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We present a lightweight integration architecture as an enabler for the application of process optimization via

Big Data analytics and machine learning in large scale, multi-site manufacturing companies by harmonizing
heterogeneous data sources. The reference implementation of the architecture is entirely based on open-
source software and makes use of message queuing techniques in combination with Big Data related storage
and extraction technologies. The approach specifically targets challenges related to different network zones
and security levels in enterprise information architectures and across divergent production sites.

1 INTRODUCTION

Since Internet of Things (IoT) and embedded devices
have become an integral part of the manufacturing,
an increasing number of data sources are part of mo-
dern production processes. This is true, especially for
large companies that act on a global scale with pro-
duction sites across the world. Such companies face
major challenges when coping with the complexity of
hundreds of different data types and sources, in parti-
cular if the application and usage of Big Data analysis
promises high optimization potentials that can be ex-
ploited.

In order to make use of Big Data related technolo-
gies and to establish continuous analytics workflows
that operate on heterogeneous data sources, the first
major step is to make information accessible. In this
paper, we present an architectural solution for a lig-
htweight modular integration system based on mes-
sage queuing concepts that synchronize heterogene-
ous data sources semantically in order to facilitate a
generic and uniform access. This approach especi-
ally targets information and communication techno-
logy (ICT) infrastructures that are characterized by
high security levels of the respective network zones,
e.g., by taking into account shop floor systems and
the encapsulation of different production network zo-
nes. We are able to incorporate legacy information
systems such as traditional relational databases (RD-
BMS); network attached storages (NAS) as well as
live streaming data of manufacturing equipment via
interface standards such as OPC Unified Architecture
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(OPC UA) that are able to incorporate legacy and pro-
prietary bus systems and insular solutions from the
field level. The goal is not only to provide ease of
access, but also to incorporate data security by privacy
means as well as access control rights. A prototypical
implementation of the architecture was evaluated in
terms of large companies for multiple months.

2 PROBLEM DESCRIPTION

Current challenges within industrial production are
not the lack of available information, but having the
appropriate information accessible when and where
needed. Separated production sites use distinct sy-
stems for data storage and transfer. The high costs
for new machines and their ramp-up time impede
long life cycles in a factory and thus the slow adop-
tion of modern technologies increase the variety of
(legacy-) systems, devices and communications pro-
tocols being used. Moreover, the complexity of pro-
duction processes are increasing and heterogeneous
types of machines, constructions, robots and sub ma-
nufacturing routines are involved. The success of
each step, and therefore each machine, in the process
chain is of equal significance to the whole process.
For example, a typical production operation is the as-
sembly of separate individually assembled sub-parts
into a product, where a failure in the pre-build part
can have an effect on the process of combining the
parts together. When optimizing the entire process, it
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Figure 1: Scenario of four factories and their two separate
network zones, production and office.

is thereby important to not limit the view to an indivi-
dual part of its manufacturing routine but it is impera-
tive to consider the complete picture. The data from
every part of the chain could be of relevance. There-
fore, the first challenge of optimizing production pro-
cesses via Big Data Analytics lies within information
consolidation and harmonization efforts across the en-
tire process chain. In a distributed context this chal-
lenge increases significantly with the number of loca-
tions.

Each geographically distributed factory operates
on its own and although they are similar and often
produce the same general product, there are variances
and differences in each dedicated process. Not only
do they produce other parts or assembly another kind
of product, the machines are naturally of different age
and wear levels. Furthermore, regional factors such
as working hours, legal requirements or the stability
of the electric network have to be regarded. Additi-
onally, timing optimization of the production have to
deal with different time zones and the information of
location is vital.

Therefore, it is necessary to be able to establish
a clear distinction between several manufacturing re-
sources and apply required harmonization and syn-
chronization to the relevant parts, as required.

Figure 1 shows an example scenario for a com-
pany with four factories, each side has two separates
network zones (e.g., production and office), which is a
typical setup for an enterprise to secure and separate
the production shop floor from business office com-
puters. This separation is usually established due to
the fact that productive systems should never be af-
fected by office local area networks, e.g., in terms of
networking traffic or possible attacks.

