
The Importance of Being OS-aware∗
In Performance Aspects of Cloud Computing Research

Tommaso Cucinotta1, Luca Abeni1, Mauro Marinoni1 and Carlo Vitucci2
1Scuola Superiore Sant’Anna, Pisa, Italy

2Ericsson, Stockholm, Sweden

Keywords: Cloud Computing, Operating Systems, Quality of Service Control, Temporal Isolation, Real-Time Scheduling.

Abstract: This paper highlights ineffifiencies in modern cloud infrastructures due to a distance between the research
on high-level cloud management / orchestration and the research on low-level kernel and hypervisor mecha-
nisms. Our position about this issue is that more research is needed to make these two worlds talk to each
other, providing richer abstractions to describe the low-level mechanisms and automatically map higher-level
descriptions and abstractions to configuration and performance tuning options available within operating sys-
tems and kernels (both host and guest), as well as hypervisors.

1 INTRODUCTION

Despite the tremendous growth and transformation
undergone by Cloud Computing over the last 10
years, this computing paradigm finds its roots back
in the ’60s. The paradigm of utility computing was
mentioned in the MIT centennial speech by John Mc-
Carthy in 1961 (Garfinkel, 2011), in its famous state-
ment: “Computing may someday be organized as a
public utility just as the telephone system is a pub-
lic utility”. Also, machine virtualization, one of the
core enablers of cloud computing, had been concep-
tualized and prototyped already in the ’70s (White,
2015), albeit the hardware available at that time was
not ready for a widespread use of the mechanism.
Furthermore, since the Internet was born, we have
seen web-hosting servers on rental, sometimes along
with simple accompanying data-base and back-up ser-
vices. However, the actual possibility for the general
public to be able to rent virtual machines (VMs) on-
demand, rapidly and in a self-service and completely
automated fashion, dates back to year 2006, when
Amazon Web Services (AWS) launched its Elastic
Compute (EC2) service (Information Resources Man-
agement Association, 2012).

At that time, you could rent simple virtual ma-
chines choosing among a few instance types (Barr,
2015), using an Infrastructure-as-a-Service model.

∗This work was partially funded by Ericsson AB, Stock-
holm, Sweden.

Later, other players entered the market, and the
available services evolved up to the nowadays na-
tive cloud applications making use of a plethora
of services available from a Platform-as-a-Service
(PaaS) provider, like security, load-balancing, high-
availability, data storage and replication, distributed
communication middleware and queueing, big-data
processing frameworks, etc. Recently, operating-
system (OS) level virtualization, a.k.a., contain-
ers, are increasingly replacing machine virtualiza-
tion in various application domains, finding a natural
fit within novel distributed processing architectures
based on microservices (Brown, 2016).

Academic research has been flanking the emerg-
ing industry of cloud computing services, experiment-
ing with novel directions of investigation, mostly in-
spired to the consolidated areas around distributed
computing, fault-tolerance, data-bases, networking
protocols, routing, data replication and distributed
transactions, security, etc., with many of these re-
search areas overflowing almost naturally from prior,
consolidated research lines in the field of grid and
distributed computing. Many research groups fo-
cused on novel issues coming straight from particu-
lar characteristics of the cloud computing paradigm
instead, such as the capability to grow and shrink ser-
vice instantiations by adding or removing VMs at run-
time, live-migrate them for re-optimization purposes,
as well as the one to create virtual networking over-
lays on top of the physical infrastructure. This re-
sulted in novel research on scalable resource manage-

626
Cucinotta, T., Abeni, L., Marinoni, M. and Vitucci, C.
The Importance of Being OS-aware.
DOI: 10.5220/0006793906260633
In Proceedings of the 8th International Conference on Cloud Computing and Services Science (CLOSER 2018), pages 626-633
ISBN: 978-989-758-295-0
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

ment in massively distributed infrastructures, dealing
with issues related to monitoring, resource estimation
and workload prediction (Cortez et al., 2017), optimal
VM placement (Chang et al., 2010; Mann, 2015) in-
cluding cases of network-aware placement (Alicherry
and Lakshman, 2012; Yao et al., 2013; da Silva and
da Fonseca, 2016; Steiner et al., 2012) and allocation
of data-intensive VMs (Zhang et al., 2015), energy
efficiency (Ghribi et al., 2013), elastic applications
management and associated performance models (Xia
et al., 2015), architectures of cloud orchestration lay-
ers, and others.

