
NoSQL Database Performance Tuning for IoT Data
Cassandra Case Study

Lucas B. Dias1,2, Maristela Holanda2, Ruben C. Huacarpuma3 and Rafael T. de Sousa Jr3

1Applied Economics Research Institute (Ipea), Brası́lia, Brazil
2Department of Computer Science, University of Brası́lia, Brası́lia, Brazil

3Cybersecurity INCT Unit 6, LATITUDE, Dept. of Eletrical Engineering, University of Brası́lia, Brası́lia, Brazil

Keywords: Database, NoSQL, Internet of Things Data Management, Performance Tuning, Compaction Strategy.

Abstract: Data provided by Internet of Things (IoT) are time series and have some specific characteristics that must be
considered with regard to storage and management. IoT data is very likely to be stored in NoSQL system
databases where there are some particular engine and compaction strategies to manage time series data. In this
article, two of these strategies found in the open source Cassandra database system are described, analyzed
and compared. The configuration of these strategies is not trivial and may be very time consuming. To provide
indicators, the strategy with the best time performance had its main parameter tested along 14 different values
and results are shown, related to both response time and storage space needed. The results may help users to
configure their IoT NoSQL databases in an efficient setup, may help designers to improve database compaction
strategies or encourage the community to set new default values for the compaction strategies.

1 INTRODUCTION

IoT data may be classified as Big Data, as they present
big Volume, Velocity and Variety, if the number of
devices present in an IoT environment is big and
increasing (Ramaswamy et al., 2013; Zhang et al.,
2013; Zaslavsky et al., 2013). NoSQL Databases are
more suitable than relational databases for storing the
IoT Data (Vongsingthong, Suwimon and Smanchat,
Sucha, 2015; Ma et al., 2013; Zhu, 2015), as they can
handle Big Data and some of them have specific en-
gines for time series data.

IoT Data is one specific case of time series data,
as they are measurements taken along the time, in a
sequential fashion (Ramesh et al., 2016). There are
some characteristics of IoT data that must be treated
by the database system to improve the efficiency
of storage in data writing, data reading and space
needed. The following represent these specifici-
ties (Waddington and Lin, 2016; Abu-Elkheir et al.,
2013):
• Massive Data – The number of devices connected

to the Internet has been increasing rapidly in the
recent years and is expected to achieve 24 billion
by 2020 (Gubbi et al., 2013). The amount of data
is proportional to the number of devices, hence it
may achieve huge volumes.

• Data is ordered – Sensor generated data very of-
ten comes with a timestamp, which can be used by
the system (usually a Middleware) to insert data in
the correct order (Cruz Huacarpuma et al., 2017).
The device data is usually inserted in the database
in the order it was observed in the environment.

• Time based data retrieval – Users typically want
to query data by a time-related key.

• Data rarely changes – For the most part, IoT data
does not change. Nonetheless, data can be over-
written or deleted if some severe accuracy error
is perceived in some device. Consistency is not
a critical issue, because it is very unlikely a user
will get old data instead of the updated one.

• IoT data expires – The life cycle of the IoT Data
depends on the application, but generally, if it in-
tends to provide monitoring, old data is not useful
and can be deleted or aggregated because it will
seldom be needed. Even in more persistent appli-
cations, new data is more frequently queried than
old data.
NoSQL databases fit very well some of those char-

acteristics. There are even some specific time series
databases. However, some general purpose NoSQL
databases can also be very appropriate to store IoT
Data. This paper presents some performance tuning

Dias, L., Holanda, M., Huacarpuma, R. and de Sousa Jr, R.
NoSQL Database Performance Tuning for IoT Data.
DOI: 10.5220/0006782702770284
In Proceedings of the 3rd International Conference on Internet of Things, Big Data and Security (IoTBDS 2018), pages 277-284
ISBN: 978-989-758-296-7
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

277



configurations to make NoSQL databases more effi-
cient in terms of response time and space used. More
specifically, the database compaction parameters will
be tuned. A study case is stated using the Cassandra
NoSQL database.

The remainder of this paper is organized as fol-
lows: Section 2 explains the process of database com-
paction, so that the reader can understand the problem
and the impact of the parameters in the performance;
Section 3 presents related work; Section 4 describes
the test environment and Section 5 presents the re-
sults, while Section 6 presents our conclusion, as well
as ongoing and future work.