However, despite the security aspect, these re-
strictions oppose the endeavors of an Industry 4.0
which demands a full and seamless interconnection
of machines and information systems along the ma-
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nufacturing hierarchy and represent the another ma-
jor challenge. Current standards, such as ISO/IEC
27002 (Technology, 2013) or (Calder, 2009), are the-
refore suggesting the use of technical barriers like fi-
rewalls and audited access control.

Finally, another challenge lies in the interoperabi-
lity and reproducibility of analytics use cases. Cur-
rently, for each factory use cases yield insular solu-
tions with their own specifics, not connected and not
interchanging vital information about production with
their similar counterparts. Across factories, these use
cases are applied and similar problems often undergo
the same methodology, the same steps to acquire data
and to consider optimization goals to the underlying
processes. The establishment of a shared data pool,
available to all enterprise locations, can save tremen-
dous efforts.

Current Situation. In terms of former moderniza-
tion approaches within production and manufactu-
ring, the goal was primarily to establish distinctive au-
tomation for most of the processes and to interconnect
devices in order to perform selective analytics tasks
for the optimization of dedicated processes. This tra-
ditional approach follows a hierarchical organization
of the production and is manifested in terms of the
automation pyramid as shown in Figure 2. Diverse
systems interact on different layers with each other.
The business levels on the top of the pyramid are in
charge of the production organization and the bottom
is characterized by the shop floor (machines, sensors
and devices). This field level, represents the concrete
controlling of the shop floor devices and is thus de-
pendent on real-time information to seamlessly inte-
ract with each other and to react on events within a
determined time range. Going up each level, the ti-
meliness gets less mandatory and the velocity as well
as the granularity of the incoming data reduces. One
of the major goals with regard to the topics of the um-
brella term Industry 4.0 is to build so-called cyber-
physical system that reflect the physical processes on
the shop floor and to service a digital representation of
the underlying processes in terms of a digital model.
In order to achieve the desired information repre-
sentation on all levels of the production, seamless data
integration and information management are crucial
goals to obtain. In current manufacturing systems,
each level is usually characterized by specific island
solutions that provide parts of the information needed
to optimize not only automation itself, but give a dee-
per insight to the production process at the specific
steps. These solutions are based on the use of data
warehouses (DWH) or alike, where structured data
tailored to one problem category is stored. The data
integration is carried out by data processing steps, cal-
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Figure 2: Automation pyramid showing the different layers
of automated systems in manufacturing and the real-time
critical components.

real-time
critical

led Extract-Transform-Load (ETL) mechanisms, that
apply a fixed and given star-schema to bring the in-
formation to the representation form required. Typi-
cal applications in such scenarios include the provi-
sion of reporting dashboards which generate insights
about the last cycle(s) of production for a batch or
for continuous monitoring, e.g., for alarm and event
purposes. The described processing is useful for con-
tinuous determination of Key Performance Indicators
(KPI) or daily reports. However, when it comes to
gaining deeper and more holistic insights to the under-
lying processes, approaches such as Atrtificial Intelli-
gence and Machine Learning (ML) have to be consi-
dered. These procedures, operated on chunks of data,
intend to identify patterns within the data even among
different sorts of information and across multiple pro-
cesses.

For those, a traditional data warehousing approach
to data collection and preparation is not well equip-
ped and even lacks the required flexibility and diver-
sity of data representation to train a (decision) model.
Scaling up a data warehouse to hold years of archi-
ved data gets expensive rather quickly, as specific har-
dware to operate is required. Additionally, the DWH
philosophy considers data that is rarely used as cold
and will ultimately discard it, in order to keep access
speeds high. In a production process, which is already
working in a profitable range, there are almost no de-
fect products, which need further optimizations. This
leads to a data basis that is biased by design and lacks
the objectivity of correct data analysis. Thus, limiting
the storage to hold only faulty product process infor-
mation might bias any machine learning approach of
finding possible causation patterns.

