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Abstract: Smart city infrastructure includes deployment of a variety of sensors and provision of open data platforms 

and applications that can help improve the quality of life of the citizens. The large volumes of data 

generated by sensors and various Internet of Things (IoT) devices need to be harnessed to help smart city 

applications make informed decisions on the fly. Also, efficient management of smart city components 

relies on the ability to federate their data, locally process urban data streams, and utilize big data analytics to 

harness their governance. Data interoperability and integration is one of the most challenging problems 

facing smart cities today. Successful data integration is one of the keys to improved services and 

governance. This paper describes the architectural design of a framework that aims to deal with the 

integration of data across the various systems of the city, urban data analytics, and creation of value-added 

services. The framework relies on recent technologies for data processing including IoT, edge computing, 

cloud computing, data analytics, and semantic integration. 

1 INTRODUCTION 

Over the last few decades, cities are experiencing 

tremendous pressure due to migration waves and 

urban growth. Their infrastructures need to cope 

with growing demand for the supply of energy, 

water, transportation, and healthcare services. City 

stakeholders are using digital technologies to reduce 

costs, improve the quality of services delivered to 

citizens, balance budgets, and enhance the efficiency 

of various city systems. However, the lack of 

integration of data generated by the diverse city 

components and systems results in making city 

utilities and services operate sub-optimally, limiting 

the creation of value-added services, increasing 

transport costs, etc. Recent digital technologies offer 

new opportunities to mitigate these impacts and 

transform cities into smart cities through smart and 

innovative planning, management, and operation. 

Managing a smart city holistically and 

harnessing its governance are becoming essential to 

federate its data, locally process data streams 

generated by various IoT devices and sensors, and 

utilize big data analytics (Khan, 2015) (Ojo, 2015). 

An integrated data perspective can benefit smart 

cities using big data collection, integration, 

processing, and sharing through cloud-based 

services. Nevertheless, such data integration and 

utilization necessitate suitable software technologies 

to collect, store, analyze and visualize enormous 

amounts of data from the city ecosystem.   

Data interoperability and integration are two of 

the most challenging issues facing smart cities today 

(Trilles, 2016) (Gyrard, 2016). Indeed, to enable the 

efficient governance of smart cities and to create 

value-added services that enhance the lives of 

citizens, smart city stakeholders have to interpret 

many types of information from a variety of sources 

including water consumption, road traffic, energy 

consumption, healthcare services, and many others. 

Unfortunately, they are not currently able to 

efficiently harness that information because of the 

massive amounts of generated data, data 

heterogeneity across the city systems, and the lack of 

a common data model and ontology. Successful data 

integration is one of the keys to improved services 

and governance (An, 2016) (Luciano, 2014). It will 

allow for analyses of economic activity, resource 

consumption, mobility patterns, and public health, 

which will guide the city development.  

This work describes the architectural design of a 

framework able to deal with the integration of data 
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across the various systems of the city, urban data 

analytics, and creation of value-added services. The 

framework relies on recent technologies for data 

processing including IoT, edge computing, cloud 

computing, data analytics, and semantic integration. 

The framework aims at allowing smart city 

stakeholders to connect, manage, process and 

analyze data from thousands of IoT devices and 

sensors at the edge of their networks. It will mainly 

allow to: 

• collect data from thousands of IoT devices,  

• normalize the integration of IoT devices within 

the smart city, 

• perform real-time big data analytics on IoT 

streams and events, and 

• extend smart city applications and processes 

with IoT data seamlessly. 

The remainder of this paper is organized as 

follows. Section 2 provides background information 

on urban data streams and describes the challenges 

of urban data streams processing. Section 3 provides 

an overview of some of the techniques used for data 

integration. Section 4 describes the conceptual 

architecture of our proposed framework for urban 

data integration. Section 5 discusses challenges and 

concerns of urban data integration. Finally, Section 6 

concludes the paper. 

