper discusses a CVL-based approach for

modelling variability in requirements specification

documents. The approach was integrated into the

ITBox1 platform and uses the SRS template based on

the multiview architecture defined in the RSL as its

Base Model. RSL is a language that includes a rich

set of constructs logically arranged into views

according to multiple RE-specific constructs situated

either at the business or at the system abstraction

levels. Those constructs are defined as linguistic

patterns and textually represented by mandatory or

optional fragments (Silva, 2017; Silva, 2018).

RSL is a process- and tool-independent language

that can be used and adapted by multiple users or

organizations with different processes, as well as

supported by multiple types of software tools.

However, in practical terms, RSL has been

1 ITBox currently available at http://itbox.inesc-id.pt

Variability Specification and Resolution of Textual Requirements

165

Table 9: Research contributions concerned with the representation of requirements variability.

Author,

year

[reference]

Super-

structure

Concepts related to C&V Key Contribution

1 Muthig

(2002)

UML: use

cases

«variant» use cases The «variant» stereotype, targeted at representing

variability in use cases

2 Maßen and
Lichter

(2002)

UML: use
cases

Option, alternative and optional
alternative use cases

Extension to the UML metamodel to incorporate two
new relationships to represent variability at the level of

requirements modelling with use cases

3 Halmans and
Pohl (2003)

UML: use
cases

Mandatory and optional variation
points

Extensions to use case diagrams to represent and
communicate variability relevant to the customer

(additional graphical elements proposed to explicitly

represent variation points and variability cardinality in
use case diagrams)

4 Gomaa

(2004)

UML: use

cases

«kernel», «optional» and

«alternative» use cases

«common feature», «optional feature»
and «alternative feature»

«zero-or-one-of feature group» and

«exactly-one-of feature group»

PLUS (Product Line UML-based Software engineering),

a model-driven approach for variability analysis, namely

at the requirements (use cases) level

5 Gomaa and

Shin (2004)

UML: use

cases

Kernel use case

Optional use case

Alternative use case

Multiple-view variability metamodeling approach, using

UML, namely in use case modelling

6 Webber and
Gomaa

(2004)

VPM Four types of variation points:
Parameterization

Information hiding
Inheritance

Callback

VPM (Variation Point Model), a method that
contemplates a modelling view to capture requirements

together with variation points during the domain analysis
phase

7 Bachmann et

al. (2004)

No

specific
name

Variation point

Variant
Asset

Rationale

Variation (meta)model for the representation of

variability as a dedicated view connected to all the other
views of a system, namely the requirements view (e.g.

use cases)

8 Bühne et al.
(2005)

No
specific

name

Mandatory/optional variation point
Variant

Requirements artefact

Metamodel representing the structure of variability
information used for the documentation of requirements

across a single SPL or a set of SPLs, based on the

metamodel of Bachmann et al.

9 Bayer et al.
(2006)

CVM Model and variation elements
Variability specification (variability

constraint and transformer)

Variation and resolution models
(resolution elements: value resolution

and type resolution)

CVM (Consolidated Variability Metamodel), which
systematizes different kinds of variability recurrently

present in SPL models and contemplates different

approaches of variability capturing, namely UML and
DSLs

10 Moros
(2008)

REMM Requirement
Mandatory level type

Reusable and product catalogues

Reusable and product requirements
Parameter and parameter instance

…

REMM (Requirements Engineering MetaModel), which
allows specifying catalogues of reusable requirements

models, as well as defining specific product

requirements, namely by reusing previously modelled
requirements; furthermore, REMM allows requirements

engineers to define, in the same model, both optional

and parameterized requirements, which usually are
represented in feature models on the side

11 Alférez et al.

(2010)

VML4RE Commonalities

Variabilities (optional feature,
variation point and variant)

VML4RE (Variability Modelling Language for

Requirements), which provides for a SPL requirements
modelling approach, comprised of variability

identification at the feature modelling level, as well as of

domain requirements description by means of use cases
and activity diagrams, and ultimately a (meta)model to

relate modelled features and requirements

12 Rouillé et al.

(2012)

No

specific
name

C&V concepts inherited from the CVL Model-driven approach for the automatic derivation of

processes from software process lines using CVL to bind
requirements variability to process variability