Data Integration and Big Data itself is not a new
topic, the concepts behind the term were already ex-
amined for decades in terms of information manage-
ment (Hohpe and Woolf, 2003; Goodhue et al., 1992;
Cox and Ellsworth, 1997). But, according to the des-
cribed limitations, more sophisticated solutions for

storing large amounts of highly heterogeneous data
are needed. A first solution that fits to the needs of
such storage capabilities, are Big Data based soluti-
ons, which are designed to scale very well with large
amounts of fast incoming, heterogeneous data.

Having a look in the future of fully connected fac-
tories in Industry 4.0, business models like a company
or even a global marketplace for optimizations or dis-
tributed knowledge generation could be realizable. In
these scenarios, information would be available to sta-
keholders which potentially exceed the boundaries of
one company. Machine manufactures could, for ex-
ample, provide special services, such as predictive
maintenance information in order to prevent machine
malfunctions, as an incentive for manufacturing com-
panies to share information generated on their pre-
mise.

3 RELATED WORK

Different approaches of how data aggregation that tar-
get the described challenges of heterogeneous and
distributed information within production environ-
ments are suggested. We present similar, related work
first before having a look into relevant technologies
and protocols.

(Ball et al., 2017; Runge et al., 2016) focus on pro-
duct quality assurance with the Open Manufacturing
Information System (OMIS) approach. Their motiva-
tion bases on the one-off production in the small satel-
lite manufacturing of Raytheon, where each product
has its own assembly and diverse quality parameters,
with the special case of Quality-in-depth (QiD). This
quality method describes the over watch of manual
quality inspectors, which watch the technicians. The-
refore, OMIS combines existing enterprise systems
with digital product assurance results (video and sen-
sors) and claims to reduce costs by using COTS devi-
ces (commercial off-the-shelf) not particularly tested
for space environment use.

(Theorin et al., 2015) proclaims the Line Informa-
tion System Architecture (LISA) that uses the idea of
an Enterprise Service Bus (ESB) to reduce point-to-
point connections in a traditional client/server appro-
ach by making use of service mediation techniques.
They claim to have made the service oriented archi-
tecture principle of ESB together with an event-driven
bus system industrially applicable and scalable based
on ActiveMQ. LISA uses an own message format to
in-cooperate source systems and thereby solve the ho-
mogenization aspect.

(Bonci et al., 2016) show a database-centric ap-
proach based on cyber-physical production systems.
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Figure 3: Placement of the Data Lake concept in an existing
landscape of monitoring controllers and reporting dashbo-
ards for a production line in manufacturing.

The idea to use RDBMS along with the SQL query
language is quiet established; their novel approach
however focuses on lightweight database synchroni-
zation through distributed replication on every CPS
device. Furthermore, they add the swarmlet concept
by facilitating the publish/subscribe paradigm for IoT
devices and add a plug-in structure, which extends the
central database to a service-oriented architecture si-
milar to an Enterprise Service Bus.

Related Technology. The presented related work
contains architectural concepts in order to handle data
load and data aggregation, but there are no technolo-
gical solutions available that are directly ready to use.

Big Data storage techniques are the key aspect of
managing the data load of Industry 4.0 related ap-
plications. The techniques require either speciali-
zed hardware or database instances capable of hol-
ding large amounts of data, commonly resulting in
a Data Warehouse. Apache on the other hand — tar-
geting NoSQL information storage approaches — of-
fers a scalable data storage on commodity hardware
for large data sets, called the Hadoop Distributed File
System (HDFS) (Shvachko et al., 2010). Through
the expandable architectural approach it is possible to
provide a large-scale file storage solution across dif-
ferent systems at affordable costs.

