
From ETL Conceptual Design to ETL Physical Sketching

using Patterns

Bruno Oliveira1 and Orlando Belo2
1CIICESI, School of Management and Technology, Porto Polytechnic, Felgueiras, Portugal

2ALGORITMI R&D Centre, University of Minho, Campus de Gualtar, Braga, Portugal

Keywords: ETL Sketching, Patterns, Pattern-oriented Approach, Conceptual Design, BPMN, Logical Design, ETL

Physical Implementation.

Abstract: The ETL systems development has been the focus of many research works, addressing the complexity and

effort required for their implementation and maintenance, and proposing several techniques that represent

valuable contributions to improve the ETL final quality. In the last few years, we presented a pattern-oriented

approach for developing these systems based on patterns that encapsulate well-known design techniques.

Basically, patterns embed common practices using abstract components that can be configured for enabling

its instantiation according to each pattern rule. However, each ETL system is unique, dealing with very

specific data structures and decision-making requirements. Thus, several operational requirements need to be

considered and system correctness is hard to validate, which can result in several implementation problems.

In this paper, we present a conceptual approach based on patterns covering the main ETL phases, ranging

from the conceptual design to its enrichment at logical phases that can be used for the generation of executable

programs.

1 INTRODUCTION

Design methodologies are used across software

development areas for improving software quality,

covering specific domain requirements and different

design steps. Complex software pieces are usually

supported by structured development processes

approaching all development stages, from

requirements identification to the implementation and

maintenance phases. Data Warehouse Systems

(DWS) projects represent a huge job involving

personnel with different knowledge domains. The

business users are the target customer since they will

use DWS for exploring data and planing next tactical

and strategic decisions. However, they have an

important role in the development of a data

warehouse since they know how the business works

and together with IT/DWS professionals and

consultors, represent an important entity to share and

communicate in order to best assure the system

quality and adequacy. The evaluation of a DWS

highly depends on the data stored in a Data

Warehouse (DW) repository. The importance of this

aspect cannot be ignored by the development team. A

DW is a centralized repository that provides the

unified vision over company data, and for that reason

data should be carefully managed in order to avoid

mistakes that can compromise system usability.

Additionally, the data sources involved differ in

several aspects that contribute to disparities not only

at structural level but also at the instance level.

Legacy systems, specific business processes variants

in company’s department or even bad practices when

dealing with operation systems (sometimes even the

business managers do not know these problems),

represent huge challenges to an ETL (Extract,

Transform and Load) team, assuring that all the data

involved in re represented in the same structure, but

also for guaranteeing that the data involved is

consistent and valid according to business rules.

In this paper, we present a methodology for ETL

conceptual modelling, the necessary means for

mapping produced conceptual models to logical

models, and consequently to correspondent physical

primitives, with the possibility to be executed directly

in a commercial tool. The paper is organized as

follows: section 2 presents a brief related work for

providing some important findings that contributed to

the development of the presented approach; section 3

presents an introduction to the pattern-oriented

262
Oliveira, B. and Belo, O.
From ETL Conceptual Design to ETL Physical Sketching using Patterns.
DOI: 10.5220/0006807702620269
In Proceedings of the 20th International Conference on Enterprise Information Systems (ICEIS 2018), pages 262-269
ISBN: 978-989-758-298-1
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

approach we developed and the established

conceptual models based on ETL patterns following

a simple case study; section 4 highlights the approach

idealized in order to allow the construction of logical

and physical models based on the developed

conceptual representation. Finally, section 5 presents

some conclusions and findings about the work done.