13 Oliveira et

al. (2013)

FeDRE Mandatory, optional and alternative

(OR or XOR) features
Requirement, requirements

specification, use case…

FeDRE (Feature-Driven Requirements Engineering)

approach, in which variability modeled through features
is realized into functional requirements, as well as

features themselves are further taken as input for use

case specification

ICEIS 2018 - 20th International Conference on Enterprise Information Systems

166

implemented with the Xtext framework, which

means that RSL specifications are rigorous, and can

be automatically validated and transformed into

other representations and formats. A lightweight tool

support is provided with the ITLingo RSL Excel

template2 publicly available at GitHub.

To provide for distributed access to its SRS

documents, as well as data manipulation features,

the ITBox Web-based platform extensively uses two

Google Web APIs: Google Drive API and Google

Sheets API. Thanks to this, the ITBox variability

modelling approach can automatically extract the

information in a SRS document, modify it, and

generate new documents and views if necessary.

This allowed automating the application of CVL

concepts to the context of RE Future work will focus

on expanding the views supported by RSL, allowing

to progress from modelling variability at the level of

Goals, Functional Requirements and Quality

Requirements to modelling variability at the level of

Stakeholders, Entities, Use Cases, etc., enabling a

much wider scope of variability points within the

spectrum of RE concerns. Furthermore, the long-

term goal of this research is to fully integrate this

variability modelling process within the ITLingo

approach for domain knowledge extraction from

natural language documents, expanding the source

of the variability modelling process from semiformal

SRS documents to more unstructured ad-hoc SRSs

in natural language.

ACKNOWLEDGEMENTS

This work was partially supported by national funds

under FCT projects UID/CEC/50021/2013 and

CMUP-EPB/TIC/0053/2013.

REFERENCES

Alferez, M., et al., 2010. Multi-view composition

language for software product line requirements.

LNCS, 5969:103–122.

Bachmann, F., et al., 2004. A Meta-model for

Representing Variability in Product Family

Development. 5th International Workshop on Product-

Family Engineering (PFE-5) Springer-Verlag.

Bayer, J. et al., 2006. Consolidated Product Line

Variability Modeling," in Software Product Lines -

Research Issues in Engineering and Management,

Springer-Verlag.

2 https://github.com/RSLingo/RSL-Excel-Template

Bettini, L., 2016. Implementing Domain-Specific

Languages with Xtext and Xtend. Packt Publishing

Ltd.

Blanes, D., González-Huerta, J., and Insfran, E., 2014. A

multimodel approach for specifying the requirements

variability on software product lines. 23rd

International Conference on Information Systems

Development, 329–336.

Bosch, J., et al., 2002, "Variability Issues in Software

Product Lines," in 4th International Workshop on

Product Family Engineering (PFE-4) Bilbao, Spain:

Springer-Verlag.

Bühne, S., Lauenroth, Pohl, K., 2005. Modelling

Requirements Variability across Product Lines," in

13th IEEE International Conference on Requirements

Engineering, IEEE Computer Society.

Coplien, J., Hoffman, D., Weiss, D., 1998. Commonality

and Variability in Software Engineering, IEEE

Software, vol. 15, pp. 37-45.

Davis, A., 2005. Just enough requirements management:

Where Software Development Meets Marketing.

Fernandes, J., 2016. REBox: Collaborative Environment

for Requirements Engineering, MSc Thesis, IST,

Universidade de Lisboa.

Ferreira, D., Silva, A. R. 2013a. RSL-PL: A Linguistic

Pattern Language for Documenting Software

Requirements, in Proceedings of RePa’13, IEEE CS.

Ferreira, D., Silva, A.R, 2012. RSLingo: An Information

Extraction Approach toward Formal Requirements

Specifications. In Proc. of the 2nd MoDRE workshop.

IEEE, 39-48.

Ferreira, D., Silva, A.R., 2013. RSL-IL: An Interlingua for

Formally Documenting Requirements. In Proc. of the

3rd MoDRE workshop. IEEE CS.

Gomaa, H., 2004. Designing Software Product Lines with

UML: From Use Cases to Pattern-Based Software

Architectures. Addison-Wesley.