Confluent provides Kafka Stream (Kleppmann
and Kreps, 2015) as an idea and concept for hand-
ling real-time streaming data seamlessly and in a sca-
lable manner. Confluent makes use of Apache Kafka,
which main philosophy of log processing differs from
general message queuing due to the lack of an ackno-
wledgement (ACK) of messages and thus does not
guarantee delivery. The underlying concept uses a
consumer centric approach in contrast to broker or
server/data centric protocols like AMQP (Vinoski,
2006) and MQTT. For server centric mechanisms, the
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control and thus responsibility fully lies in the mas-
ter server, each client thus has to give a receipt for
receiving and thereby handling the message. In con-
trast, the consumer centric approach of Kafka leaves
all control to the receiver, where the different partiti-
ons of a broker hold numerous messages.

On the shop floor, a shift to new technologies is
currently taking place, which helps to better under-
stand and also handle data from further automated
production plants. OPC Unified Architecture (OPC
UA) and the Dynamic Distribution Service (DDS)
are two advanced protocols that allow for easier and
more holistic access to machine data. OPC UA is
a machine-to-machine communication protocol spe-
cified in 2006 and advanced continuously since then
that models automation hardware in the form of ob-
jects of a process work flow (Rinaldi, 2013). UA
is an enhancement on the classical OPC, where the
machine itself has the ability to describe its availa-
ble information and enhance the raw data with meta-
information. OPC UA lifts the low-level machine
control on the PLC level to a higher application layer
with added security and advanced capabilities to add
semantics to the production data generated in the
field.

More and more production machines natively run
an embedded OPC UA server, which provides a base
model including the process parameters and annota-
ted information available at the specific machine.

4 CONCEPT

The concept proposed in this work focuses on data
accessibility and does not change any of the incoming
information. The goal is to have the raw informa-
tion at hand for easy access. Therefore, our inges-
tion methodology differs from commonly used clas-
sical enterprise integration patterns, where semanti-
cal data transformation in terms of the data structure
always takes place. The kinds of source systems re-
tain their semantical structure and form the (Big) Data
Lake (O’Leary, 2014). The general idea thus is to
have a long-term storage of available data that is re-
quired to perform analysis processes such as pattern
recognition and machine learning methods in a ho-
listic manner. Artificial Intelligence methods require
large sets of training data to learn. The data sets
should be universally available by providing a mana-
ged data pool that allows access for users or autono-
mous optimization applications. The information re-
quirements differ for each specific use case, a defini-
tive access to all available information is thus more
important than the delivery of specific information
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that is already tailored to some purpose. Through the
general overview, the analysis is more likely to find
hidden and so far unexplored relations in the data.

The source of data covers the full range of systems
located on the automation pyramid, from the real-
time systems on the shop floor with streaming data
up to annual reports form data warehousing systems
that are not only low in frequency, but also low in vo-
lume and higher in density of information. Figure 3
shows the conceptual placement of a Data Lake com-
ponent inside the existing landscape of the automation
pyramid. The attributes of volume and variety, buil-
ding two of the three ”V”’s in Big Data, are displayed
on upper horizontal axis and increment from left to
right. Thereby, the Data Lake concept is predestined
for data of high variety, whereas e.g., a controlling
instance directly at a machine heavily relies on very
specific data. On the bottom axis, the velocity and ac-
tuality of data are depicted in declining order, indica-
ting that a Data Lake by design is not reactive enough
for real-time controlling.

The main goal of the described concept is to ena-
ble data analysis applications on a consolidated, long-
term storage, therefore, the velocity aspect is neg-
ligible. For a live application of, e.g., trained ma-
chine learning models, however, we suggest an ad-
ditional layer. This layer would follow the concept
of a lambda architecture, where the data flow is split
into two different streams. In this case, one stream
is used to redirect the incoming data into long-term
storages, whereas the other stream is processed in a
timelier fashion, responding to potential requests to a
machine learning model.