2 RELATED WORK

The general idea of using software patterns to build

ETL processes was first explored by Köppen

(Köppen et al., 2011) that proposed a pattern-oriented

approach for supporting ETL development. A general

description for a set of patterns such as aggregator,

history and duplicate elimination was provided then

along with important aspects related to the

composition and relationship between properties,

describing constraints applied to the use of each

pattern. The patterns were presented only at the

conceptual level, lacking to support patterns

instantiation for execution primitives. However, since

ETL processes support very specific needs related to

DWS requirements, they can be handled in several

ways. The pattern-oriented approach presented here

differs from the work presented by Köppen since a set

of configurable components that can be configured

and used in different ETL development phases are

provided, covering initial design phases for producing

skeletons that can be enriched to allow its mapping to

execution primitives, which we may refer as ETL

physical sketching. Fine-grained tasks are

encapsulated and generated inside these components,

resulting in a new ETL development level, defined

using an abstraction layer that simplifies and carries

the acquired knowledge between projects.

We idealized the development process using three

layers: the conceptual phase describing which

patterns are being used and the workflow constraints

applied to their usage, the logical phase describing

additional properties to enrich the previous

conceptual models with detail that can be used at the

physical model for generating an initial skeleton of

the ETL implementation, at least.

For conceptual representation we choosed the

BPMN (Business Process Model and Notation), a

notation that was first explored by Akkaoui and

Zimanyi (2009) for ETL conceptual modelling,

covering also its mapping and execution through the

use of BPEL language. Later, they reinforced their

original ideas proposing to model ETL generic

processes, independently from their potential support

platforms (Akkaoui et al., 2011). Their approach

revealed a considerable potential, particularly in what

was concerned with the mapping of conceptual

models in a set of execution primitives.

The findings presented by Akkaoui et al. (2011)

revealed that conceptual model specification is quite

appropriate since BPMN can represent with accuracy

the most common ETL tasks. We explored BPMN to

create several ETL layers using the “sub process”

activities, coordinated with particular BPMN

elements that are very powerful and well known by

many companies and professionals of today. BPMN

was developed for supporting process execution with

constructs (essentially in its 2.0 version), allowing for

the representation of workflows at the physical level

with the ability to support its execution. Using a very

practical way, these authors show how the BPMN

notation, originally designed for modelling business

processes, could be successfully adopted for ETL

systems modelling and interpreted by computers

using the interchangeable formats available to

support BPMN representation. However, one of their

main flaws is related, precisely, with their

expressiveness that results in several ways for

representing the same scenario, resulting in

ambiguous processes that are difficult to map to a set

of execution primitives. In fact, this was analysed and

discussed by several authors (Dijkman et al., 2008;

Ou-Yang and Lin, 2008).

The construction freedom that BPMN provides

generates also some problems related to business

processes reliability, which can result from an

inconsistent identification of business requirements,

mainly due to the methods or model validations that

are typically manual and error-prone. We believe we

can minimize these problems using ETL patterns not

only for conceptual representation but also for logical

representations using configurable properties

expressed with a specific language that can be

embedded in the BPMN modelling.

3 REQUIREMENTS ANALYSIS

AND CONCEPTUAL DESIGN

The use of software patterns is a reuse-based

technique often applied in software developing on a

lot of different domains (Gamma et al., 1994),

supporting component reuse techniques and sharing

the acquired knowledge across applications. Thus,

not only the time and costs needed for software

development can be reduced, but also the use of well-

proven techniques is guaranteed, contributing to final

system quality. Creating these reconfigurable

From ETL Conceptual Design to ETL Physical Sketching using Patterns

263

Figure 1: ETL elementary tasks (a) and extraction phase representation (b).

components, avoid the need to rewrite some of the

most repetitive tasks that are used regularly. Several

tasks, such as surrogate key process generation, data

quality enhancement procedures or slowly changing

dimensions are just some few examples of usual

procedures that are considered standard to deal with

specific ETL tasks. This way, users can focus on more

general requirements, leaving the complexity of its

implementation to others development steps.

Consequently, ETL designers only need to provide

configuration metadata to enable pattern instantiation

for its physical implementation.