2 NoSQL DATA COMPACTION

Google BigTable (Chang et al., 2008) presented a new
distributed, high performance database solution for a
massive data income rate, with certain fault tolerance.
Two years later, Lakshman and Malik from Facebook
presented another database system, inspired both in
BigTable and Dynamo (DeCandia et al., 2007), called
Cassandra. It does not support a relational data model
with relational integrity, but provides a flexible col-
umn family data model. “Cassandra system was de-
signed to run on cheap commodity hardware and han-
dle high write throughput while not sacrificing read
efficiency“ (Lakshman and Malik, 2010).

The NoSQL systems derived from BigTable (Cas-
sandra, HBase, RocksDB etc.) use a storage struc-
ture where recently inserted data stays in memory, in
structures called Memtables, which are, essentially,
string arrays (Chang et al., 2008). Specifically in Cas-
sandra, the data is flushed to disk when (i) Memtables
reaches its maximum size, (ii) Memtables reach their
maximum age or (iii) when the user commands. The
flush operation involves saving the data in the disk, in
a structure called Sorted-String Table (SSTable). The
SSTables are immutable and this provides good write-
intensive performance (Singh, 2015).

If eventually a cell from a SSTable column fam-
ily gets updated, the new value is stored in another
Memtable, live in memory. If this Memtable under-
goes a flush, then there will be two SSTables with
data from the same cell. When there is a read opera-
tion, the system must read data in those two SSTables,
seek for this cell in the Memtables, merge every cell
value implicitly and exhibit the most recent value to
the user. If one cell has different values along several
SSTables, this process will be very costly (DataStax,
2017).

Deleting cells in Cassandra does not free up space,
initially. When a delete operation occurs, the cell

is marked as a tombstone, a process similar to a
soft deletion in relational databases. Each tomb-
stone receives an expiration time, called a ‘grace pe-
riod’, which is set in the column-family specification.
Tombstones are not retrieved to the user but they stay
on disk until their grace period expires and the SSTa-
bles are compacted.

Compaction, in this context, is not related to com-
pression or data compaction algorithms. It is the term
used to define the operation that merges two or more
SSTables, unites the column family cells that have dif-
ferent values and evicts the tombstone expired data,
freeing up storage space (Chang et al., 2008; Singh,
2015). Since SSTables are already ordered, this oper-
ation is not CPU bound, but it is I/O bound (Ghosh
et al., 2015). Typically, storage space will have a
peak, needed to allocate space to the new SSTable,
followed by a reduction. This operation is illustrated
in Figure 1.

Figure 1: Cassandra database compaction.

If Compaction is not made, read operations will
have to seek many SSTables to look for the data,
on other hand, the compaction operation is I/O in-
tensive and therefore impacts on the system perfor-
mance, especially if performed frequently. Hence, an
optimal amount of compaction operations is neces-
sary where these compaction operations yield better
read and write response time. In this paper we inves-
tigate how to achieve a near-optimal point, in terms of
response time and disk usage in an IoT environment.

The main objectives of compaction operations are:
(i) regain disk space, purging the expired and deleted
data; (ii) to store data in a contiguous fashion, keep-
ing data from the same column family and partition
in the same SSTable, or in as few as possible; (iii) to
optimize server reads, assuring they will have to ac-
cess as few SSTables as possible, to faster response
(DataStax, 2017).

There are two compaction strategies in Cassandra

IoTBDS 2018 - 3rd International Conference on Internet of Things, Big Data and Security

278



to handle time series: Date Tiered Compaction Strat-
egy (DTCS) and Time Window Compaction Strat-
egy (TWCS). Both rely on grouping data by its age
(i.e. difference between insertion and now) and de-
fine time windows. One capital difference is that in
case of TWCS, as long as the time window has not
been reached, it uses another method, the Size Tiered
Compaction Strategy (STCS) to compact SSTables, if
needed. In other hand, DTCS does not compact if the
data threshold has not been reached. Less compaction
results in Cassandra using less effort in organizing
data, however, if a queried cell lays in many SSTa-
bles, read operations will have to scan more SSTables
in disk while seeking for data.

3 RELATED WORK

Studies have been conducted about NoSQL Perfor-
mance tuning, however, very few have broadened the
configuration of database compaction strategies.