2 URBAN DATA STREAMS 

In a smart city context, systems are equipped to 

work with real-time data from sensors, electric and 

water meters, or other devices used to assure the 

functions of the city. Sensors usually convey 

information about real-world phenomena, generally 

ranging from direct measurements such as 

temperature or pressure to user observations like 

water leaking. Sensors include not only hardware 

sensors but also people. The concept of people as 

sensors refers to users providing direct input via 

social networks or dedicated end-user interfaces 

(Doran, 2013). 

Urban data streams come from a variety of IoT 

devices and sensors that monitor and report on: 

• Weather conditions as they relate to traffic 

jams and accidents so that alerts and warning 

systems are activated. 

• Parking space availability so that drivers avoid 

the lengthy searches for open spaces.  

• The structural integrity of bridges, historical 

monuments, and buildings when it comes to 

the impact that weather conditions and 

vibrations have on the structure’s safety. 

• Trash levels in waste containers to optimize 

trash collection routes. 

• Night activity and traffic so that adaptive smart 

lighting lights streets, sidewalks, and roads in 

an energy efficient manner.   

Over the last few years, the European Union has 

been encouraging its member states to develop smart 

cities and allocated 365 million euros for this 

initiative. Amsterdam, Barcelona, and many other 

cities are leading the smart city development effort.  

Copenhagen, which aims to be the world’s best 

city for cyclists, has started monitoring the city's 

bike traffic in real time by deploying sensors 

throughout several parts of the city. These sensors 

provide valuable data helping improve bike routes in 

the city as at least 50% of the city's residents 

commute to their workplaces or educational 

institutions by bike every day (Wired.com, 2015). 

London started installing smart parking sensors 

that would allow drivers using a map to view a real-

time map of parking spaces and to quickly locate 

parking spaces and remove the need for lengthy 

searches for an open spot. Londoners hope that this 

system would alleviate urban traffic congestion and 

cut down on carbon emissions. Other cities around 

the world are also trying out deploying smart 

parking systems in an attempt to improve the 

everyday life of their citizens (Computing, 2014). 

Furthermore, many cities are using cutting-edge 

IoT solutions to implement intelligent adaptive street 

lighting systems. These systems can help cities 

create safer urban environments and at the same 

time save energy and protect the environment. They 

light up when human activity is detected and dim 

down to reduce costs when streets are empty. For 

example, San Diego city has recently started a $30 

million Smart City IoT platform project in what 

represents the world’s massive Smart City IoT 

platform deployment. The platform will add nearly 

3,200 intelligent IoT nodes to the current street 

lighting infrastructure to collect real-time sensor 

data across the city (Diginomica.com, 2017). The 

collected data can be used to optimize municipal 

systems, increase safety, guide fire and police to 

accident or emergency scenes as well as develop 

smart apps that, can, for instance, direct drivers to 

available parking spaces.  

Several efforts investigated the realization of 

smart cities through the IoT, often considered as the 

principal technological enabler. Jin et al. (Jin, 2014) 

introduced IoT for smart cities from three different 

perspectives: network-centric IoT, cloud-centric IoT, 

and data-centric IoT. The data-centric IoT 

perspective includes data collection, data processing, 
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data storage, and data visualization. Zanella et al. 

(Zanella, 2014) provided a survey of the enabling 

technologies, protocols, and architecture for an 

urban IoT, i.e., a communication infrastructure that 

aims to provide simple, unified, and cost-effective 

access to a variety of public services.  

One of the challenging issues of current urban 

deployments is the non-interoperability of the 

diverse and heterogeneous devices and technologies 

used in the city (Trilles, 2016) (Gyrard, 2016). These 

devices generate different types of data conveyed to 

a control center for storage and processing. Zanella 

et al. described the Web-service approach for IoT 

service architecture and explained its benefits for 

implementing interoperable services. International 

standardization bodies such as IETF, ETSI, and 

W3C, among others, are also promoting this 

approach. 