In the production machine-to-machine context, in-
consistent network conditions, e.g. varying response
times in the range of milliseconds exceed crucial time
constraints for remote control commands. Therefore,
another alternative model application scenario con-
sists in the deployment of machine-learning models
directly at the machine on the shop floor. The training
of the models deployed on these edge computing de-
vices, however, should be performed by analytics sys-
tems that are directly connected to the Data Lake, e.g.
in the form of a server farm. This way, the model can
be trained with a combination of all available data to
determine optimal parameters for the processes in the
scope.

As a consequence, through the described process
the data analyst is able to perform model extraction
of trained data from machine learning processes and
to re-integrate new insights into the production pro-
cess. Thus, although the Data Lake analysis on the
big data aggregation is not able to directly control the
machines due to the high latency, it is the enabler of

improved control units in short or medium-range time
cycles, which can provide real-time reactions.

4.1 Data Acquisition

As we focus on applicable data integration in the pro-
duction context, we have to consider how companies
in this area traditionally operate. Therefore, it is not
possible to assume a factory as a green field and to
assume the theoretically best-case scenario. When a
factory is built, its operations are planned over deca-
des, the processes to be performed in the production
environments evolve over years. Due to the high in-
vestment costs and amortization time range an ex-
change of manufacturing machines is usually not an
option. Consequently, the emphasis of this work fo-
cuses on a modular approach that is especially prepa-
red to integrate legacy systems from the brown-field
without the need for an adaptation of internal struc-
tures and the entire underlying legacy systems. For
this purpose, each module encapsulates one category
of source systems taking into account their indivi-
dual challenges and individual demands. Based on a
homogenization of the underlying data structure, the
modular concepts is able to represent the extracted in-
formation using a generic messaging format that des-
cribes the payload accurately and without using se-
mantic meta-data that is induced from the source sy-
stem. This modular approach also allows for an exten-
sibility in regards for future technological advances.
In the following paragraphs, we will present some of
the most common resources of production informa-
tion that can be found in the industrial manufacturing
context.

Management Systems. Various management Sys-
tems are deployed at different levels of the company,
a typical storage concept of these systems are data-
bases or more advanced data warehouses for repor-
ting purposes. (Relational) Database management sy-
stems (RDBMS), therefore, play an important role in
enterprise information systems, resource planning as
well as for manufacturing execution, consisting of the
monitoring and reporting of the production process.
The storage engine holds all relevant information of
the production process ranging from different failure
states or key performance indicators. This informa-
tion stored in this database is characterized by its own
database schema defining data types and providing
additional context information to the represented va-
lues.

One key challenge is the variance in Structured
Query Language (SQL) dialects, different vendors of
RDBMS do not fully comply with the SQL standard.
The ISO/IEC 9075 (Technology, 2008) norm defines
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the bare SQL standard in its current latest version
from 2016, where each vendor is free to extend it,
however different database engines are even charac-
terized by differences in the core syntax. Moreover,
database structures differs per database product or sy-
stem that incorporates a database itself. Often, it is not
obvious that a pre-built and functional production sy-
stem already comes with a defined database system of
the manufacturer. Especially, in production systems
equipped with a default database system, it is not pos-
sible to perform changes without risking an overall
system breakdown or at least violating existing ser-
vice level agreements. Therefore, the database con-
nectors need to take into account existing legacy devi-
ces and their underlying information systems instead
of relying on the requirements of a green field.

Shop Floor. Another viable information source for
manufacturing enterprises consists of data from the
production field. This raw machine data of sensor or
actuator states is highly structured and usually charac-
terized by high frequencies as the devices are directly
based on the shop floor. The structure is based on
the correlation to the actual sensor value of the phy-
sical device and thereby defined by a native register
value in a state machine. Different machine vendors
sometimes use proprietary native communication and
control protocols, which are usable only in terms of
their licensed counterparts, e.g., control units. OPC
UA is one uprising protocol trying to harmonize com-
munication protocols and their respective information
flows from the shop floor. The Unified Architecture
(UA) protocol extension defines an industry standard
information model, which can be extended by me-
ans of vendor specific information models as needed.
Hereby, the vendor of the controller fully describes
the information available in the system and how they
can be described for further usage. Machine manu-
facturers already adopt OPC UA connectors directly
into their systems and controllers as machine opera-
tors demand integration of these protocols for inter-
connecting their future factory environments. This
pseudo standardization constitutes already an impro-
vement in comparison to directly accessing registers
on a PLC without proper knowledge of the flag in-
formation. One further challenge of the described
methodology consists in the high number of different
vendors for control units, each providing a different
information model that still has to be combined and
semantically harmonized in order to describe the ma-
nufacturing process itself and tailored to the required
tasks. In this sense, the heterogeneity of the shop floor
is redirected to higher semantic levels, in which the
harmonization takes place and the data integration is
finally handled.
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4.2 Data Ingestion - Message Format