Just recently, further fields of particular success in
terms of research productivity have been the ones of
cloud federation (Konstanteli et al., 2014) and edge
(cloud) computing. The last one, in particular, in-
cludes cloudlets (Satyanarayanan et al., 2009) and
the cloudification of other IT areas such as those
of interest for network operators, with the uprising
trend of software defined networking (SDN) and net-
work function virtualization (NFV) (Public, 2016;
Networks, 2017) and related technologies (Fiorani
et al., 2015). These application scenarios are charac-
terized by tighter constraints concerning low latency
and overall Quality of Service (QoS) for mobile ap-
plications (Valcarenghi et al., 2017). Moreover, the
development of end-to-end SDN-NFV solutions can-
not ignore the characteristics and, therefore, the needs
of Virtual Functions (VF) that have to be placed in
nodes located in different zones of the network, such
as the core or the edge. VFs assigned to core nodes
present similar needs to the classic cloud infrastruc-
tures, while the closer you get to the edge of the
network, the more the demand for flexible manage-
ment of the computing resource becomes critical (Vi-
tucci and Larsson, 2017). These requirements are cru-
cial both concerning the QoS levels and the available
resources optimization because, in such contingen-
cies of scarce resources and significant power con-
sumption (SCTE, 2016), a more tailored allocation of
energy and resources becomes essential (Gai et al.,
2016).

2 THE ROLE OF THE
OPERATING SYSTEM

As due to the intrinsic nature of cloud computing,
performance of cloud-hosted applications, services,
and internal infrastructure management systems has
always been of paramount importance, in the overall
picture. Similarly to when one buys physical hard-
ware, renting on-line IaaS facilities needs to respect
minimum performance specifications that are usually

made more or less explicit by the provider. However,
plenty of the mentioned research works tackling per-
formance and QoS control aspects of cloud systems,
have been focusing on exploiting elasticity to just
compensate for the great variability in performance
of the rented infrastructure items (unstable VMs pro-
cessing performance, usually, due to time-sharing of
the physical CPUs, but also instability in disk ac-
cess as well as networking performance). There-
fore, one finds an increasing presence of high-level re-
source management frameworks, orchestration layers
and evolved middleware services, dealing with work-
load monitoring, estimation and prediction, as well as
resource management.

One aspect that has not been given sufficient at-
tention, in our opinion, is the bottommost part of the
software stack: the operating system (OS) and hyper-
visor layers. Indeed, a significant amount of research
in the field focused on the higher levels of the cloud
stack, just relying on well-established basic function-
alities provided by traditional OSes, first and fore-
most, the ability to pin down virtual cores onto phys-
ical cores of the underlying hardware platform, and
in some cases fine-tuning of the hypervisor memory
allocation subsystem by exploiting the NUMA capa-
bilities of the hardware. However, OSes and hypervi-
sors have been evolving over time, exhibiting richer
and richer functionality for supporting fine-tuning of
performance, with reference to achievable latency and
throughput within data centre infrastructures, encom-
passing multiple areas, such as: CPU scheduling,
memory bandwidth allocation and management, in-
terrupt dispatching and virtualized interrupt handling,
para-virtualization options and ways to access hard-
ware accelerators including GPUs, GP-GPUs, crypto-
graphic accelerators or generic FPGA-based process-
ing elements (Caulfield et al., 2016; Pellerin, 2017).
As exemplified in Figure 1, these capabilities are of-
ten pre-tuned according to data centre-wide proce-
dures (or just set as found in OS and other software
distributions), and from the high-level perspective of
infrastructure orchestration layers they are either not
made accessible, or subsumed at a too high of an ab-
straction level, thus resulting in a mismatch with the
plethora of heterogeneous requirements coming from
different applications, resulting in a poor effective-
ness in infrastructure management.

However, it is our belief that the novel panorama
of heavily distributed, elastic, fault-tolerant and of-
ten interactive, computing applications and services
calls for novel OS services and low-level middleware,
and that these need to be better connected to higher-
level cloud management and orchestration layers. Us-
ing more advanced functionalities provided by mod-

The Importance of Being OS-aware

627

Figure 1: Limits of high-level infrastructure orchestration
layers in handling the plethora of low-level performance
tunables available in nowadays OSes and hypervisors.

ern OSes can significantly improve the performance,
scalability, predictability thus usability of cloud ser-
vices, making them even more attractive.

