
Generating Persistence Structures for the Integration of Data and
Control Aspects in Business Process Monitoring

Eladio Domínguez1, Beatriz Pérez2, Ángel L. Rubio2, María A. Zapata1,
Alberto Allué3 and Antonio López3

1Departamento de Informática e Ingeniería de Sistemas, Universidad de Zaragoza, Zaragoza, Spain
2Departamento de Matemáticas y Computación, Universidad de La Rioja, La Rioja, Spain

3Infozara Consultoría Informática, Zaragoza, Spain

Keywords: Model–driven Approach, Development of Monitoring Systems, Process Flow and Data Integration, UML,
Occurrence–centric.

Abstract: Today’s organizations have to monitor increasingly complex business processes that handle large amounts
of data. In this context, it is essential to design working frameworks that seamlessly integrate both control
flow and data perspectives. Such an integration can be eased by automatically generating the infrastructures
for storing data and control aspects. Towards this goal, we propose an automatic process for synthesizing
persistence structures for control flow and data storage. In particular, based on an approach centered on
the concept of Occurrence, in this paper we present a proposal by means of which, after applying several
translation patterns to a business process model, we automatically generate the persistence structures that
integrate both data and control aspects of such model. The feasibility of this proposal is demonstrated by
developing a prototype and evaluating its application to different examples taken from the literature as a
benchmark.

1 INTRODUCTION

Continuous improvement is an integral part of the life
cycle of any business process. In order to achieve this
objective, monitoring systems of process execution
are required. From the information obtained through
monitoring, it is possible to assess the adequacy of
the processes to the reality and to proceed to the re-
vision of the underlying models. Due to its intrinsic
nature, business process management systems must
be able to capture both the control flow perspective
and the data perspective in order to faithfully achieve
their goal. This is even more important when mo-
nitoring tasks are performed, in which the managed
data must be aligned with the enacted processes. Of-
ten, these two perspectives have been treated separa-
tely, but more and more it is recognized (Eshuis and
Van Gorp, 2016a; Eshuis and Van Gorp, 2016b; Ku-
maran et al., 2008; Künzle and Reichert, 2011; Ni-
gam and Caswell, 2003) that a holistic and as much
automated as possible approach of both aspects is re-
quired.

In (Domínguez et al., 2017; Domínguez et al.,
2014) we presented an approach based on the no-

tion of Occurrence, a three–dimensional modeling ar-
tifact that comprises guidance, structure and behavior
(see Section 2). The final goal of that proposal is to
improve the processes of design and development of
monitoring systems, so that analysts and developers’
work is lightened.

In this paper we propose a further step towards
the development of monitoring systems that seamles-
sly integrate control flow and data aspects. We deve-
lop an improvement of the design strategy presented
in (Domínguez et al., 2014), enriching it with auto-
matic mechanisms for the construction of storage in-
frastructures for monitoring issues. This proposal has
several potential advantages such as minimizing co-
ding tasks and simplifying the management of the life
cycle of business processes. In particular, in Section 3
we show how from a business process model, re-
presented through a UML activity diagram that con-
tains information about business objects (other busi-
ness process modeling languages could also be used),
a specific class model can be automatically generated.
This class model, created by applying a UML profile
and several patterns, comprehensively captures flow
and data perspectives. Section 4 shows the details of

320
Domínguez, E., Pérez, B., Rubio, Á., Zapata, M., Allué, A. and López, A.
Generating Persistence Structures for the Integration of Data and Control Aspects in Business Process Monitoring.
DOI: 10.5220/0006781903200327
In Proceedings of the 20th International Conference on Enterprise Information Systems (ICEIS 2018), pages 320-327
ISBN: 978-989-758-298-1
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



ContextClass_C1

ContextClassC1_State ContextClassC2_State

1

0..1 0..1

1 1

0..1 0..1

ProtocolExecutionP1 ProtocolExecutionP2

ActionA22
ActionA21

Action_A11
Action_A12

0..1 0..1 0..1

0..1

* *
*

ContextClass_C2

ProtocolExecution

«ProtocolExecution»

ContextClass
ContextClassState

actual

1

0..1

*

0..1

0..1 0..1initial

«ContextClass»

ConcreteState_S11

«StateInstance»

ConcreteState_S12

«StateInstance»

ConcreteState_S21

«StateInstance»
ConcreteState_S22

«StateInstance»«TransitionInstance»

ConcreteTransition_S11_2_S12

{disjoint, incomplete}

{disjoint, incomplete} {disjoint, incomplete}

{disjoint, incomplete}

{disjoint, incomplete}

source sourcetarget target

*

«TransitionInstance»
ConcreteTransition_S21_2_S22

Figure 1: OcBase PIM pattern.

the translation and the automatization procedures of
our approach, together with an implementation into
an MDE–based tool, using the Atlas Transformation
Language (ATL) (ATL Plug-in, 2017).