In this section, we describe the implementation of
a general-purpose payload format with an additional
description of meta-information to make context in-
formation explicitly available after data integration.
The additional meta-information includes a precise
source description including the time and place in
which the data first occurred, hence the time stamp
from a specific shop floor device. Furthermore, the
meta data describes factory localization which are
needed to account for different time zones and pos-
sible synchronization timestamps as well as language
differences. However, the payload of the transfer-
red information is not adapted during transit, hence
the data is simply passed on directly to the persistent
storage without prior modification. Thus, in terms of
the integration step, all additional semantic informa-
tion from the source system is kept in their original
form. In order to decouple systems and separate in-
formation security layers, all messages are buffered
between gateways of two network zones in terms of
a message queue. This proceeding additionally at-
tempts to secure shop floor systems, which will not be
influenced, if data is stuck on the intermediate storage
and piles up.

4.3 Data Storage

Subsequently to the process of data acquisition ba-
sed on the raw data of a source system, enhanced
with meta-information and in a common generalized
payload-driven format, the data is enabled for inte-
gration without concrete applying of a semantic trans-
formation. Each source system of raw data provides
a schema (if available and applicable), which is also
used for the storage within a HDFS file. As schemata
might evolve over time, different versions have to be
considered in order to enable structural changes over
time.

By an application of the schema-on-read principle
an analyst always accesses the respective information
in the desired fashion.

This principle defines the creation of a schema
when reading the data and thereby enabling the com-
bination of different schemata into one coherent des-
cription.

Drawbacks of the requirements that are connected
to the creation of such schema can be neglected, be-
cause the analyst should always be able to use the
schema, in which the data was written originally
and thus created. Additionally, the shift from static
schema descriptions to a dynamic creation of sche-
mata allows for much easier integration of source sy-
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Figure 4: Aggregating and combining factories with data
lakes into a (virtual) data cloud.

stem as no modeling or prior transformation to a pre-
defined schema has to take place, e.g., as it is neces-
sary prior integration into a Data Warehouse.

Figure 4 shows the conceptual placement of this
ingestion process into Data Lakes that are located at
each factory. Due to the nature of accessibility to
the information by a data scientist, the data archive
is not located in the production network itself, but
in the neutral business network zone with restricted
access. The concept furthermore enables the possibi-
lity to combine all of the production plants data lake
structures into one virtual data cloud covering the en-
tire company and exchanging insights gathered from
each of these factories.

S PROTOTYPE ARCHITECTURE

In this section, we describe the prototypical imple-
mentation of the architecture for an efficient integra-
tion and harmonization of heterogeneous distributed
data sources. Hadoop (Shvachko et al., 2010) and ot-
her open-source solutions from the Apache product
family provide the basic foundation for the Data Lake
storage concept. These technologies enable scalable
data storage based on commodity hardware and deli-
ver the use of available computing power via the Map
Reduce paradigm. HDFS combined with the scalable
computing paradigm facilitates the invested hardware
and allows for Big Data analytics (Dean and Ghema-
wat, 2008).