3 LOW LEVEL SUPPORT

This section briefly introduces some of the advanced
features that can be provided at the lower-levels of
the cloud stack, and that could be exploited by higher
level cloud control infrastructures to improve perfor-
mance.

3.1 CPU Scheduling

Management of the CPU resources in cloud infras-
tructures follows basically two main patterns: the best
VM instance types are mapped 1-to-1 so that virtual
CPUs run onto dedicated physical CPUs. On the other
hand, the cheapest VM instance types are mapped
onto clusters of physical machines where there is
an over-allocation of virtual CPUs, compared to the
available physical CPUs. Finally, the most expen-
sive and best isolated instance types are those rely-
ing on entire physical machines dedicated to a single
tenant’s instance, either in virtualized or also in bare-
metal form.

Focusing on physical machines shared among
multiple tenants, the dedicated 1-to-1 virtual to physi-

cal core mapping is the set-up that tries to achieve the
best temporal isolation among different VMs. How-
ever, this is not sufficient to isolate data-intensive ap-
plications, such as high-definition multimedia (video)
processing workloads, big-data analytics and others.
These, even when deployed on dedicated cores, cause
quite a lot of interference to processing tasks deployed
on other physical cores, due to interferences at the
memory access bandwidth and cache-level interfer-
ences. Works aimed at limiting said phenomenon
can be found (Yun et al., 2013), specifically confin-
ing a precise budget in memory access for individ-
ual physical cores, that, once exhausted, would cause
the VM to be throttled till replenishment of the bud-
get at the next period. Mechanisms have been stud-
ied also to limit and keep under control interferences
at the cache level on big multi-core machines, where
there is a sufficiently big last-level cache (LLC). In
such systems, it is both possible to employ software-
only cache partitioning schemes based e.g., on cache
colouring (Kim and Rajkumar, 2016), or to leverage
hardware technologies, such as the recent Intel Cache
Allocation Technology (CAT) (Corbet, 2016).

Whenever virtual CPUs are over-allocated to
physical ones, the way multiple VMs compete among
each other for running on the physical CPUs when ac-
tive at the same time is left to heuristics of the hyper-
visor scheduler, which unfortunately falls short in its
attempt to satisfy requirements of a multitude of ap-
plication domains, without knowing much about what
kind of service/application is running within what
VMs. Normally, the temporal interferences a VM gets
from other co-scheduled VMs are quite high, mak-
ing the performance of each hosted VM quite unsta-
ble. In this area, prior research works focused on the
Xen (Barham et al., 2003) hypervisor, comparing var-
ious scheduler types (Cherkasova et al., 2007) and its
impact on the performance of the hosted workload.

Other research works focused on co-scheduling
virtual CPUs of VMs on the same physical CPUs by
employing a special scheduler within the hypervisor,
that allows for a reservation-based paradigm. Namely
a virtual core may be allotted a budget (a.k.a., run-
time) of Q time units every period of P time units,
so that the underlying hyperivosr (or host OS) sched-
uler guarantees Q time units every period of dura-
tion P, and optionally it also constraints the VM
to be throttled once said budget is exhausted. This
is the example of the IRMOS real-time scheduler
for Linux (Cucinotta et al., 2010; Checconi et al.,
2009), or the similar recent hierarchical extension
of the SCHED DEADLINE scheduler of Linux (Balsini
et al., 2017). Similar efforts have been attempted
on Linux/KVM also by exploiting existing in-kernel

CLOSER 2018 - 8th International Conference on Cloud Computing and Services Science

628

features, so that EDF-based scheduling capabilities
could be injected into the kernel at run-time, without
any need for static code modifications to the kernel
code (Aesberg et al., 2011).

3.2 Networking

The service performance are affected not only by the
configuration of the used VM, but also by the OS and
kernel mechanisms used to relay data among VMs,
between host and guest applications, etc... For exam-
ple, it has been shown (Abeni et al., 2015) that, when
using Linux as host OS and KVM as hypervisor, sim-
ply changing the packets forwarding mechanism from
the default bridge + tap to macvtap can greatly im-
prove the performance of a virtual router. In partic-
ular, the rate of small packets the virtual router can
forward has been shown to increase of nearly 50%.
Other configuration details (such as the queue length
of the virtual interfaces, the scheduling priority and
interrupt affinity, etc...) that are often ignored in high-
level descriptions also affect the performance and the
ability to sustain a high forwarding rate in a stable
way.