Lu and Xiaohui studied the DTCS, present in the
Cassandra system and, based on the simulated results,
concluded that Cassandra is a remarkable database
and is very suitable for storing time series, such as
the IoT Data (Lu and Xiaohui, 2016).

(Kona, 2016) and (Ravu, 2016) simulated the Cas-
sandra behavior in a high intensive workload. The
former concluded that the DTCS is not the best strat-
egy in a write-intensive workload (90% write oper-
ations and 10% read operations) and the latter con-
cluded that in a balanced workload (50% read and
50% write) the DTCS was the most efficient strategy
to date. However, this paper differs from those two
studies in that the data in the present work is confined
to IoT Data.

The Cassandra performance was also analyzed
by (Sathvik, 2016), by changing parameters and the
configuration of Memtables and Key-Cache, that is
a special table that saves pointers to the rows in
each SSTable. However, it differs from our study
because compaction strategy parameters were not
changed. Indeed, they conclude recommending that
future works consider altering the parameters of com-
paction strategies to further optimize performance.

Unlike these studies, our paper presents a perfor-
mance tuning approach to compare the novel TWCS
to the preexistent DTCS. Furthermore we change the
TWCS main parameters in order to evaluate response
time, throughput and disk usage.

4 TEST ENVIRONMENT AND
METRICS

This section presents in Subsection 4.1 the computa-
tional environment where experiments were executed;
Subsection 4.2 presents the IoT environment simula-
tion; Subsection 4.3 show the execution of two test
cases and finally Subsection 4.4 explains what met-
rics were chosen and why.

4.1 Test Bed

All tests were performed in a cluster with 10 nodes of
equal capacity. Each node has one Intel Xeon R© core;
3.2GB of RAM memory; 7200 rpm spinning disks
with 50GB of space; Linux installed, with Ubuntu
distribution. Cassandra version 3.11.1 is installed in
all nodes. They are all virtual machines and the host
server is not exclusive for these tests. We tried to min-
imize the impact of other services on tests by repeat-
ing the stress operations on different weekdays and
different schedules.

The main tool used to generate and simulate the
operations is the Cassandra Stress Tool (Apache,
2016), maintained by the Cassandra Community. Ev-
ery stress operation was run on a machine outside the
cluster. The stress process had 24 threads that gener-
ated, inserted and queried data in parallel.

4.2 IoT Environment

The IoT scenario is typically a write-intensive appli-
cation. The test operations were distributed as 90% of
write operations and 10% of read queries, distributed
as: 4% for a query that selects all measures from one
device, which we call devdata, 3% for a query that
retrieves one value, given the device and observation
time (named onerow) and a query that retrieves the
average value of one device, given its Id (named avg-
data).

In all tests, a one-hour Time to Live (TTL) pa-
rameter was applied to the column family. This pa-
rameter sets the data expiration time, which added to
the grace period parameter (that was fixed in half an
hour) states that data may get purged from the table
after 90 minutes.

The column family schema was modeled with the
partition key (K) being the device identifier and each
device may provide different services (in tests, a fixed
number of five services). The service name, along
the observation value compose the clustering key (C).
The model is presented in the Chebotko notation, a
special model for column family databases (Chebotko
et al., 2015), in Figure 2.

NoSQL Database Performance Tuning for IoT Data

279



Figure 2: Column family schema.

The observation time is stored in a descending or-
der, because more recent data is more often queried
and retrieved. The device name does not repeat at ev-
ery observation, so it is defined as a static column (S),
what in Cassandra makes it be saved beside the parti-
tion key and not repeatedly in every row.

4.3 Test Cases

The first test case modeled was the comparison be-
tween DTCS and TWCS. The former was marked as
deprecated although it is still available in Cassandra,
whilst the latter is the natural substitute for DTCS.
Although the community has made tests to perform
this substitution (Jirsa, 2016), we could not find any
published paper that compared TWCS with DTCS.

The second test case modeled was the adjust-
ment of the main parameter in TWCS to achieve a
near-optimal performance result. The parameter is
compaction window size, which, in short, tells the
database system the age at which the SSTables be-
come available to compact and when not to compact
them anymore.

In both test cases, the volume of data was the
same. The number of rows inserted RI is given by
Equation 1.

RI = OP∗ IR∗T S∗OV (1)

The stress tool created 2,000,000 operations OP
(90% writes and 10% reads), which means that the
insert ratio (IR) is 0.9. In each operation, a device
received 5 time series (TS), one for each service name.
Each time series gets 60 observation values (OV).