The proposal has been evaluated according to se-
veral criteria, such as performance and maintenance
(Section 5). Other related works are discussed in
Section 6, while Section 7 concludes with final re-
marks and future work.

2 BACKGROUND: THE
OCCURRENCE– BASED
APPROACH

Business process monitoring is concerned with recor-
ding information about the actual execution of pro-
cesses in order to later extract valuable knowledge
that can be utilized for business process quality im-
provement (Campanile et al., 2008; Kang et al., 2012;
Kang et al., 2009; Reichert et al., 2010). The type
of collected information influences the quality of the
diagnosis accomplished during the monitoring phase.
Trying to improve the diagnosis, in (Domínguez et al.,
2017; Domínguez et al., 2014) a holistic perspective
of system dynamics is proposed which enhances the
monitoring of business processes as a whole. Spe-
cifically, when the dynamics of a system is defined
as a set of processes accomplished by following se-
veral protocols, we suggested a three–dimensional
business process monitoring approach, which simul-
taneously encompasses structure (objects), behavior
(events, states, state changes) and guidance (proto-
cols, processes and protocol performers).

According to this perspective, each protocol,
when executed, acts on one or more objects, which
react by changing their state and/or related data. An
Occurrence is a concrete, identifiable and indivisi-
ble chunk of information which contains aspects or-
ganized according to three dimensions: guidance,

structure, and behavior, given by protocol execution,
object, and effect, respectively (Domínguez et al.,
2014). The proposal also defines persistence struc-
tures that simplify the subsequent processing of the
system trace. Occurrences, generated through proto-
col executions, are stored under a specific persistence
structure, called Occurrence Base (OcBase). Besi-
des, an Occurrence Management System (OcSystem)
is any system that enables the comprehensive mana-
gement of occurrences, both in terms of their storage
by using an OcBase, and in terms of their handling
by using embedded tools that ease the exploitation of
derived knowledge.

This proposal provides several theoretical con-
cepts that can be applied using different methodologi-
cal and/or technological approaches. In (Domínguez
et al., 2014) we proposed a specific design strategy
for the development of an OcSystem following an
MDE approach (called OcBaseMD design strategy).
In particular, this strategy provides several artifacts
(the Occurrence profile and four patterns) for the de-
sign of an Ocbase, that is, for the design of the persis-
tence structures that will store the occurrences genera-
ted through system execution. The main pattern pro-
vided by this strategy is the OcBase platform indepen-
dent model (PIM) pattern (see Figure 1). This pattern
makes use of the Occurrence profile which consists of
four stereotypes corresponding to the executed proto-
cols («ProtocolExecution»), acting on objects («Con-
textClass»), which react by changing their state («Sta-
teInstance» and «TransitionInstance»). Furthermore,
this pattern establishes a skeleton of the OcBase class
diagram in order to capture the hierarchical struc-
ture of state classes, and the transition classes among
source and target state classes. Several advantages are
obtained from using this design strategy that make
it different from other monitoring proposals (Cam-
panile et al., 2008; Kang et al., 2012; Kang et al.,
2009; Reichert et al., 2010). Three of the most im-
portant advantages are: (1) a holistic perspective of
system dynamics is provided, enhancing the monito-

Generating Persistence Structures for the Integration of Data and Control Aspects in Business Process Monitoring

321



p1: Patient

[NotObese]

Calculate Body

Mass Index

Give lifestyle

suggestions

p1: Patient

[ChangingLifestyle

AndBehaviour]

<<Monitored>>
<<Monitored>>

Discuss drug

risks

Don't give

drug treatment

Apply drug

therapy

p1: Patient

[WithoutDrug]

p1: Patient

[WithDrug]