Of course, many of the low-level details are OS
or VM specific (for example, the possibility to use
macvtap or vhost-net are Linux-only features; Xen
provides a completely different way to forward pack-
ets - with different configuration options - etc....).
This is why many cloud providers often rely to de-
fault settings, that do not require any knowledge of
the OS, kernel, and VM details, resulting, in much
worse performance and usability. As an additional
example, high-performance networking in cloud ser-
vices can often be obtained by using some form of
user-space networking (even arriving to user-space
network drivers). In this regard FreeBSD provides
netmap (Rizzo, 2012a; Rizzo, 2012b), that marked
a significant milestone in the area of packet pro-
cessing in general-purpose operating systems, show-
ing how well-engineered optimizations of existing
drivers, coupled with proper novel user-space/kernel-
space interfaces for networking, can lead to a great
increase in processing throughput of small packets.
On different operating systems, similar results can
be obtained by using different mechanisms; for ex-
ample, on Linux-based systems it is possible to use
DPDK1, that has been shown to greatly improve
the performance (especially in software defined net-
works) (Pongrcz et al., 2013). Virtual bridges be-
tween different VMs also can be setup in different
ways, using different technologies that depend on the
used network drivers; for example, if netmap is used

1http://www.dpdk.org

then the VALE virtaul switch (Rizzo and Lettieri,
2012) is the best choice for high performance com-
munications among VMs on the same host, reaching
up to 2 million packets per second without hardware
assistance.

Since it is clear that an adminitrator in charge of
setting up a cloud cannot have all of the information
needed to properly select the most appropriate tech-
nologies and configurations, it becomes clear that it is
of vital importance to automate this process by prop-
erly mapping high-level descriptions understandable
by the administrator to low-level features. To do this,
it is fundamental to develop a way to make the low-
level virtualization infrastructure attributes directly
visible to the higher levels of the cloud management
stack, or exploit richer and more complex abstract in-
terfaces, that allow for properly tuning / configuring
/ using all the available options (even if they are not
standard).

3.3 Computing and Networking

Some authors tried to build mechanisms to improve
the responsiveness of networking applications, in
presence of concurrently running CPU-bound activ-
ities. This is the case of the work in (Kim et al.,
2009), where a heuristic identifies I/O tasks within
a VM, and boosts their scheduling priority (tuning
parameters of the Xen credit-based scheduler) when-
ever there are pending incoming packets to be re-
ceived by that task in the VM. A similar approach has
been attempted on KVM-based systems (Cucinotta
et al., 2011), where a VM being scheduled with a
reservation-based scheduler has been made able to
dynamically switch to a finer-grain scheduling dead-
line whenever there were packets pending to be pro-
cessed by particular services running in the VM at
higher priority.

4 EXPLOITING THE
LOW-LEVEL FEATURES

When the performance of the cloud services becomes
relevant, it is important to properly map high-level
performance requirements of the cloud application or
service to low-level virtualization infrastructure con-
figuration and tuning parameters.

The Importance of Being OS-aware

629

Virtualized
Infrastructure

Manager
VDU

MANO Descriptor
HOT Descriptor Deployed

VM / Container

reservation (Q,P)
reservation (Q,P)

Figure 2: Propagation of the enriched descriptors from the MANO specification to the kernel level.

4.1 Adoption of Reservation-based
Approaches

As an example, consider a specific area of system sup-
port (CPU scheduling): one of the obstacles into get-
ting reservation-based scheduling widely adopted, is
that software design needs a shift from tuning prior-
ities, to tuning budgets and periods, a change that is
not trivial at all. While a reservation period is easily
found considering activation and latency constraints
of an application/service, the budget/runtime is more
difficult to find out, also due to its inherent depen-
dency on the specific platform the software runs atop.

An interesting line of work has been proposed
in the RT-Xen project (Xi et al., 2011), investigat-
ing on the use of various server-based scheduling al-
gorithms for Xen domains, with scheduling parame-
ters set according to sound arguments from hierarchi-
cal real-time theory literature (Feng and Mok, 2002).
RT-Xen, like many of the research works mentioned
above, only focused on low-level kernel or hypervisor
mechanisms, implementing features that do not result
to be available to higher levels of the cloud manage-
ment stack. The only work that tries to address this
concern is RT-OpenStack (Xi et al., 2015), that tries
to integrate the analysis within the OpenStack Nova
scheduling algorithm. While a lot of work still needs
to be done in this area (for example, RT-OpenStack is
strictly dependent on RT-Xen and cannot take advan-
tage of the SCHED DEADLINE (Lelli et al., 2016)
policy that is currently available on vanilla Linux ker-
nels), the RT-Xen / RT-OpenStack work shows a pos-
sible strategy for exploiting advanced features pro-
vided by the lower levels of the cloud stack.