RI = 2,000,000∗0.9∗5∗60 = 540,000,000 (2)

These values resulted in 540 million rows inserted
throughout the cluster, as shown in Equation 2. This
configuration was set so that there would be enough
time for the data to expire. With TTL (60 minutes)
plus the grace period (30 minutes) set at 90 minutes,
each stress operation lasted more than 120 minutes,
so the 540 million rows never persisted at the same
time. After 90 minutes, as new data was coming, old
data was being purged.

4.4 Metrics

To evaluate the performance, the main metrics chosen
were:

• throughput – the amount of operations per sec-
ond, in the case of the read queries, and the
amount of rows per second, in the case of insert
operations. Typically, as the scenarios involved
the same amount of data, the throughput impacted
directly on the total simulation time.

• latency – the time needed for the system database
to respond to a request. It starts counting when the
request is received and stops when the message is
delivered to the client. Both write and read latency
were evaluated.

• disk space – the total amount of disk space used
to store the data.

The chosen metrics represent the user point-of-
view of the system, and although the CPU, Memory
and I/O used have been analyzed, they are not pre-
sented here because they are reflected in the chosen
metrics. For instance, an I/O bottleneck will impact
the throughput and latency. With some exceptions,
the same happens to memory-bound and CPU-bound
operations.

The metrics were provided by Cassandra either by
the Stress Tool logs or by the Core Metrics library,
which runs inside Cassandra, in a configurable way.
They both provide column family specific measures,
which aids test precision because it isolates the mea-
sures from other column families or possible OS re-
quests.

5 RESULTS

The tests were made according to the two test cases
presented in Subsection 4.3. The results collected and
analyzed are presented in the following subsections.

5.1 DTCS Versus TWCS

In order to test the two compaction strategies, the
same data was inserted and queried in two column
families, one at a time. The schemas of the two col-
umn families are the same as Figure 2, except for the
compaction strategy. The column family IoT DTCS
was created with DTCS with its default parameters
except the most relevant: base time seconds, which
was set to 10 minutes. In other hand, the column fam-
ily IoT TWCS was created with TWCS default pa-
rameters, except the compaction window size, which
was set also to 10 minutes.

IoTBDS 2018 - 3rd International Conference on Internet of Things, Big Data and Security

280



The first performance indicator shown is the
elapsed time needed to manage the data. Overall, six
stress operations were made in each compaction strat-
egy and the standard deviation was low, which is why
we report the mean. The time results are presented
in Table 1, with standard deviation (STD) in percent
values of the mean and Speedup being the DTCS time
divided by TWCS time.

Table 1: Mean time elapsed for the 600M operations using
DTCS and TWCS.

Strategy Mean Time STD (%) Speedup
DTCS 02h41m48s 0.71% N/A
TWCS 02h14m57s 0.18% 1.20

The TWCS has stored the same amount of data
20% faster than the DTCS. This may also be seen in
the throughput of the insertion operation (see Figure
3) expressed in inserted rows per second. The mean
throughput standard deviation among the six simula-
tions was 6.5% overall – not in every 30 second inter-
val, but throughout the whole stress process.

Figure 3: Both scenarios were executed in different times
but displayed together along the same timeline. The y axis
represents thousands of inserted rows per second while the
x axis stands for the execution time, in minutes.

Moreover, the read operations, that are more sus-
ceptible to the compaction operations are, overall,
better using the TWCS than DTCS. To illustrate, we
show in Table 2 the results of one stress operation of
TWCS and the comparison over one stress operation
of DTCS. The ones chosen among the six stress op-
erations were those with an execution time closer to
the mean time. The rightmost column is the DTCS
latency divided by TWCS latency.

Similarly, as in elapsed time, TWCS was shown
to have a faster mean latency at 22%. The fact that
the median time was slightly faster in DTCS does not
represent a relevant advantage, because the TWCS
mean and the other two percentiles are lower. The
percentile 0.99 shows that Cassandra can respond to
99% of the requests in under 677.4 milliseconds us-
ing TWCS, while the same percentile in DTCS was
responded up to 1618.9 milliseconds. The upper per-

Table 2: Latency (ms) statistics with percentiles.