The concept of a pattern was idealized as “core”

that encapsulates a set of pattern rules for supporting,

namely, specific operational requirements and the

logic behind it, the input and output interfaces to

communicate both with ETL workflow and data layer

to produce specific instances, and the communication

layer with other patterns. Each pattern provides the

construction rules to sustain well-formed ETL

workflows based on a specific configuration. The

“throwable” and “log” pattern components represent

additional ETL metadata that is used to support the

error and log strategies for handling errors and pattern

unexpected events. Using the communication layer,

the “throwable” pattern component uses the input

configuration to handle error or exception scenarios

through the application of specific pre-configured

strategies for each pattern. The unexpected scenarios

that cause critical failure scenarios can be configured

to use specific procedures to maintain data

consistency. For example, the process can be aborted

and use a rollback strategy, the performed tasks are

reverted to maintain data in a consistent state. The

“log” pattern component can be used together with

“throwable” component to store the events related to

unexpected scenarios, or used for specific support

tasks related to the identification of data lineage,

bottlenecks or errors. Thus, the ETL process can be

analyzed and, for example, specific error trends can

be found and specific strategies to minimize them can

be followed for reducing the ETL resources needed

for subsequent loads, eventually. Log structures can

vary in granularity and scope and its entries can be

triggered by conditions associated with pattern

internal behavior or by more general conditions (such

as achieved milestones).

For an initial ETL planning, we idealize the same

constructs that can be used for ETL pattern-oriented

development, using patterns such as:

 Changing Data Capture, representing the

extraction procedures to carry source data to

Data Staging Area.

 Data Quality Enhancement, representing a set

of data transformations required for cleaning,

conforming and standardizing data,

considering the target repository constraints.

 Data Conciliation and Integration, representing

the conciliation and integration logic needed to

obtain an integrate view of the data gathered

from heterogenic sources.

ICEIS 2018 - 20th International Conference on Enterprise Information Systems

264

 Intensive Data Loading, representing efficient

strategies to load data from data staging area to

the target data warehouse repository

The use of conceptual models represents a crucial

step for software lifecycle development, providing an

abstract view that simplifies the problem

representation, helping designers to better understand

processes and at the same time to provide a

framework to discuss the system to develop. As

already discussed, several contributions concerning

the ETL development simplification were presented

so far, with some of them proposing the use of well-

known modelling languages such as the use of BPMN

(El Akkaoui and Zimanyi, 2009) for ETL conceptual

modelling.

To better understand how these aspects can be

linked together, let us consider a solid urban waste

collection process realized in a city (Belo et al.,

2015b). This process represents a significant impact

in any city daily life and entities responsible for urban

zones are more worry about the effectiveness of their

waste collection processes implementation, to

maximize the adopted solutions they adopted. To

cover some of the most relevant information needs

that managers usually have on waste collection

management, a business intelligence system

especially oriented to monitor, control and predict

waste management services is planned.

The company we simulate uses a set of

spreadsheet files to store all the data related to the

collection activities. The “Picking” spreadsheet

contains the year and the reference of the containers

that were collected in a specific month/day, the

“RecycleCentreResume” spreadsheet identifies the

recycle centres data and the related containers

associated. Both spreadsheets are related based on

recycle centre address.The Picking spreadsheet

structure is composed of a set of garbage picking

activities performed every day for a specific city in

each month. After the month and day identification

(first two rows), for each type of garbage collected:

‘P’ - Plastic, ‘C’- Cardboard, and ‘G’ – Glass (third

row), the container reference placed in the remaining

rows identifies the container that was collected. The

“RecycleCentreResume” spreadsheet stores the

relationship between containers and recycling centres

for each city. Basically, each recycle centre contains

at least three containers for the garbage types

described before (Plastic, Cardboard, and Glass). The

company uses several recycling centres composed of

the three types of containers and spread across several

locations. According to a set of routes, the company

picks the containers of each recycling centre, storing

each garbage pickup activity using the described

spreadsheets.

To simplify ETL development, a task clustering

technique to group the set of finer grain tasks into a

collection of tasks, flows and control primitives is

presented, providing a method to organize ETL tasks

using abstraction layers to serve specific stakeholders

in different project phases. The conceptual

representation can be organized using several layers

with different detail levels based on the project needs.