RabbitMQ (Videla and Williams, 2012), as the de-
fault implementation of the AMQP protocol (Vino-
ski, 2006), delivers a fast, robust and scalable bro-
ker system for message exchange and thereby enables
the network buffering and separation of critical pro-
duction systems. It is designed to not trust the under-

lying network infrastructure and therefore also fits the
use case of the neutral business network, in which no-
body is able intercept the data ingestion process. The
specialized and generic message format previously
mentioned is a direct adoption of AMQP messages.
A message consists of a generic body for arbitrary
data types without further additions coupled with a
header definition comprised of key-value fields. The-
reby, AMQP is a lightweight message protocol with
efficient routing algorithms that assure delivery with
package acknowledgements and act as the concentra-
tor of the distributed data sources in a network zone.
Spring Integration (SI) (Fisher et al., 2012) as the
Java implementation for Enterprise Integration Pat-
terns (EIP) and for message-based data integration
provides a configurable pipeline approach allowing
for a modular composition via reusable Spring Bean
components. The entire integration process is split
into different instances consisting of different pipeli-
nes for different systems. One instance alone is not
required to map and process the entire integration pi-
peline, thus the approach proposed in this work al-
lows for dynamic scalability of different parts of the
pipeline. This dynamic scalability further demonstra-
tes the efficiency of the proposed concept.

The Data acquisition part in terms of access to da-
tabases is achieved via the native Java Database Con-
nectivity (JDBC) interface, that already contains the
required drivers for interconnection of information re-
sources. In a similar fashion, another modules can be
implemented allowing the access to data source such
as streaming data via OPC UA or legacy system pro-
tocols. Another step in the pipeline consists in the
processing after completed data acquisition. The re-
trieved data is stored in the message queue and then
enriched during the integration step into the HDFS.
This step includes a determination and application
of a schema onto the data along with other meta-
information to be used in the message formats header
fields by another Spring Integration pipeline residing
connected to the Hadoop system.

The storage format of integrated information can
be further facilitated by making use of Apache
Avro (Apache Software Foundation, 2009), which
does not only support native serialization and dese-
rialization of arbitrary data, but also fully enables
the schema-on-read principle. Data written with one
schema in Avro and stored using the same format can
be read with a different schema. Another advantage of
the Avro format is the ability of Avro to compress in-
formation. In comparison to the JSON format, which
stores the same amount of information as Avro, the
Avro file format approximately consumes about 15 %
of storage space.
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Another member of the Apache family is
Hive (Thusoo et al., 2009), which provides database
like view on data in HDFS. It uses so-called SerDe
modules to serialize and deserialize data for querying
via SQL. SQL is a well-established query language
for relational structured data in familiar tools. Due
to the fact that Hive follows the SQL standard JDBC
and ODBC Database drivers are available to connect
with familiar frontend tools in order to analyze and
work with the data. Such tools include for example
Tableau for visualization and Matlab for data explora-
tion. Using the schema-on-read principle in combina-
tion with consolidated storages a harmonized access
to the data can be realized. All data can be accessed
via well-defined interfaces, allowing for a fast and ho-
listic analysis.

6 CONCLUSION

In this work, we presented an architectural frame-
work and integration chain that enables Big Data ana-
Iytics workflows for further application in the ma-
nufacturing domain. By making use of the propo-
sed concepts, production environments with their spe-
cial challenges and requirements can be appropria-
tely mapped to an overall information management
and data harmonization. One of the major inside of
this work consists in the identification of lacking data
accessibility in current factories. By increasing the
general data accessibility through the proposed inte-
gration approach, it becomes possible to get deeper
insides with regard to the production processes and to
reveal patterns based on machine learning for corre-
lations across different data sources. We shown how
possible ingestion processes of these different sorts of
data sets and streams into one coherent data pool can
be realized by making use of established technolo-
gies. Further steps that are required for a more generic
integration of shop floor devices into data lake struc-
tures can be identified especially in the field of OPC
UA data and information modeling. Other topics to be
further investigated are issues related to data gover-
nance and auditing. This is especially important for
cases, in which privacy or customer/user data become
relevant and are included into the data lake structure.
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