The next subsection shows how a similar approach
can be extended to better integrate with higher level
abstractions and to consider other lower level fea-
tures.

4.2 Bridging Gaps in Abstraction Levels

One of the interesting results shown by RT-OpenStack
is that to make a real and practical use of all the OS-
level improvements described in the previous section,
it is crucial to export all the available features and tun-
ing points to have them available during the place-
ment.

To reach such a result, the model of the underly-
ing infrastructures has to be enhanced, and the cor-
responding descriptors must be enriched to describe
such an enhancement. As an example, consider Open-
Stack and the Heat Orchestration Template (HOT)
used by the OpenStack orchestration engine (Heat) to
describe the system resources. The level of details
currently described by the template has been defined
focusing on homogenous cloud infrastructures and is
unable to exploit hybrids clouds and modern features
provided at the OS level in each physical node. This
lack concerning representativeness leads to a subopti-
mal use of resources also at higher levels of the stack.

For example, Tacker (Orchestration, 2017), the
NFV orchestrator, that is in charge of managing NFV
component cannot utilize specific OS features in the
MANO (ETSI, 2014) descriptors because they are not
exported by the Virtualized Infrastructure Manager
(VIM) (aka OpenStack). This could jeopardize the
possibility to satisfy the strict latency requirements of
this kind of applications.

To address this issue, the interfaces among the dif-
ferent layers must be enriched allowing to describe
the QoS requirements regarding the computational ca-
pacity at all levels, as shown in Figure 2.

Within the MANO descriptor of each NFV com-
ponent, we can find the definition of the required Vir-
tual Deployment Units (VDU) needed to deploy that
service. Each of them is characterized by a specifi-
cation of the number of required CPUs, which should
be extended to include the capability to declare CPU
fractions defined by budget and period or by utiliza-
tion and maximum service delay, in order to exploit
reservation-based real-time scheduling features. This
enriched VDU descriptors would be processed by the

CLOSER 2018 - 8th International Conference on Cloud Computing and Services Science

630

VIM to produce the corresponding orchestration tem-
plates (HOT), equivalently enhanced, required by the
Heat orchestration engine. With such an approach,
a real-time container or VM could be deployed ac-
cording with the specified scheduling parameters, af-
ter proper admission control done at the orchestration
layer, exploiting the kernel extensions and modern
scheduling algorithms, such as SCHED DEADLINE.

4.3 Guest Architecture

Although most of the previous discussion focused on
the issues in mapping high-level abstractions to the
host OS and VMM configurations, similar opportuni-
ties for improvements can be encountered in the con-
figuration of the guest system.

For example, many of the currently used cloud
management stacks end up installing a complete
general-purpose OS (that can run in containers or
in more isolated VMs) for every cloudified service.
However, better performance (with smaller resource
requirements) can be achieved by properly configur-
ing the guest OS to take advantage of the virtualiza-
tion features or even using specialized guest OSes. Of
course, this requires some visibility of the virtualiza-
tion infrastructure from the guest.

Although Unikernels (Madhavapeddy et al., 2013;
Kantee, 2015) have been proposed as a way to easily
specialize the guest OS for specific services and spe-
cific virtualization technologies, many fo the of the
most commonly used cloud management stacks are
not able to properly exploit this possibility.

Again, an appropriate mapping of abstract service
descriptions to guest system details (and a better de-
scription of the host OS / hypervisor capabilities) is
needed to allow the automatic configuration and de-
ployment of virtualized services with better perfor-
mance.

5 CONCLUSIONS

A major drawback of existing research efforts in per-
formance control and isolation of multiple VMs when
co-located on the same physical hosts resides in their
lack of direct and easy applicability in the context of
real industrial cloud providers. For example, with a
few exceptions, the above works provide prototype
implementations in the form of hacks to the original
open-source software ensemble (e.g., Xen, Linux ker-
nel, KVM sources), rather than well-engineered so-
lutions that can readily be leveraged in higher-level
infrastructure management stacks.