Assess patient

conditions

Discuss surgery

risks

Don't give

surgery

Plan

surgery

p1: Patient

[PreparedForSurgery]

p1: Patient

[WithoutSurgery]

Perform

surgery

p1: Patient

[WithSurgery]

<<Monitored>>

p1: Patient

[Obese]

p1: Patient

[Discussing

DrugRisks]

p1: Patient

[Discussing

SurgeryRisks]

<<Monitored>>

Assess comorbid

conditions

Doctor

visit

[<30]

[>=30]

Assess patient

weight

<<Monitored>>

Figure 2: UML Activity Diagram of the obesity clinical guideline.

ring of business process as a whole (Domínguez et al.,
2014), (2) an occurrence query framework is available
which simplifies the querying process for obtaining
provenance-related information (Domínguez et al.,
2017), and (3) a single–pool solution for OcBase evo-
lution is proposed for tackling the highly probable
changes in the processes without incurring any lost
of existing data (Domínguez et al., 2014).

In our research and development group (incorpo-
rating partners from both academia and industry), this
approach has been applied to develop successful mo-
nitoring applications, such as a biobank OcSystem
for identifying genetic and lifestyle aspects related to
cardiovascular risk factors (Domínguez et al., 2017;
Domínguez et al., 2014). Another example is the QRP
Platform which is a Capability Maturity Model Inte-
gration (CMMI) appraisal tool for project quality ma-
nagement (Allué et al., 2013).

3 SYNTHESIZING PERSISTENCE
STRUCTURES FOR CONTROL
FLOW AND DATA STORAGE

We consider that, within the framework of a design
strategy, the proposals for developing monitoring sy-
stems must include an automatic process for transla-
ting business process models into persistence structu-
res. In this paper, we enrich the OcBaseMD design
strategy presented in the previous section by provi-
ding it with a translation process that, starting from
a process model, generates the storage infrastructure
of an OcBase for storing the occurrences generated
during the execution of that model.

Business process modeling can be performed
using different conceptual modeling languages, such
as BPMN (Object Management Group, 2011) or

UML Activity Diagrams (Object Management Group,
2015), among others. The application of the previ-
ously presented occurrence–based approach requires
a language that facilitates the representation not only
of the control flow but also of the objects (structure)
and their state changes (behavior) produced during
the process execution. UML Activity Diagrams ve-
rify this requirement since it is a conceptual business
process modeling language that allows us to specify
the ordering of activities (control flow) as well as the
flow of objects (data flow) that are used by the activi-
ties. In this paper, as an example, we assume that the
business processes are represented by means of UML
Activity Diagrams, but other languages would also be
possible.

The control and data flows represented in a UML
activity diagram are used for determining the type of
elements that will be stored in the OcBase for mo-
nitoring purposes. With the goal of allowing the de-
signer to take part in this decision, we have defined
the Monitoring profile. This profile consists of a ste-
reotype by means of which the designer, bearing in
mind the monitoring requirements, can determine the
objects and states that must be processed. The ste-
reotype is called «Monitored» and extends the UML
ObjectNode element. In this way, only the object no-
des of the UML activity diagram with the «Monito-
red» stereotype will be taken into account during the
generation of the OcBase schema. For example, Fi-
gure 2 shows a stereotyped UML activity diagram re-
presenting a real–life clinical guideline for the mana-
gement of obesity in primary care (Snow et al., 2005).
According to this guideline, different actions can be
performed when a patient has a body mass index of
30 Kg/m2 or greater. Note that several object nodes
of type Patient appear in this activity diagram, but
only some of them are monitored. We use this guide-
line as case study along the paper.

ICEIS 2018 - 20th International Conference on Enterprise Information Systems

322



...

Object

[A]
Object

[B]

...

...

«Monitored» «Monitored» «StateInstance»

A

«StateInstance»
B

«TransitionInstance»

A2B
transition pattern

Object

[A]

«Monitored»
state pattern «StateInstance»

A

Object

[A]

«Monitored»

...

...

...

...

Object

[B]

«Monitored»

Object

[C]

«Monitored»
Object

[D]

«Monitored»

AND state pattern

«StateInstance»
A

«StateInstance»
B

«StateInstance»

C

«StateInstance»

D

region 1 region 2

ANDstate 1

Figure 3: Translation patterns.