TWCS Read Insert Total DT/TW
mean 181.8 88.6 97.9 1.22

median 62.0 40.9 41.5 0.93
0.95 595.9 231.6 260.0 1.40
0.99 1683.7 426.2 677.4 2.39
0.999 8018.1 4945.1 5326.8 1.09
max 27263 46271 46271 0.52

centiles show that this database system respond to the
majority of the users in a timely fashion. The maxi-
mum latency shows high numbers, but consideration
must be made to the fact that 600 million operations
were performed, and that it would be very costly to
guarantee low-latency responses to all requests, using
regular commodity hardware (DeCandia et al., 2007).

However, DTCS has showed an advantage over
TWCS in disk space used. In Figure 4, all nodes had
their space summed and an average has been applied
to all six stress operations. It is important to remem-
ber that data becomes expired after 90 minutes. Al-
though new rows are continuously being inserted, the
volume becomes stable after 110 minutes because the
compaction starts to purge expired data.

Figure 4: Both scenarios were executed in different times
but displayed together along the same timeline.

Figure 4 shows that DTCS uses less disk space
than TWCS. Throughout the whole cluster, the max-
imum disk space used was 18.4% higher in TWCS
than in DTCS. Considering all 30 seconds intervals,
the mean disk space used was 5.5% higher in TWCS.
Tests were run with the compression disabled, to en-
hance performance. Further tests must be carried out
with the default compression algorithm enabled to ob-
serve if the space advantage persists in the same level
or is decreased.

5.2 Compaction Window Size

TWCS was shown to perform better than DTCS in
terms of response time. Moreover, the latter has been
marked as deprecated by the Cassandra community,
which justifies our choice of furthering studies with

NoSQL Database Performance Tuning for IoT Data

281



TWCS.
The main parameter of this compaction strategy is

compaction window size, which sets the time interval
for contemporary data in the same SSTable. In these
tests we tried to find a near-optimal parameter that
would give the best performance results to our IoT
test environment. Fourteen test cases were executed,
changing only the compaction window size parameter,
receiving values from 1 to 240 minutes.

Figure 5: The y axis shows the execution time and x axis the
time window size, both in minutes. The fastest execution
was with 1 minute window.

Figure 5 shows that the most time-efficient con-
figuration was the 1 minute window size. As the
windows increase, the execution time increases and
it does not decrease to achieve the lowest values of
1 minute, since the 240 minutes is greater than the
execution time, which means that values greater than
240 would not have any difference in the execution of
these tests operations.

The total disk space used throughout the 10 cluster
nodes is presented in Figure 6. The compaction sizes
are shown from 1 to 60 minutes. The space used does
not decrease with compaction window size more than
60 minutes. As in the DTCS versus TWCS case, the
fastest configuration is the one that uses more space.
The 1 minute window size used more space, both in
average and peak.

Figure 6: The 1 minute window uses more space.

The more space needed is due to the fact that, in
the 1 minute compaction window size, SSTables are

grouped in a small window and therefore are not com-
pacted anymore until it expires. With larger window
sizes, the SSTables continue to be compacted until the
time window size has not been reached. Thus, with a
big window size, there will be more compaction op-
erations using STCS, which is the default compaction
strategy as long as the time window is not achieved.

Another interesting aspect that must be analyzed
is the relation between the read latency and write la-
tency. As showed in Section 2, the read operation de-
pends on the number of SSTables. Without expired
data, the lower the compaction window size, the more
SSTables in a long term. However, the effect of aug-
menting read latency is not direct, because, for each
SSTable, there is a bloom filter that tells if some par-
tition is not present in that file. Therefore, it avoids
scanning most of the SSTables, which reduces the im-
pact of a bigger number of SSTables in the read oper-
ation.

Figure 7: The read and write latency values and ratios for
different compaction window sizes.

Notably, the lowest read/write ratio is in the 3
minute compaction window size. In this test scenario,
the proportion between the amount of insert and read
operations are 9 to 1. Thus the insert operation is far
more relevant for the total execution time. Neverthe-
less, if more read operations occur, most likely the
optimal compaction window size will be closer to 3
minutes than to 1 minute.

All experimental results can be found at
https://github.com/lucasbenevides/iotbds.