3 DATA INTEGRATION 

TECHNIQUES 

Efficient utilization of data from disparate sources 

requires understanding the database schema of each 

data source and devising a translation mechanism to 

permit data exchange. The literature on data 

integration identifies six main techniques: data 

consolidation, data federation, data propagation, 

utilization of the Extensible Markup Language 

(XML) and the JavaScript Object Notation (JSON) 

as standard formats for the exchange and storage of 

data, development of controlled vocabularies, and 

mashups.  

Data consolidation refers to the collection of 

data from multiple sources and its integration into a 

single persistent data store (see fig. 1). It allows to 

cope with data duplication and reduce the costs 

associated with the reliance on multiple data 

management points and databases. It will enable 

organizations to do reporting and efficient data 

analysis as in data warehousing. The data store can 

act as a data source for downstream applications as 

in an operational database system. Since data 

originates from multiple data sources, there is 

always a delay between the time data is generated or 

updated in a data source and the time those changes 

appear in the data store. Depending on the 

underlying communication infrastructure and the 

nature and size of updated data, this delay might 

range from a few seconds to several days (Loshin, 

2009) (Levin, 2004). 

Data federation represents an alternative model 
 

for data storage and usage by organizations. Data 

federation technology refers to software resources 

that provide users with a single logical view to 

present and access data stored throughout one or 

more data sources. This technique is also known as 

data virtualization technology. When the data 

sources are traditional databases, data federation 

leverages the native data management and search 

capabilities of individual source databases and 

creates a single, unified, logical view of the 

federated databases (Haas, 2002). Business 

applications are presented with a combined data 

schema even though the source database schemas 

are distributed across many federated databases (see 

fig. 2).  When a business application issues a request 

against this logical view, the data federation engine 

retrieves data from the appropriate data source, 

adapts it to match the virtual view, and sends the 

results to the requesting business application 

(Loshin, 2009) (Barnaghi, 2015) (Haas, 2002). 

Data propagation denotes the movement of data 

from one or multiple data sources to target locations.  

Data propagation systems usually push data to target 

locations. Most often, they are event-driven, and 

data propagation is performed according to 

propagation rules (see fig. 3). Data updates in a 

source system may be propagated to the target 

system synchronously or asynchronously (Loshin, 

2009). Propagation ensures the delivery of data to 

the target system irrespective of the type of 

synchronization used. This data delivery guarantee is 

a key distinctive feature of data propagation. For 

instance, in data warehouses and operational data 

stores based systems, updates involve moving large 

volumes of data from one system to another. Data 

movement is carried out in batches to avoid 

impacting the performance of the operations on the 

data warehouse. 

XML is a markup language that facilitates 

sharing of data across heterogeneous computing 

systems (Bertino, 2001). Many databases, software 

applications, and tools are XML-compliant. XML 

facilitates data integration and application 

interoperability by adopting standards for 

representing certain types of data.  

JSON is an open-standard file format that uses 

text to transmit data objects consisting of attribute–

value pairs and array data types. It is a language–

independent and light-weight data-interchange 

format, which is easy for humans to read and write 

and easy for machines to generate and parse. JSON 

is more and more becoming the preferred format for 

data exchange and integration using RESTful Web 

services. 
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Figure 1: Consolidation of data from multiple sources. 

 

Figure 2: Federation of Data from Multiple Sources. 

 

Figure 3: Data propagation from data sources to 

operational data store. 

Controlled vocabularies offer a form of data 

integration by enforcing naming conventions for 

data elements that ultimately appear in databases. 

One example of a controlled vocabulary is an 

ontology developed in the context of a smart city 

(Nemirovski, 2013). The ontology acts as a mediator 

for distinct schemas of individual data sources and 

as a reference schema for federated data queries. 

Also, researchers at the DISIT Lab at the University 

of Florence (http://www.disit.org) have created an 

ontology for a smart city, which integrates 

regulatory elements, sensors, points of interests, 

people, etc. and is used in other smart city projects 

(DISIT Lab, 2015).  