To support different abstraction levels, the BPMN

“collapsed sub processes” can be used to provide

process conceptualization to describe complex

constructs using distinct levels. This is very helpful

for high-level users when presenting, discussing and

understanding process concepts.

For showing how BPMN can be customized for

designing ETL processes, following the pattern-

oriented approach presented, a subset of BPMN

constructs were selected to compose the conceptual

palette of constructs considered for the development

of ETL conceptual models. To describe ETL

activities, atomic and composite tasks are represented

using “Task” and “Sub process” elements,

respectively. Both can be enriched using specific

markers (following the same combination restrictions

imposed by BPMN specification) to describe specific

operational requirements. For example, the “Standard

Loop” can be used to describe a row-by-row data

processing, the “multi-instance” marker to describe

multiple activity instances that handle specific sets of

data, and “Compensation” to represent compensation

processes responsible to undone/compensate the

actions performed by some activity. Additionally, sub

processes can be used to express a hierarchical

workflow structure, encapsulating several ETL

logical parts inside specific containers, helping to

represent processes in a more readable way. The ETL

patterns are represented using sub processes, more

specifically using the “Transaction” sub process type,

grouping a set of activities that constitute a logical

unit of work that must be executed atomically. To

distinguish between ordinary BPMN sub processes

from ETL patterns, two approaches can be followed

to identify each pattern: “Text annotations” can be

used not only to identify patterns but also to provide

a pattern general description. Influenced by the work

presented by (El Akkaoui and Zimanyi, 2009), we use

the BPMN “Text Annotation” artefacts to enrich

conceptual model, exposing specific semantic

concepts to describe pattern details following a

specific structure. The BPMN “Events”, “Gateways”,

“Flow Objects”, “Message Flow”, “Data” and

“Artefacts” have the same semantic when are used in

From ETL Conceptual Design to ETL Physical Sketching using Patterns

265

Figure 2: ETL Conceptual model representation using BPMN.

traditional BPMN processes: The BPMN “Pools” and

“Lanes” are used to represent process levels that

describe different views and roles involved in the

modelled process. These perspectives allow for the

representation of several ETL layers useful to support

different development stages. While BPMN pools are

used to represent different process views, the use of

“Lanes” allows for the representation of different

entities that can be used for the representation of

specific data sources and process variants. The

“Collapsed pools” are also used to hide process logic

and for the representation of the exchanged messages

between pools.

To show how these BPMN artefacts can be used

for ETL conceptual modelling - Figure 1 presents a

simple example. The most generic layer - “Layer 1”

(Figure 1a) represents the most abstract level that can

be derived from the three main ETL phases (Extract,

Transform and Load). The ETL extraction and

transformation processes are presented at Layer 2

(Figure 1b), representing the extraction procedures

applied to the source data. Two BPMN “parallel

gateways” are used to indicate that tasks belonging to

the flow comprised by the parallel gateways don’t

have any dependency. The ETL extraction processes

– “Layer 2” (Figure 1b) – begins with data extraction

tasks applied over the spreadsheet files (“Spreadsheet

Extraction” sub process) and a relational database

(“Relational Extraction” sub process). These are the

two types of data storage approaches used by

company branches. To described this, we used a

BPMN pool with two internal lanes, representing

each one a different role related to the data source

nature (relational or spreadsheet). Each BPMN sub

process is composed of several finer grain tasks

grouped together that can be described in more

detailed layers. Additionally, BPMN artefacts (“Data

Object” and “Data Store”) were used to describe the

nature of each data repository (structured data for data

stores artefacts and semi-structured data for data

objects artefacts) for each sub process with BPMN

“Data association” artefacts describing the

relationship directionality: from sub processes to

Data Artefacts indicating the output data flow and

from data artefacts to sub processes, indicating input

data flows.

After data extraction to the DSA, the

transformation/normalization processes take place.