Gomaa, H., Shin, M. E., 2004. Multiple-View Meta-

modeling Approach for Variability Management in

Software Product Lines," in 8th International

Conference on Software Reuse (ICSR-8), Springer-

Verlag.

Halmans, G. Pohl, K., 2003. Communicating the

Variability of a Software-Product Family to

Customers, Software and Systems Modeling, vol. 2,

pp. 15-36.

Maßen, T. v. d., Lichter, H., 2002. Modeling Variability

by UML Use Case Diagrams, in International

Workshop on Requirements Engineering for Product

Lines (REPL 2002).

Moros, B., Vicente-Chicote, C., Toval, A., 2008.

Metamodeling variability to enable requirements

reuse. CEUR Workshop Proceedings, 337:140–154.

Muthig, J. D., 2002. Product Line Modeling with Generic

Use Cases, in Workshop on Techniques for Exploiting

Commonality Through Variability Management,

Springer-Verlag.

Nielsen, J., Landauer, T. K., 1993. A Mathematical Model

of the Finding of Usability Problems. In Proceedings

of the INTERACT '93 and CHI '93. ACM.

Variability Specification and Resolution of Textual Requirements

167

Oliveira, R. P., et al., 2013. A feature-driven requirements

engineering approach for software Product Lines.

Proceedings of 7th Brazilian Symposium on Software

Components, Architectures and Reuse.

OMG, 2012. OMG Common Variability Language (CVL)

OMG Revised Submission.

Pohl, K., 2010. Requirements Engineering: Fundamentals,

Principles, and Techniques, Springer.

Ribeiro, A., Silva, A. R., 2014. XIS-Mobile: A DSL for

Mobile Applications, Proceedings of the 29th Annual

ACM Symposium on Applied Computing (SAC),

ACM.

Ribeiro, A., Silva, A. R., 2014a. Evaluation of XIS-

Mobile, a Domain Specific Language for Mobile

Application Development. Journal of Software

Engineering and Applications, 7(11), 906-919.

Rouille, E., et al., 2012. Leveraging CVL to manage

variability in software process lines. Proceedings Asia-

Pacific Software Engineering Conference, APSEC,

1:148–157, 2012.

Savić, D., et al., 2015. Use Case Specification Using the

SILABREQ Domain Specific Language, in

Computing and Informatics Journal, 34(4):877–910.

Silva, A. R., et al., 2014. Towards a System Requirements

Specification Template that Minimizes Combinatorial

Effects, Proceedings of QUATIC’2014 Conference,

IEEE CS.

Silva, A. R., 2015. Model-driven engineering: A survey

supported by the unified conceptual model. Computer

Languages, Systems & Structures, 43(October 2015),

139-155.

Silva, A. R., 2015a. SpecQua: Towards a Framework for

Requirements Specifications with Increased Quality,

in Lecture Notes in Business Information Processing

(LNBIP), LNBIP 227, Springer.

Silva, A. R., 2017. Linguistic Patterns and Linguistic

Styles for Requirements Specification (I): An

Application Case with the Rigorous RSL/Business-

Level Language, Proceedings of EuroPLOP’2017,

ACM, 2017.

Silva, A. R., 2018. Rigorous Requirements Specification:

Specification of Use Cases with the RSLingo RSL

Language. INESC-ID Technical Report.

Silva, A. R., et al., 2007. XIS – UML Profile for eXtreme

Modeling Interactive Systems, in Proceedings of the

MOMPES 2007, IEEE Computer Society.

Silva, A. R., Fernandes, J., Azevedo, S., 2017. Variability

Aspects at a Textual Requirements Specification

Level. IEEE 25th International Requirements

Engineering Conference Workshops (REW), IEEE

Computer Society.

Verelst, J., et al., 2013. Identifying Combinatorial Effects

in Requirements Engineering, Proceedings of Third

Enterprise Engineering Working Conference (EEWC

2013), Advances in Enterprise Engineering, LNBIP,

Springer.

Webber, D. L., Gomaa, H., 2004. Modeling Variability in

Software Product Lines with the Variation Point

Model, Science of Computer Programming, vol. 53,

pp. 305-331.

ICEIS 2018 - 20th International Conference on Enterprise Information Systems

168