A Mashup is a technique for building new Web 

applications that combine data from multiple sources 

to create an integrated experience. Mashup 

applications can be constructed using widgets, open 

APIs, Web services, and data sources. An example 

of mashups developed in the case of smart cities is 

FixMyCity (Fraunhofer, 2012), a government 

mashup that allows citizens to contact the 

appropriate person in a local administration quickly 

to report damages in public spaces. 

4 ARCHITECTURE OVERVIEW 

Figure 4 depicts our proposed architecture to address 

the data integration and processing issues in smart 

cities. 

4.1 Infrastructure Layer 

This layer is made up of various smart city data 

sources such as smart IoT devices, traditional 

databases, Web servers, and edge servers. An IoT 

device detects some input from its surrounding 

environment and responds to it. The particular input 

could be light, motion, speed, vibration, pressure, 

water level, heat, or any other environmental 

phenomenon. The device reading is then converted 

into a human-readable form or sent over a network 

to a gateway for further processing.  An IoT device, 

with typically an IP address, can connect to a 

network to exchange data. Smart IoT devices enable 

automating operations of a city by collecting data on 

various physical assets (equipment, vehicles, 

buildings, facilities, etc.) to monitor their behavior 

and status, and using collected data to optimize 

resources and processes. IoT devices and actuators, 

which do not have operating systems, connect to 

edge devices or edge gateways using Wi-Fi or 

Ethernet connections of a Local Area Network 

(LAN) or using Bluetooth, ZigBee, and Ultra-Wide-

band (UWB) of Personal Area Network (PAN). 

The realization of smart energy, smart transport, 

smart health, smart agriculture, etc. will be permitted 

by IoT technologies, which require the deployment 

of a vast number of IoT devices and sensors. Web 

servers’ logs also represent an essential data source 

for the various city systems. Log streaming permits 

troubleshooting connectivity problems and 

diagnosing the causes of service disruptions. Also, 

clickstream analysis can be used to assess the 

effectiveness of providing online city services. 
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Figure 4: Architecture for Smart City Data Integration. 

4.2 Edge Computing Layer 

As sensors and IoT smart objects generate massive 

amounts of data, traditional data management 

systems and practices will no longer be sufficient to 

take full advantage of the IoT. The fundamental idea 

behind Edge Computing (EC) is to place storage and 

computation resources at the network edge, in the 

proximity of the data generation location. IDC 

predicted that: “By 2019, at least 40% of IoT-created 

data will be stored, processed, analyzed, and acted 

upon close to, or at the edge of, the network” 

(IDC.com, 2017). Thus, the processing of urban data 

streams can be pushed from the cloud to the edge. 

EC reduces traffic bottleneck towards the core 

network by processing the data locally and 

expediting data streams by using various techniques 

(i.e., caching and compression). Besides, it helps to 

shorten end-to-end latency, enabling the offload of 

heavy computation load from power constrained 

user equipment to the edge. This can be very 

beneficial when IoT devices are deployed on remote 

locations suffering from poor network coverage or 

when stakeholders aim to reduce the costs of 

expensive cellular connectivity technologies. 

Edge devices, which are often battery-powered, 

run complete operating systems such as Linux, 

Android, or iOS. They process raw data they receive 

from IoT devices and sensors, and they send 

commands to actuators. They are connected to the 

data layer directly or through edge gateways. Edge 

gateways also run complete operating systems and 

have unrestricted power supply, more CPU power, 

memory, and storage. They can aggregate data and 

support analytics at the edge of the network, and 

they act as intermediaries between the data layer and 

the edge devices. 

Both edge gateways and devices forward 

selected raw or pre-processed IoT datasets to the 

data layer services, like storage services, machine 

learning or analytics services, and they 

symmetrically receive commands from the above 

layers, like configurations or data queries.  