Indeed, industrialization of prototypes as de-
scribed in a research paper can be something totally
non-trivial. As it was the case for SCHED DEADLINE,
having a prototype non-standard mechanism land-
ing into the mainline Linux kernel can cost several
months of development effort, with continuous in-
teractions with core kernel developers and maintain-
ers. Therefore, we have several of these custom ap-
proaches, patches and hacks, that are rarely made
available and released in the public in a usable state,
with the natural side-effect that it is overly difficult
to design higher-level cloud and NFV orchestration
layers that can rely on such experimental low-level
features. On the side of OS vendors and maintain-
ers, it is always difficult to incorporate novel non-
standard features, without a clear idea of the need for
said features by at least a community of users. This
chicken-and-egg situation impairs availability of ad-
vanced performance control features in orchestration
engines, which, coupled with the lack of exposure of
the plethora of capabilities and performance tunables
already available in nowadays OS and hypervisors,
leads to the consequence that it is quite difficult for
real cloud and NFV providers to leverage solid and
important research results in these areas, as well as
existing advanced performance control mechanisms.

In our opinion, an important step in this regard
is to increase exposure of low-level performance tun-
ables to the high-level layers of the infrastructure or-
chestration suite, in order to allow for a proper match-
making process that considers also high-level applica-
tion/service requirements. Therefore, we are working
on further research along these lines.

REFERENCES

Abeni, L., Kiraly, C., Li, N., and Bianco, A. (2015). On the
performance of kvm-based virtual routers. Computer
Communications, 70(Supplement C):40 – 53.

Aesberg, M., Forsberg, N., Nolte, T., and Kato, S. (2011).
Towards real-time scheduling of virtual machines
without kernel modifications. In ETFA2011, pages 1–
4.

Alicherry, M. and Lakshman, T. V. (2012). Network aware
resource allocation in distributed clouds. In 2012 Pro-
ceedings IEEE INFOCOM, pages 963–971.

Balsini, A., Parri, A., and Abeni, L. (2017). RT bandwidth
constraints enforced by hierarchical DL scheduling.
https://lkml.org/lkml/2017/3/31/658.

Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T.,
Ho, A., Neugebauer, R., Pratt, I., and Warfield, A.
(2003). Xen and the art of virtualization. In Proceed-
ings of the Nineteenth ACM Symposium on Operating
Systems Principles, SOSP ’03, pages 164–177, New
York, NY, USA. ACM.

The Importance of Being OS-aware

631

Barr, J. (2015). AWS News Blog – EC2 Instance
History. https://aws.amazon.com/blogs/aws/ec2-
instance-history/.

Brown, K. (2016). Beyond buzzwords: A
brief history of microservices patterns.
https://www.ibm.com/developerworks/cloud/library/cl-
evolution-microservices-patterns/index.html.

Caulfield, A. M., Chung, E. S., Putnam, A., Angepat, H.,
Fowers, J., Haselman, M., Heil, S., Humphrey, M.,
Kaur, P., Kim, J. Y., Lo, D., Massengill, T., Ovtcharov,
K., Papamichael, M., Woods, L., Lanka, S., Chiou,
D., and Burger, D. (2016). A cloud-scale acceleration
architecture. In 2016 49th Annual IEEE/ACM Inter-
national Symposium on Microarchitecture (MICRO),
pages 1–13.

Chang, F., Ren, J., and Viswanathan, R. (2010). Optimal
resource allocation in clouds. In 2010 IEEE 3rd In-
ternational Conference on Cloud Computing, pages
418–425.

Checconi, F., Cucinotta, T., Faggioli, D., and Lipari, G.
(2009). Hierarchical Multiprocessor CPU Reserva-
tions for the Linux Kernel. In Proceedings of the
5th International Workshop on Operating Systems
Platforms for Embedded Real-Time Applications (OS-
PERT 2009).

Cherkasova, L., Gupta, D., and Vahdat, A. (2007). Compar-
ison of the three cpu schedulers in xen. SIGMETRICS
Perform. Eval. Rev., 35(2):42–51.

Corbet, J. (2016). Controlling access to the memory cache.
https://lwn.net/Articles/694800/.

Cortez, E., Bonde, A., Muzio, A., Russinovich, M., Fon-
toura, M., and Bianchini, R. (2017). Resource cen-
tral: Understanding and predicting workloads for im-
proved resource management in large cloud platforms.
In Proceedings of the 26th Symposium on Operating
Systems Principles, SOSP ’17, pages 153–167, New
York, NY, USA. ACM.