The Figure 2, presents the “Layer 3” (with patterns

instantiation) for the “Transformation” sub process

ICEIS 2018 - 20th International Conference on Enterprise Information Systems

266

Figure 3: DSL excerpt for a Differential extraction pattern configuration.

from Figure 1a. Several pattern instances are used for

aligning source data structures with the target DW

schema requirements with each pool representing

data transformation procedures applied to the

“Recycling centre”, “Container” and “Picking

”entities for data previously extracted. To deal with

the “Recycle centre” data, we used three DQE

patterns instances for transforming data from each

Recycle centre: “#DQE# - DataValidation”, “#DQE#

- StateStandardization” and “#DQE# -

BatteryStandardization”, which are used for data

instances validation. For each container, the several

DQE patterns instances are applied. The “#DQE# -

Data Transform JOIN” used to map the containers

data catalogue with the containers used for the

picking activities processed, the “#DQE# - Duplicate

Elimination” used to remove duplicate containers

(because the same container can be collected several

times), and the “#DQE# - DataValidation” used to

check containers reference values, ensuring the

consistency of their code with their type.

For the data related to picking activities, we need

to transform the original schema to get the data

according to the structure of a typical relational table.

Data is decomposed using the “#DQE# -

SchemaTransform” pattern instance from the

“Picking Fact” pool, generating distinct rows based

on each garbage picking activity. Next, when the

pattern instances from the other pools are executed

(the convergent BPMN gateway ensures that) and

having the data about recycle centres and containers

normalized, we can proceed to the mapping between

containers, recycle centres and picking activities to

identify the correct correspondences between them.

For that reason, we should develop supplementary

efforts for identifying the associated containers for

each recycle centre (“#DQE# - DataTransform

JOIN”) Any record without correspondence or having

conflicts can be managed through the definition of a

specific exception handler policy for managing

unexpected situations and ensuring the process

consistency (not included in the BPMN

representations).

4 LOGICAL DESIGN AND

PHYSICAL DETAILS

The ETL modelling activity should reflect different

control flows and data between the represented tasks.

Using BPMN for the ETL specification allows the use

of expressive notation and orchestration mechanisms

that can be used for subsequent development stages.

The use of BPMN in this type of modelling allows the

From ETL Conceptual Design to ETL Physical Sketching using Patterns

267

control flow representation between the ETL process

activities, as well as the characterization and

description of the activities to implement. The real

challenge relates to the combination of these two

types of flows in one single representation model and,

therefore, in a single tool (Wilkinson et al., 2010).

While BPMN conceptual models can be used to

produce (at least) a first version of the target system a

domain-specific language (DSL) can be used to

express each pattern behaviour to reduce ambiguities

associated to BPMN conceptual models. The DSL is

used for pattern configuration to produce logical

models with the ability to describe in more detail the

logic behind each pattern. The developed DSL covers

the general requirements for each pattern category,

providing a powerful way to configure each pattern

behaviour.

The Figure 3 shows an example of the syntax rules

applied to the language we are being developed (Belo

et al., 2015a; Oliveira and Belo, 2015), with a

correspondent example of its instantiation to support

container’s data load. The “Source” and “Target”

blocks describe input and output metadata, while the

data and type properties describe the name and type

of each data object used. These blocks can be derived

from the annotations used in the conceptual model

specification. The “FieldMapping” block describes

the field association between the source and target

data objects. For input block, a spreadsheet file is

used for data extraction based on a specific sheet

included in the Picking spreadsheet. The “Sheet”

property is used to identify the specific sheet and the

“StartColumn” property to indicate in which column

the process uses for data extraction (since two

properties are described, a composite statement is

used). The “Output” block is composed of single

statements describing the name (“data”) and the type

(“type”) from target repository. Details such as the

database name or server were omitted since they can

be configured in further steps. The fields mapping is

described using “Source” or “Target” prefixes to

identify the source for each field (especially relevant

when a field name is ambiguous). After fields

identification, the keyword: “OPTIONS” is used to

specify each pattern parameter. In this case, for

avoiding the first file row and ignoring the rows

without data.