Centralized databases are indispensable for 

carrying out the various operations of the smart city 

systems. Nevertheless, as the data incessantly 

spreads from sensors and IoT devices at the edge, 

central databases only need to cope with data inflow 

at a more controlled rate for instance once per 

minute. Using edge servers, which typically have 

limited computing and storage capacities, permits 

conveying data in real-time and receiving 

instructions in a timely fashion. Data streams can be 

aggregated and merged at the edge and then 

transported to the central databases as averages of 

sensed data over well-controlled periods of time (see 

figure 5). Thus, moving data management partially 

from primary databases towards the edge of the 

network is crucial for coping with real-time data 

feeds. 

4.3 Data Layer 

This layer is in charge of storing and providing 

access to data, obtained from the infrastructure, and 
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processing and analyzing data that other layers can 

use to generate valuable insights. 

4.3.1 Data Storage and Access 

The resources across a smart city infrastructure 

together with people’s wearable devices and 

smartphones incessantly generate vast amounts of 

data in structured and unstructured formats. IoT 

devices and sensors monitor in real-time the 

operations of many city systems such as 

transportation, water, and energy systems. 

Furthermore, social media networks such as Twitter, 

Google+, and Facebook, often considered as social 

sensors, represent a new source of real-time data.  

The data layer allows city stakeholders to store 

and access these large urban datasets using 

conventional and modern management tools. Over 

the last few years, Data-as-a-Service (DaaS) 

emerged as a new delivery model for data storage 

and provisioning wherein data are provided on-

demand to the consumer regardless of their 

geographic locations (Olson, 2009). This delivery 

model relies on the service-oriented architecture 

(SOA) and advocates the view that data management 

can be done in a centralized place where datasets are 

cleansed, aggregated, and enriched to be accessed by 

different applications or users irrespective of their 

location or network.   

4.3.2 Data Aggregation 

Data aggregation typically deals with large volumes 

of data to reduce the size of raw sensory 

measurements (Jugel, 2014). It allows reducing the 

communication overhead and helps to perform more 

advanced tasks in large-scale systems such as 

clustering or event detection. To efficiently access 

and use sensory data, semantic representation of the 

aggregations and abstractions are crucial to 

providing machine interpretable observations for 

higher-level interpretations of the real-world context 

(Jugel, 2014).  

Data aggregation is common in many 

applications. For example, in the healthcare industry, 

to meticulously analyze the situation of a patient, it 

is necessary to aggregate data from various IoT-

based healthcare service providers that collect data 

of that patient using multiple sensors. Fig. 5 depicts 

the aggregation of data from one or several data 

streams. 

 

Figure 5: Aggregation of data from one or multiple data 

streams. 

4.3.3 Data Semantic Integration and 
Interoperability  

The IEEE defines interoperability as:  "The ability of 

two or more systems or components to exchange 

information and to use the information that has been 

exchanged" (IEEE, 1990). 

If two or several systems can communicate and 

exchange data, they are demonstrating syntactic 

interoperability. Specified communication protocols 

and data formats are essential for successful data 

exchange. XML or SQL standards provide syntactic 

interoperability. Syntactical interoperability is a 

requirement for any efforts of additional 

interoperability. Beyond the ability of two or several 

systems to exchange information, semantic 

interoperability means the ability to interpret the 

data exchanged meaningfully and accurately to 

produce useful results as defined by the end users of 

both systems. Semantic interoperability requires that 

both sides agree on a mutual information exchange 

reference model.  

In smart cities, achieving semantic 

interoperability is a more critical and difficult task 

given the complexity of the city ecosystem 

(Ramparany, 2016) (Psyllidis, 2015) where 

government entities and private businesses often use 

different terminologies. Therefore, a semantic data 

model should be developed to standardize terms and 

descriptors whose meanings are defined. Concerning 

this issue at the sensor level, the W3C incubator 

group created the Semantic Sensor Network (SSN) 

ontology (Compton, 2012).  