Cucinotta, T., Checconi, F., and Giani, D. (2011). Improv-
ing Responsiveness for Virtualized Networking Under
Intensive Computing Workloads. In Proceedings of
the 13th Real-Time Linux Workshop, RTLSWS.

Cucinotta, T., Checconi, F., Kousiouris, G., Kyriazis, D.,
Varvarigou, T., Mazzetti, A., Zlatev, Z., Papay, J.,
Boniface, M., en Berger, S., Lamp, D., Voith, T.,
and Stein, M. (2010). Virtualised e-Learning with
Real-Time Guarantees on the IRMOS Platform. In
Proceedings of the IEEE International Conference on
Service-Oriented Computing and Applications (SOCA
2010), pages 1–8, Perth, Australia.

da Silva, R. A. C. and da Fonseca, N. L. S. (2016).
Topology-aware virtual machine placement in data
centers. Journal of Grid Computing, 14(1):75–90.

ETSI, N. (2014). Network functions virtuali-
sation (NFV); management and orchestra-
tion. http://www.etsi.org/deliver/etsi gs/NFV-
MAN/001 099/001/01.01.01 60/gs nfv-
man001v010101p.pdf.

Feng, X. and Mok, A. K. (2002). A model of hierarchical
real-time virtual resources. In 23rd IEEE Real-Time
Systems Symposium, 2002. RTSS 2002., pages 26–35.

Fiorani, M., Skubic, B., Mårtensson, J., Valcarenghi, L.,
Castoldi, P., Wosinska, L., and Monti, P. (2015). On

the design of 5g transport networks. Photonic Net-
work Communications, 30(3):403–415.

Gai, K., Qiu, M., Zhao, H., Tao, L., and Zong, Z. (2016).
Dynamic energy-aware cloudlet-based mobile cloud
computing model for green computing. J. Netw. Com-
put. Appl., 59(C):46–54.

Garfinkel, S. (2011). MIT Technology Review –
Intelligent Machines – Computing Pioneer Dies.
https://www.technologyreview.com/s/425913/
computing-pioneer-dies/.

Ghribi, C., Hadji, M., and Zeghlache, D. (2013). En-
ergy efficient vm scheduling for cloud data centers:
Exact allocation and migration algorithms. In 2013
13th IEEE/ACM International Symposium on Cluster,
Cloud, and Grid Computing, pages 671–678.

Information Resources Management Association (2012).
Grid and Cloud Computing: Concepts, Methodolo-
gies, Tools and Applications. IGI Global, Hershey,
PA, USA.

Kantee, A. (2015). The rise and fall of the operating system.
USENIX login, 40(5).

Kim, H., Lim, H., Jeong, J., Jo, H., and Lee, J. (2009). Task-
aware virtual machine scheduling for i/o performance.
In Proceedings of the 2009 ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Envi-
ronments, VEE ’09, pages 101–110, New York, NY,
USA. ACM.

Kim, H. and Rajkumar, R. (2016). Real-time cache manage-
ment for multi-core virtualization. In 2016 Interna-
tional Conference on Embedded Software (EMSOFT),
pages 1–10.

Konstanteli, K., Cucinotta, T., Psychas, K., and Varvarigou,
T. A. (2014). Elastic admission control for federated
cloud services. IEEE Transactions on Cloud Comput-
ing, 2(3):348–361.

Lelli, J., Scordino, C., Abeni, L., and Faggioli, D. (2016).
Deadline scheduling in the linux kernel. Software:
Practice and Experience, 46(6):821–839.

Madhavapeddy, A., Mortier, R., Rotsos, C., Scott, D.,
Singh, B., Gazagnaire, T., Smith, S., Hand, S., and
Crowcroft, J. (2013). Unikernels: Library operating
systems for the cloud. SIGARCH Comput. Archit.
News, 41(1):461–472.

Mann, Z. A. (2015). Allocation of virtual machines in
cloud data centers—a survey of problem mod-
els and optimization algorithms. ACM Comput. Surv.,
48(1):11:1–11:34.

Networks, J. (2017). Network transforma-
tion with NFV and SDN – a journey to-
ward sustainable competitive advantage.
http://www.juniper.net/assets/us/en/local/pdf/
whitepapers/2000628-en.pdf.