6 CONCLUSION AND FUTURE
WORK

Data derived from IoT environments may achieve
high throughput levels and may get bulky as time goes
by. In order to optimize the computational resources
in the IoT data storing task, this work has tuned a
NoSQL database system, specifically the compaction

IoTBDS 2018 - 3rd International Conference on Internet of Things, Big Data and Security

282



strategies, and analyzed its results.
In many computational problems, there is a trade-

off between storage space and time. In both test
cases performed in this work this trade-off remains.
In the first test case, Cassandra’s TWCS performed
20% faster than DTCS, but the former used, in peak,
18.4% more disk space. In addition, the configuration
of TWCS is simpler than the one to DTCS, what cor-
roborates with the community decision to deprecate
DTCS and continue developing TWCS. Users should
choose DTCS only if the disk space is limited.

The second test case evaluated different
configurations of the TWCS parameter com-
paction window size in relation to a scenario where
data becomes expired after 90 minutes. The 1 minute
value was near-optimal in terms of elapsed time,
latency and throughput. Nevertheless, the space
trade-off continued to be an issue. The fastest test
case was shown to be the one that used more space,
in peak 40.8%, in comparison with the 60 minute
window size, which lasted 72.6% more.

The 1 minute was the lowest value accepted in the
TWCS configuration. As it has shown to be the near
optimal, we recommend that other values lower than
1 minute be accepted by Cassandra.

The ratio between the expiration time (TTL plus
grace period) and compaction window size shall be
tested with different values. If a near-optimal relation
can be confirmed, users may have a ”golden rule” to
configure their column-families.

Further work is needed mainly in the second test
case. Tests must be performed in a larger test bed to
evaluate if the results are consistent. Likewise, other
read/write ratio operations must be tested. Although
600 million rows is already a considerable size, tests
should be made with larger data sets – preferably
with real data sets instead of generated data as in the
present paper.

This study will be useful within a broader research
goal the authors aim to achieve: the creation of an
auto tuning component for compaction parameters,
initially within TWCS. These results will help to cre-
ate rules that lead to an autonomous performance tun-
ing agent, which intends to eliminate the time and ef-
fort users spend tuning the database compaction strat-
egy parameters.

ACKNOWLEDGEMENTS

This research work has the support of the Brazil-
ian research and innovation Agencies CAPES
(Grant 23038.007604/2014-69 FORTE–Tempestive
Forensics Project), CNPq (Grant 465741/2014-

2 – Cybersecurity INCT) and FAPDF (Grants
0193.001366/2016 UIoT–Universal Internet of
Things and 0193.001365/2016–Secure Software De-
fined Data Center (SSDDC)), as well as the Ministry
of Planning, Development and Management (Grants
005/2016 DIPLA–Planning and Management Direc-
torate and 11/2016 SEST–Secretariat of State-owned
Federal Companies) and the DPGU–Brazilian Union
Public Defender (Grant 066/2016).

REFERENCES

Abu-Elkheir, M., Hayajneh, M., and Ali, N. (2013). Data
Management for the Internet of Things: Design Prim-
itives and Solution. Sensors, 13(11):15582–15612.

Apache, S. F. (2016). The Cassandra-stress tool.
http://cassandra.apache.org/doc/latest/tools/cassandra
stress.html. Last accessed 22 January 2018.

Chang, F., Dean, J., Ghemawat, S., Hsieh, W. C., Wallach,
D. A., Burrows, M., Chandra, T., Fikes, A., and Gru-
ber, R. E. (2008). Bigtable: A distributed storage sys-
tem for structured data. ACM Transactions on Com-
puter Systems (TOCS), 26(2):4.

Chebotko, A., Kashlev, A., and Lu, S. (2015). A Big Data
Modeling Methodology for Apache Cassandra. pages
238–245. IEEE.

Cruz Huacarpuma, R., de Sousa Junior, R. T., de Holanda,
M. T., de Oliveira Albuquerque, R., Garcı́a Villalba,
L. J., and Kim, T.-H. (2017). Distributed Data Service
for Data Management in Internet of Things Middle-
ware. Sensors, 17(5):977.

DataStax (2017). Datastax docs : The write path to
compaction. https://docs.datastax.com/en/cassandra/
2.1/cassandra/dml/dml write path c.html. Last ac-
cessed 22 January 2018.