Before proceeding to the physical model

generation, some guarantees must be assured by

earlier modelling process phases to enable physical

generation models that can be executed properly and

without flaws. The transformation process relies on a

converter (a program written in Java programming

language) to take the BPMN models, parse respective

DSL and construct the final system. Later, the

resulted piece of software will be imported to the ETL

tool environment selected: the Pentaho Data

Integration (Bouman and Dongen, 2009). The

conceptual specification described using BPMN is

used to identify the patterns to support data

transformation processes, its sequence, and control

flow constraints that allow for the identification of

execution specificities applied to patterns execution.

The ETL organization tree can be directly described

in BPMN conceptual representation or be inferred

based on the patterns nature through the identification

and organization of each pattern hierarchy in layers.

5 CONCLUSIONS

The ETL conceptual model development is clearly a

great advantage in a DWS project, however, not

always the efforts spent on ETL system modelling are

rewarded since they are frequently discarded in

favour of a more detailed logical model. Based on

BPMN and on a set of ETL patterns, a specific ETL

development process that enhances the importance of

building ETL conceptual models to establish a first

executable version of the system – an ETL skeleton,

was designed and implemented. Since the ETL

processes execution parameters differ in some aspects

from traditional business processes execution

platform, the conceptual approach presented do not

intend to describe how the patterns will be executed,

but rather the patterns that are used and how they are

coordinated by the coordination mechanisms

provided by BPMN specification. With the domain-

level view provided by BPMN, the use of patterns

enhances the separation of workflow orchestration

and data transformation patterns. A specific DSL

especially oriented to describe the behaviour of an

ETL pattern when integrated into an ETL conceptual

model can be followed to mitigate the major

drawback between conceptual and practical models:

ambiguities that naturally exists due to each

representation purposes. The physical model's

generation processes mainly depend on the tool

methodology and architecture used, which means that

a tool expert should be engaged in this job. The parser

is responsible for physical model’s generation, using

the conceptual and logical specifications to extract all

operational requirements needed to meet the target

tool architecture requirements.

ICEIS 2018 - 20th International Conference on Enterprise Information Systems

268

REFERENCES

Belo, O., Oliveira, B., Lopes, C., Marques, R., Santos, V.,

2015a. Using a Domain-Specific Language to Enrich

ETL Schemas, in: Morzy, T., Valduriez, P.,

Bellatreche, L. (Eds.), New Trends in Databases and

Information Systems. Springer International

Publishing, Poitiers, France, pp. 28–35.

https://doi.org/10.1007/978-3-319-23201-0_4.

Belo, O., Oliveira, B., Medeiros, M., Faria, P., Leite, M.,

2015b. Improving Selective Collection of Urban Waste

Using a Business Intelligence System, in: 3rd

International Conference WASTES: Solutions,

Treatments and Opportunities (WASTES‘2015).

Bouman, R., Dongen, J. Van, 2009. Pentaho® Solutions:

Business Intelligence and Data Warehousing with

Pentaho and MySQL®, Solutions. John Wiley & Sons,

Inc.

Dijkman, R.M., Dumas, M., Ouyang, C., 2008. Semantics

and analysis of business process models in BPMN. Inf.

Softw. Technol. 50, 1281–1294. https://doi.org/https://

doi.org/10.1016/j.infsof.2008.02.006.

El Akkaoui, Z., Zimanyi, E., 2009. Defining ETL

worfklows using BPMN and BPEL, in: Proceedings of

the ACM Twelfth International Workshop on Data

Warehousing and OLAP. ACM, Hong Kong, China,

pp. 41–48. https://doi.org/10.1145/1651291.1651299.

El Akkaoui, Z., Zimànyi, E., Mazón, J.-N., Trujillo, J.,

2011. A Model-driven Framework for ETL Process

Development, in: Proceedings of the ACM 14th

International Workshop on Data Warehousing and

OLAP, DOLAP ’11. ACM, New York, NY, USA, pp.

45–52. https://doi.org/10.1145/2064676.2064685.

Gamma, E., Helm, R., Johnson, R., Vlissides, J., 1994.