Orchestration, T. O. (2017).
https://wiki.openstack.org/wiki/Tacker. Last ac-
cessed on Dec 6, 2017.

Pellerin, D. (2017). Accelerated Computing on
AWS – Applications for GPUs and FPGAs.
www.asapconference.org/slides/amazon.pdf.

Pongrcz, G., Molnr, L., and Kis, Z. L. (2013). Removing
roadblocks from sdn: Openflow software switch per-
formance on intel dpdk. In 2013 Second European

CLOSER 2018 - 8th International Conference on Cloud Computing and Services Science

632

Workshop on Software Defined Networks, pages 62–
67.

Public, C. (2016). Align operations for net-
work functions virtualization environments.
https://www.cisco.com/c/dam/en/us/solutions/
collateral/service-provider/network-functions-
virtualization-nfv/white-paper-c11-737101.pdf.

Rizzo, L. (2012a). netmap: A novel framework for fast
packet i/o. In 2012 USENIX Annual Technical Con-
ference (USENIX ATC 12), pages 101–112, Boston,
MA. USENIX Association.

Rizzo, L. (2012b). Revisiting network i/o apis: The netmap
framework. Queue, 10(1):30:30–30:39.

Rizzo, L. and Lettieri, G. (2012). Vale, a switched ethernet
for virtual machines. In Proceedings of the 8th Inter-
national Conference on Emerging Networking Exper-
iments and Technologies, CoNEXT ’12, pages 61–72,
New York, NY, USA. ACM.

Satyanarayanan, M., Bahl, P., Caceres, R., and Davies, N.
(2009). The case for vm-based cloudlets in mobile
computing. IEEE Pervasive Computing, 8(4):14–23.

SCTE (2016). Scte analysis of available energy 2020 par-
ticipating mso data. Brochure.

Steiner, M., Gaglianello, B. G., Gurbani, V., Hilt, V.,
Roome, W., Scharf, M., and Voith, T. (2012).
Network-aware service placement in a distributed
cloud environment. SIGCOMM Comput. Commun.
Rev., 42(4):73–74.

Valcarenghi, L., Giannone, F., Manicone, D., and Castoldi,
P. (2017). Virtualized enb latency limits. In 2017 19th
International Conference on Transparent Optical Net-
works (ICTON), pages 1–4.

Vitucci, C. and Larsson, A. (2017). Flexible 5G Edge Server
for Multi Industry Service Network. International
Journal on Advances in Networks and Services, 10(3-
4). ISSN: 1942-2644.

White, R. (2015). Introduction to Virtualization.
http://www.vm.ibm.com/devpages/bitner/
presentations/virtualb.pdf.

Xi, S., Li, C., Lu, C., Gill, C. D., Xu, M., Phan, L. T. X.,
Lee, I., and Sokolsky, O. (2015). Rt-open stack: Cpu
resource management for real-time cloud computing.
In 2015 IEEE 8th International Conference on Cloud
Computing, pages 179–186.

Xi, S., Wilson, J., Lu, C., and Gill, C. (2011). Rt-xen: To-
wards real-time hypervisor scheduling in xen. In 2011
Proceedings of the Ninth ACM International Confer-
ence on Embedded Software (EMSOFT), pages 39–48.

Xia, Y., Zhou, M., Luo, X., Pang, S., and Zhu, Q.
(2015). Stochastic modeling and performance analy-
sis of migration-enabled and error-prone clouds. IEEE
Transactions on Industrial Informatics, 11(2):495–
504.

Yao, Y., Cao, J., and Li, M. (2013). A network-aware vir-
tual machine allocation in cloud datacenter. In Pro-
ceedings of the 10th IFIP International Conference on
Network and Parallel Computing - Volume 8147, NPC
2013, pages 71–82, New York, NY, USA. Springer-
Verlag New York, Inc.

Yun, H., Yao, G., Pellizzoni, R., Caccamo, M., and Sha, L.
(2013). Memguard: Memory bandwidth reservation

system for efficient performance isolation in multi-
core platforms. In 2013 IEEE 19th Real-Time and
Embedded Technology and Applications Symposium
(RTAS), pages 55–64.

Zhang, J., Wang, M., Luo, J., Dong, F., and Zhang,
J. (2015). Towards optimized scheduling for data-
intensive scientific workflow in multiple datacenter
environment. Concurr. Comput. : Pract. Exper.,
27(18):5606–5622.

The Importance of Being OS-aware

633