DeCandia, G., Hastorun, D., Jampani, M., Kakulapati,
G., Lakshman, A., Pilchin, A., Sivasubramanian, S.,
Vosshall, P., and Vogels, W. (2007). Dynamo: Ama-
zon’s Highly Available Key-value Store. In Proceed-
ings of Twenty-first ACM SIGOPS Symposium on Op-
erating Systems Principles, SOSP ’07, pages 205–
220, New York, NY, USA. ACM.

Ghosh, M., Gupta, I., Gupta, S., and Kumar, N. (2015).
Fast Compaction Algorithms for NoSQL Databases.
In 2015 IEEE 35th International Conference on Dis-
tributed Computing Systems, pages 452–461.

Gubbi, J., Buyya, R., Marusic, S., and Palaniswami, M.
(2013). Internet of Things (IoT): A vision, architec-
tural elements, and future directions. Future Genera-
tion Computer Systems, 29(7).

Jirsa, J. (2016). TWCS experiments and improvement
proposals - ASF JIRA [CASSANDRA-10195].
https://issues.apache.org/jira/browse/CASSANDRA-
10195.

Kona, S. (2016). Compactions in Apache Cassandra :
Performance Analysis of Compaction Strategies in
Apache Cassandra. Master’s thesis, Blekinge Insti-
tute of Technology, Karlskrona, Sweden.

NoSQL Database Performance Tuning for IoT Data

283



Lakshman, A. and Malik, P. (2010). Cassandra: A Decen-
tralized Structured Storage System. SIGOPS Oper.
Syst. Rev., 44(2):35–40.

Lu, B. and Xiaohui, Y. (2016). Research on Cassandra data
compaction strategies for time-series data. Journal of
Computers, 11(6):504–513.

Ma, M., Wang, P., and Chu, C. H. (2013). Data Manage-
ment for Internet of Things: Challenges, Approaches
and Opportunities. In Green Computing and Com-
munications (GreenCom), 2013 IEEE and Internet of
Things (iThings/CPSCom), IEEE International Con-
ference on and IEEE Cyber, Physical and Social Com-
puting, pages 1144–1151.

Ramaswamy, L., Lawson, V., and Gogineni, S. V. (2013).
Towards a quality-centric big data architecture for
federated sensor services. In Big Data (BigData
Congress), 2013 IEEE International Congress on,
pages 86–93. IEEE.

Ramesh, D., Sinha, A., and Singh, S. (2016). Data mod-
elling for discrete time series data using Cassandra
and MongoDB. In 2016 3rd International Confer-
ence on Recent Advances in Information Technology
(RAIT), pages 598–601.

Ravu, V. S. S. J. S. (2016). Compaction Strategies in
Apache Cassandra : Analysis of Default Cassandra
stress model. Master’s thesis, Blekinge Institute of
Technology, Karlskrona, Sweden.

Sathvik, K. (2016). Performance Tuning of Big Data Plat-
form : Cassandra Case Study. PhD thesis, Blekinge
Institute of Technology, Faculty of Computing, De-
partment of Communication Systems, Karlskrona,
Sweden.

Singh, K. (2015). Survey of NoSQL Database Engines for
Big Data. Master’s thesis, Aalto University. School of
Science.

Vongsingthong, Suwimon and Smanchat, Sucha (2015). A
Review of Data Management in Internet of Things.
KKU Research Journal, pages 215–240.

Waddington, D. G. and Lin, C. (2016). A Fast Lightweight
Time-Series Store for IoT Data. CoRR - Computing
Research Repository. arXiv: 1605.01435.

Zaslavsky, A., Perera, C., and Georgakopoulos, D. (2013).
Sensing as a service and big data. arXiv preprint
arXiv:1301.0159.

Zhang, J., Iannucci, B., Hennessy, M., Gopal, K., Xiao, S.,
Kumar, S., Pfeffer, D., Aljedia, B., Ren, Y., Griss, M.,
Rosenberg, S., Cao, J., and Rowe, A. (2013). Sen-
sor Data as a Service – A Federated Platform for Mo-
bile Data-centric Service Development and Sharing.
In 2013 IEEE International Conference on Services
Computing, pages 446–453.

Zhu, S. (2015). Creating a NoSQL database for the In-
ternet of Things : Creating a key-value store on the
SensibleThings platform. PhD thesis, Mid Sweden
University, Faculty of Science, Technology and Me-
dia, Department of Information and Communication
systems, Sundsvall, Sweden.

IoTBDS 2018 - 3rd International Conference on Internet of Things, Big Data and Security

284