Stereotyped activity

diagram model

Stereotyped class

diagram model
Occurrence Profile

Model
Transformation

Figure 4: Translation process scheme.

The method for automatically generating the
storage infrastructure of an OcBase (see Figure 4)
takes as source models an activity diagram stereoty-
ped with the Monitoring profile, and the Occurrence
profile that will be applied to the target class dia-
gram. Starting from these two models, the transla-
tion process synthesizes the UML class diagram of
the OcBase, replicating the structure of the PIM pat-
tern (see Figure 1).

The translation process takes the structure of the
PIM pattern as scheme, so that several elements of
the generated UML class diagram are common to
all OcBases, independently of the designed UML
activity diagram. Examples of these elements are
the ContextClass, the ContextClassState and the
ProtocolExecution classes. On the contrary, ot-
her elements of the OcBase, mainly the hierarchical
structure of state classes, and the transition classes
among source and target state classes, are determined
depending on the given UML activity diagram. These
activity diagram’s dependent elements are created ap-
plying several translation patterns. Next, we explain
three of the most outstanding patterns (see Figure 3).

State Pattern. For each monitored object node of
the activity diagram, with state A, a class A represen-
ting the state is created in the OcBase.

AND State Pattern. This pattern is applied when
there are stereotyped object nodes of the same ob-
ject, entering or exiting activities which form part
of a fork/join structure. In this case, a hierarchical
structure of classes with one abstract class, and a re-
gion class for each flow of the fork, is created in the
OcBase.

Transition Pattern. This pattern is applied when

there is a pair of stereotyped object nodes of the same
object in different states (A and B), one of them en-
tering an activity and the other one exiting another
activity (with no other object node of the same object
in the intermediate activities). A class A2B represen-
ting the transition between the states is created in the
OcBase.

4 AUTOMATIZATION OF THE
TRANSLATION

In order to demonstrate the feasibility of our transla-
tion proposal, we have implemented it into an MDE–
based tool, using the ATL Eclipse plug–in (ATL
Plug-in, 2017), developing a first prototype. Specifi-
cally, the translation process has been implemented as
an ATL module called ActivityD2ClassD, together
with a simple ATL library called UtilityLibrary.
The source models of these ATL units (that is, the ste-
reotyped activity diagram and the Occurrence profile)
must be provided in XMI syntax as .uml extension
files and have to conform to the UML 2.5 metamo-
del. By using the defined units, the activity diagram
is translated into an OcBase class diagram in XMI
syntax, also conforming to the UML 2.5 metamodel.
A complete explanation of our implementation of the
translation process can be found in (Supplementary
Material, 2018).

While the activity diagram could have monitored
object nodes of any type, our prototype focuses on ob-
ject nodes that refer to the same object (the translation
of other design alternatives are discussed later in this
section). Based on this, before performing the transla-
tion, the prototype must be provided with the informa-
tion regarding the object and its corresponding type.
Since ATL does not supply a way to parameterize va-
riables’ values at runtime, we include the correspon-
ding pair of data object-type into an ATL helper defi-

Generating Persistence Structures for the Integration of Data and Control Aspects in Business Process Monitoring

323



Figure 5: Generated Class diagram for the obesity case study.

ned within the independent UtilityLibrary library.
In this way, not only do we separate such required
information from the remainder translation, but also
we anticipate to possible future improvements of the
algorithm.

The ATL ActivityD2ClassD module, on the ot-
her hand, constitutes the pivotal part of the trans-
lation, implementing our patterns and using the in-
formation included in the UtilityLibrary library.
The module consists of a set of 39 ATL helpers,
which act as global variables and auxiliary methods,
1 matched rule and 17 called rules (around 1000 to-
tal lines of code). The strategy followed herein for
implementing our translation patterns relies mainly
on two of these rules: the createPackage and the
traceFromInitialNode.

The called rule traceFromInitialNode consti-
tutes the heart of the translation. The main aspect
of this rule is that it is defined in a recursive man-
ner, in such a way that in each call a new element
in the source diagram is tackled. This rule performs
two main tasks. Firstly, it traverses the overall acti-
vity diagram going through both the data and control
flow, identifying the situations where our patterns can
be applied. Secondly, as it traverses the activity di-
agram, it gathers and determines the information re-
garding the new elements in the class diagram to be
created, which are activity diagram’s dependent.