Design Patterns: Elements of Reusable Object-oriented

Software, Addison-We. ed. Pearson Education.

Köppen, V., Brüggemann, B., Berendt, B., 2011. Designing

Data Integration: The ETL Pattern Approach. Eur. J.

Informatics Prof. 13, 49–55.

Oliveira, B., Belo, O., 2015. A Domain-Specific Language

for ETL Patterns Specification in Data Warehousing

Systems, in: Pereira, F., and Machado, P., and Costa,

E., and Cardoso, A. (Eds.), 17th Portuguese Conference

on Artificial Intelligence (EPIA‘2015). Springer

International Publishing, Coimbra,Portugal, pp. 597–

602. https://doi.org/10.1007/978-3-319-23485-4_60.

Oliveira, B., Belo, O., 2014a. Modelling ETL workflows

using YAWL, in: Hammoudi, Slimane and Maciaszek,

Leszek and Cordeiro, J. (Ed.), 16th International

Conference on Enterprise Information Systems

(ICEIS). SCITEPRESS - Science and Technology

Publications, Lda, Lisbon, Portugal, pp. 299–307.

https://doi.org/10.5220/0004947302990307.

Oliveira, B., Belo, O., 2014b. On the Conceptualization of

ETL Patterns A Reo Approach, in: Almeida, A.M.,

Bernardino, J., Gomes, E.F. (Eds.), 18th

International Database Engineering & Applications

Symposium (IDEAS). ACM, Porto, Portugal, pp.

348--351. https://doi.org/10.1145/2628194.

2628247.

Oliveira, B., Belo, O., 2013. Using Reo on ETL Conceptual

Modelling - A First Approach, in: Cuzzocrea, I.S.

and L.B. and A. (Ed.), Proceedings of the Sixteenth

International Workshop on Data Warehousing and

Olap, Dolap 2013. ACM, San Francisco, California,

USA, pp. 55–60. https://doi.org/10.1145/

2513190.2513202.

Oliveira, B., Belo, O., Cuzzocrea, A., 2014. A pattern-

oriented approach for supporting ETL conceptual

modelling and its YAWL-based implementation, in:

And, M.H., And, A.H., And, O.B., Francalanci, C.

(Eds.), Proceedings of 3rd International Conference

on Data Management Technologies and

Applications. SciTePress, Vienna, Austria, pp. 408–

415.

Ou-Yang, C., Lin, Y.D., 2008. BPMN-based business

process model feasibility analysis: a petri net

approach. Int. J. Prod. Res. 46, 3763–3781.

https://doi.org/10.1080/00207540701199677.

Vassiliadis, P., Simitsis, A., Terrovitis, M., Skiadopoulos,

S., 2005. Blueprints and Measures for ETL

Workflows, in: Delcambre, L., and Kop, C., and

Mayr, H.C., and Mylopoulos, J., and Pastor, O.

(Eds.), Proceedings of Conceptual Modeling -- ER

2005: 24th International Conference on Conceptual

Modeling. Springer Berlin Heidelberg, Klagenfurt,

Austria, pp. 385–400. https://doi.org/10.1007/

11568322_25.

Vassiliadis, P., Vagena, Z., Skiadopoulos, S., Karayannidis,

N., Sellis, T., 2000. ARKTOS: A tool for data

cleaning and transformation in data warehouse

environments. IEEE Data Eng. Bull. 23, 42–47.

Wilkinson, K., Simitsis, A., Castellanos, M., Dayal, U.,

2010. Leveraging Business Process Models for ETL

Design, in: Parsons, J., and Saeki, M., and Shoval,

P., and Woo, C., and Wand, Y. (Eds.), Conceptual

Modeling -- ER 2010: 29th International Conference

on Conceptual Modeling. Springer Berlin

Heidelberg, Vancouver, Canada, pp. 15–30.

https://doi.org/10.1007/978-3-642-16373-9_2.

From ETL Conceptual Design to ETL Physical Sketching using Patterns

269