4.3.4 Data Processing and Analytics  

In addition to providing efficient storage and access 

to data, the data layer allows city stakeholders to 

efficiently transform, and analyze these vast urban 

data streams so that applications of the smart city 

can use it to generate valuable insights. The real val-

ue of such integrated data will be gained by acquir-
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ing new knowledge through the utilization of data 

analytics using a variety of data mining, machine 

learning, and statistical methods. A growing set of 

reputable open source and commercial solutions is 

available for data streams processing. This set in-

cludes: Apache Kafka (http://kafka.apache.org), 

Apache Storm (http://storm.apache.org), Apache 

Samza (http://samza. apache.org), Google Cloud 

Dataflow (https://cloud. google.com/ dataflow), and 

Amazon Elastic MapReduce (https://aws. 

amazon.com/elasticmapreduce). These solutions 

allow processing both streaming and historical data, 

which is a vital aspect of current smart cities. 

For instance, by using Apache Kafka together 

with Apache Storm, Apache HBase and Apache 

Spark, real-time (or near real-time) data streams can 

be processed efficiently. Deployed as a cluster on 

multiple servers, Kafka handles its entire publish 

and subscribe messaging system with the help of its 

four APIs, namely, producer API, consumer API, 

streams API and connector API.  

4.4 Application Layer  

The application layer provides a comprehensive set 

of methodologies and tools for efficient design, 

development, distribution, and operation of smart 

city applications and services. The Service Oriented 

Architecture (SOA) embodied by Web services has 

emerged as a fundamental technology for providing 

services over the Web. Web services are 

interoperable across platforms and neutral to 

languages, which makes them suitable for access 

from heterogeneous environments. Web services 

technology has all the potential to be a significant 

component in the integration endeavor because it 

provides a higher layer of abstraction that hides 

implementation details from applications.  

In this work, we consider the service-orientation 

as the major design principle for the interoperability 

foundation for smart city systems facilitating the 

ground for the support of security assurance, 

semantic layer, IoT integration, business process 

management capabilities, and a multimodal portal 

with mobile device support. Service orientation will 

be the basis for the development of a Smart City 

Service Bus (SCSB). The SCSB will be the 

backbone of services from the different government 

agencies and private businesses. It will enable 

creating new value-added services and deliver 

updated information at all times to city stakeholders, 

citizens, and businesses. 

5 URBAN DATA INTEGRATION 

CHALLENGES 

Data integration and semantic interoperability 

involve continuous change management and a 

tedious engineering effort. It is a long-term effort 

that requires the organization of processes for 

consensus-building and cooperation among all 

players involved.   

The following factors might impact the success 

of the data integration endeavor: 

• Security and privacy issues (Privacy of 

personal data, high cost of security applications 

and solutions, threats from hackers and 

intruders, etc.) 

• Resistance to sharing data or lack of interest in 

data integration by some city entities. 

• Lack of alignment of organizational goals and 

the high cost of IT professionals skillful in data 

integration.  

• Required effort to coordinate data resources 

that have conflicting conceptualizations and 

representations, which makes the smart city 

data integration endeavor harder. 

• The lack of standards for data integration. 

Standardization would significantly alleviate 

the above challenges. Standards take too much 

time before being approved and implemented. 

As we mentioned earlier, already many smart 

city initiatives are underway based on the integration 

of data obtained from multiple stakeholders. It 

remains to be seen to what extent such efforts can 

deliver promised intelligent services.  

6 CONCLUSIONS 

Creation of value-added services and single-entry 

point of services for city citizens involves the 

integration of data from several governments and 

private entities. IoT technologies, semantic 

interoperability, service orientation, edge computing, 

and cloud computing will play a primary role in the 

achievement of the smart city goals. A clear 

understanding of the requirements of citizens and 

smart city governance goals could reveal the 

integration tasks to undertake by the various city 

stakeholders and the challenges that have to be 

faced. A conceptual data integrative framework is 

here proposed to cope with the heterogeneity of 

systems at different levels including data models, 

data semantics, service implementation, and 

interfaces. Edge computing, semantic 
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interoperability, service orientation, and cloud-based 

data analytics are the cornerstones of the proposed 

framework. 
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