The second rule called createPackage is the
only matched rule and starts the translation pro-
cess. This rule is in charge of generating the over-
all stereotyped class diagram, including both the ele-
ments which are common to all OcBase class di-
agrams and those which are activity diagram’s de-
pendent elements. The first type of elements (that
is ContextClass, the ContexClassState and the

ProtocolExecution classes) are directly generated
and the second type of elements are generated using
the traceFromInitialNode rule.

The application of our prototype to the activity di-
agram of Figure 2 results in the stereotyped class dia-
gram of Figure 5, which replicates the PIM pattern
including, for example, the Patient context class,
the WithSurgery state class or the transition class
DiscussingSurgeryRisks2WithSurgery.

With regard to the scope of our proposed pro-
totype, as described previously, it focuses on nodes
that refer to the same object of a specific type. The
prototype could be easily extended to deal with other
design alternatives such as activity diagrams with dif-
ferent object nodes referencing objects o1, o2, etc. of
a same object type t, or activity diagrams with mul-
tiple object types (t1, t2, etc.). In both situations the
main issue corresponds to establishing the different
hierarchy and source-target structures defined by the
states of the different object nodes. In the first situa-
tion, we just need to register independently, per each
object oi, the structures defined by its object nodes
through their different states. The second situation
could be implemented similarly since the object no-
des of a specific object type ti would lead to indepen-
dent parent-child and source-target structures. An im-
plementation alternative could be to trace the diagram
once per each object type and later join the results.

As for Activity diagrams’ elements supported by
our prototype, we would like to note that currently
it does not support the existence of action nodes
with several outgoing control flows, loops, cross-
synchronization, or fork nodes with more than one
associated join node, but alternative implementati-
ons could be considered. An interesting issue for
future work would be to tackle the automatic mana-

ICEIS 2018 - 20th International Conference on Enterprise Information Systems

324



Table 1: Case studies considered.

gement by means of the prototype of synchroniza-
tion structures where each fork node could have more
than one associated join node, as well as of cross-
synchronization.

5 EVALUATION OF THE
ATL-BASED PROTOTYPE

This section investigates the strengths and weaknes-
ses of our prototype. More specifically, we have app-
lied it to four different case studies and we have ana-
lysed the results in the light of several criteria regar-
ding: (1) the amount of class diagram elements that
were generated, (2) the time it took to generate the
class diagrams, and (3) maintenance aspects.

Table 1 shows the four case studies we have consi-
dered indicating the number of elements of the source
activity diagrams. The first case study (CS1) corre-
sponds to the obesity clinical guideline used as case
study along the paper. In this case, we have used the
UML 2 Eclipse plug-in to obtain the .uml extension
file. The other three examples were determined star-
ting from the online example models proposed in (Es-
huis and Van Gorp, 2016b) (they were available in
.xmi or in .uml extension format). The case studies
we have selected correspond to: (CS2) the order and
delivery of bikes, (CS3) the handling of dermatology
patients and (CS4) the creation of a catalogue. We
have carried out several changes to these three exam-
ples to be able to apply our proposal (that is, elimi-
nating loops and forks with more than one associated
join).

We have applied our prototype to these four case
studies using a personal computer, Intel(R) CoreT M i5
CPU, 3.2 GHz, with 4 GB RAM, running Windows 7
Enterprise. We have performed two types of expe-
riments for each case study: (1) monitoring all the
object nodes in the model and (2) monitoring around
half of the object nodes in the model. Each type of ex-
periment has been repeated five times per case study,
measuring the response times to produce an average
time for each type of experiment and case study.

Table 2 shows the results obtained from our ex-
periments, ordering them according to the number of
monitored object nodes. It can be seen that, in each

case (all the nodes and half of the nodes), the grea-
ter the number of monitored objects the greater the
response time. Besides, all the response times are
less than half a second, with a very small difference
among them. These values, as well as the relation be-
tween the response time and the number of monitored
objects, can be seen as a good performance result.

As for maintenance aspects, our ATL-based pro-
totype would face with the evolution of business pro-
cess models better than a manual not pattern-based
approach. Specifically, every activity diagrams’ de-
sign change can be automatically processed without
software designers’ interaction.

An Eclipse distribution with the ATL transforma-
tions, together with relevant documentation regarding
the benchmark of case studies used for the evaluation
are available from (Supplementary Material, 2018).
We encourage the interested reader to try it out.

6 RELATED WORK

The need of considering data (both managed and ge-
nerated) as first class citizens within business process
modeling has been previously tackled in the literature.
One of the first works that exposes this need is (Ni-
gam and Caswell, 2003), which gives the notion of
business artifacts as “information chunks that the bu-
siness creates and maintains.” This concept is related
to the Occurrence notion, although this construct en-
compasses data and behavior.

Another similar approach is that of (Kumaran
et al., 2008), which defines business entity as a “domi-
nant information entity with an associated data model
and an associated behavior model in the context of a
process scope”. Although this proposal shares one of
its main objectives with our approach, it is very speci-
fic since it stands up for modeling the behavior of bu-
siness entities with state machines. The Occurrence
approach is more general and does not restrict the use
of any specific technique for information representa-
tion.

There exist other papers, such as (Hull et al., 2010)
or (Künzle and Reichert, 2011), that make innova-
tive proposals for the comprehensive management of
objects and behavior. However, these works move
away from the most common standards in the dom-
ain. Our approach is demonstrated by its adaptation
to any standard (in this paper, as an example of ap-
plication, UML models are used). An example of a
work that is based on a standard is (Friedenstab et al.,
2012), which presents a BPMN extension to improve
monitoring. We note that this work also uses the term
occurrence (but in a sense very different from ours)

Generating Persistence Structures for the Integration of Data and Control Aspects in Business Process Monitoring

325



Table 2: Time results obtained for the case studies.

but it does not deal with automation aspects. In (Her-
zberg et al., 2013) an approach to use object state
transition events for reasoning about process progress
is given. In that proposal, very simple state machi-
nes are considered, while in our approach we face the
difficulties that come from considering parallel flows
and concurrent states.

Several papers propose model transformations
for business process management. Eshuis and Van
Gorp (Eshuis and Van Gorp, 2016a; Eshuis and
Van Gorp, 2016b) automate the generation of object
life cycles (UML state machines) from business pro-
cess models (UML activity diagrams). Our propo-
sal goes a step further, since it allows the generation
of class diagrams that include intrinsically and com-
prehensively both data and flow perspectives. Other
works (Brd̄anin and Maric, 2012; Rodríguez et al.,
2010), closer to our proposal, automatically transform
UML activity diagrams into UML class diagrams.
However, in (Brd̄anin and Maric, 2012) authors do
not consider alternative (decision/merge) and concur-
rent control flows (fork/join), and the work presented
in (Rodríguez et al., 2010) pays special attention to
security requirements. As far as we know, our auto-
matic transformation from activity diagrams to class
models is the only one proposed within the process
monitoring context.

7 CONCLUSIONS AND FURTHER
WORK

We have presented an approach to automatically ge-
nerate storage infrastructures for monitoring tasks
that integrates control flow and data perspectives.
We have shown the feasibility of the proposal using
UML Activity Diagrams, as business process mo-
deling technique, and an MDE approach, as a de-
sign strategy. After applying our approach to different
case studies, we can conclude that the results obtained
from our evaluation are promising. In particular, the
advantages of our approach could be summarized as
minimizing coding tasks, as well as simplifying the
management of the life cycle of business processes.

There are several lines of further work. At present,
as said previously, there are specific structural situa-

tions not tackled by the prototype. These situations
deserve to be investigated. Furthermore, a special re-
mark must be made regarding the pin–style modeling
of object flows. Although the basic pin–style is equi-
valent to the object node style (Object Management
Group, 2015), the general pin–style notation is more
expressive allowing to handle more complex situati-
ons such as alternative pin sets. Thus, considering the
general pin–style notation is an issue of future work.

ACKNOWLEDGEMENTS

This work has been partially supported by the spanish
Ministry of Economy and Competitiveness (project
EDU2016-79838-P) and the University of Zaragoza
(project UZ2015-TEC-05).

REFERENCES

Allué, A., Domínguez, E., López, A., and Zapata, M. A.
(2013). QRP: a CMMI Appraisal Tool for Project
Quality Management. Procedia Technology, 9:664–
669.

ATL Plug-in (2017). http://www.eclipse.org/atl/. Last visi-
ted on January 2018.

Brd̄anin, D. and Maric, S. (2012). An approach to automa-
ted conceptual database design based on the iml acti-
vity diagram. Comput Sci Inf Syst, 9(1):249–283.

Campanile, F., Coppolino, L., Giordano, S., and Romano,
L. (2008). A business process monitor for a mobile
phone recharging system. J. Syst. Archit., 54(9):843–
848.

Domínguez, E., Pérez, B., Rubio, A. L., Zapata, M. A.,
Allué, A., and López, A. (2017). Developing
provenance-aware query systems: an occurrence-
centric approach. Knowl Inf Syst., 50(2):661–688.

Domínguez, E., Pérez, B., Rubio, A. L., Zapata, M. A., La-
villa, J., and Allué, A. (2014). Occurrence-Oriented
Design Strategy for Developing Business Process Mo-
nitoring Systems. IEEE Trans. Knowl. Data Eng.,
26(7):1749–1762.

Eshuis, R. and Van Gorp, P. (2016a). Synthesizing data-
centric models from business process models. Com-
puting, 98(4):345–373.

Eshuis, R. and Van Gorp, P. (2016b). Synthesizing object
life cycles from business process models. Software &
Systems Modeling, 15(1):281–302.

ICEIS 2018 - 20th International Conference on Enterprise Information Systems

326



Friedenstab, J.-P., Janiesch, C., Matzner, M., and Muller, O.
(2012). Extending bpmn for business activity monito-
ring. In Proc. of HICSS’12, pages 4158–4167. IEEE.

Herzberg, N., Meyer, A., Khovalko, O., and Weske, M.
(2013). Improving business process intelligence with
object state transition events. In Proc. of ER’13, vo-
lume 8217 of LNCS, pages 146–160. Springer.

Hull, R., Damaggio, E., Fournier, F., Gupta, M., et al.
(2010). Introducing the guard-stage-milestone appro-
ach for specifying business entity lifecycles. In Proc.
of WS-FM’10, volume 6551 of LNCS, pages 1–24.
Springer.

Kang, B., Kim, D., and Kang, S.-H. (2012). Real-
time business process monitoring method for pre-
diction of abnormal termination using KNNI-based
LOF prediction. Expert Systems with Applications,
39(5):6061–6068.

Kang, D., Lee, S., Kim, K., and Lee, J. Y. (2009). An OWL-
based semantic business process monitoring frame-
work. Expert Systems with Applications, 36(4):7576–
7580.

Kumaran, S., Liu, R., and Wu, F. Y. (2008). On the duality
of information-centric and activity-centric models of
business processes. volume 5074 of LNCS, pages 32–
47. Springer.

Künzle, V. and Reichert, M. (2011). Philharmonicflows: to-
wards a framework for object-aware process manage-
ment. J. Softw. Maint. Evol.: Res. Pract., 23(4):205–
244.

Nigam, A. and Caswell, N. (2003). Business artifacts: An
approach to operational specification. IBM Syst. J.,
42(3):428–445.

Object Management Group (2011). Business Pro-
cess Model and Notation v2.0 formal/2011-01-03.
http://www.omg.org/spec/BPMN/2.0/PDF. Last visi-
ted on January 2018.

Object Management Group (2015). Unified Mo-
deling Language v2.5 formal/2015-03-01.
http://www.omg.org/spec/UML/2.5/PDF. Last vi-
sited on January 2018.

Reichert, M., Bassil, S., Bobrik, R., and Bauer, T. (2010).
The proviado access control model for business pro-
cess monitoring components. EMISA, 5(3):64–88.

Rodríguez, A., de Guzmán, I. G.-R., Fernández-Medina, E.,
and Piattini, M. (2010). Semi-formal transformation
of secure business processes into analysis class and
use case models: An mda approach. Inform Software
Tech, 52(9):945–971.

Snow, V., Barry, P., Fitterman, N., Qaseem, A., and Weiss,
K. (2005). Pharmacologic and surgical management
of obesity in primary care: a clinical practice guide-
line from the American College of Physicians. Ann
Intern Med, 142(7):525–31.

Supplementary Material (2018). Generating persistence
structures for the integration of data and control
aspects in business process monitoring. Available at:
https://zenodo.org/record/807684#.WbqoAPMjG70.
January 2018.

Generating Persistence Structures for the Integration of Data and Control Aspects in Business Process Monitoring

327


