
A Systematic Review of Concolic Testing with Aplication of Test
Criteria

Lucilia Y. Araki and Leticia M. Peres
Department of Informatics, Federal University of Paraná UFPR, R. Cel. H. dos Santos, 100, Curitiba, PR, Brazil

Keywords: Software Testing, Test Criteria, Concolic Testing, Dynamic Symbolic Execution.

Abstract: We present in this paper a systematic review, using (Biolchini et al., 2005) approach, of methods,
techniques and tools regarding to concolic testing with application of test criteria. The test activity is the
process of running a program with the intent of discovering defects. The search for test cases to increase the
coverage of structural tests is being addressed by approaches that generate test cases using symbolic and
concolic execution. Concolic testing is an effective technique for automated software testing, that aims to
generate test inputs to locate failures of implementation in a program. Application of a test criterion is very
important to ensure the quality of the test cases used. The number of elements exercised provides a measure
of coverage that can be used to evaluate the test data set and consider the test activity to be closed.

1 INTRODUCTION

Software validation is intended to ensure that the
software developed complies with the original
requirements. The most commonly used validation
approach in industry to improve software reliability
and quality is software testing. Testing is the process
of running a program with the purpose of revealing
defects (Myers, 1979) and involves producing a set
of tests and then running the system with these test
cases.

Software testing is a fundamental software
quality assurance activity. Its main purpose is to
execute a program with the objective of discovering
failures (Myers, 1979). The main challenge of the
test is to select input values to create good test cases
that are likely to reveal faults.

The problem of generating test data to achieve
adequate coverage is an inherently automated
activity. This automation ensures a significant
impact because the generation of test data is an
arduous and time-consuming task.

Several techniques have been proposed to
generate input values automatically to improve
software testing. Each method covers a set of test
cases criteria that are used to determine the test
requirements that must be satisfied by test cases. A
technique of automatic generation of tests known as
concolic testing (Sen and Agha, 2006) has gained
importance due to its low number of false positives

and high code coverage (Seo and Kim, 2014).
One limitation of current approaches is that they

only generate test data for an entire program or
function. Current approaches do not generate test data
to cover only a single slice of code. Symbolic
execution have been used for more than three decades
as an effective technique for automatic generation of
test data (Cadar and Sen 2013), this can be noticed
through works such as (Majumdar and Sen, 2007);
(Qu and Robinson, 2011); (Godboley et al., 2013);
(Luckow, et al., 2016) that discuss the concolic test,
but none of them aims to study the test criteria in
conjunction with the concolic test.

The main goal through this work is provides an
overview of a research area, identifying the quantity,
types of research undertaken, available results, and
the frequency of publications over time to identify
trends. Another goal is to relate articles that address
the concolic testing with test criteria and identify a
weakness in the state of the art, related to the
concolic test and test coverage. We opted to perform
systematic review as a method of scientific
investigation that brings along relevant studies.

This paper is organized as follows. Section 2
provides the background. Section 3 presents our
methodology of systematic review. Section 3.1
details search strategy. Section 3.2 provides the
study selection. Section 4 discusses the results and
the analysis. Section 5 related work. Section 6
concludes and discusses future work.

Araki, L. and Peres, L.
A Systematic Review of Concolic Testing with Aplication of Test Criteria.
DOI: 10.5220/0006776301210132
In Proceedings of the 20th International Conference on Enterprise Information Systems (ICEIS 2018), pages 121-132
ISBN: 978-989-758-298-1
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

121

2 BACKGROUND

2.1 Concolic Testing

Concolic testing (CONCrete + symbOLIC)
(Godefroid, Klarlund and Sen, 2005), (Sen, Marinov
and Agha, 2005) also known as Dynamic Symbolic
Execution (DSE) (Godefroid, Klarlund and Sen,
2005), (Sen, Marinov and Agha, 2005), (Cadar et al.,
2008). It is a test method for generating input data in
a given program and it is executed both concretely
and symbolically at the same time. In other words,
test inputs are generated dynamically from a real
executable program, rather than statically, from a
model (Kähkönen et al., 2010). Concolic testing is
considered an important vulnerability detection
technique (Wang and Zeng, 2015).

Concolic testing uses concrete values as well as
symbolic values for inputs and executes a program
both concretely and symbolically. This is called
concolic execution. Concrete execution is a part of
concolic execution and constitutes the normal
execution of the program. Symbolic execution part
of concolic execution collects symbolic constraints
over the symbolic input values at each branch point
encountered along the concrete execution path.

Concolic testing starts by first executing a
program under test with any concrete input values.
Execution of the program can branch into different
execution paths at branching statements that depends
on input values. When executing such statements,
concolic testing constructs a symbolic constraint that
describes the possible input values causing the
program to take the true or false branch at the
statement in question. A path constraint is a
conjunction of these symbolic constraints and new
test inputs for the subsequent test runs are generated
by solving them. Typically this is done by the using
SMT (Satisfiability-Modulo-Theories) solvers with
integer arithmetic or bit-vectors as the underlying.

2.2 Test Criteria

In designing test planning, one of the steps is design
the test strategy. Test strategy comprises defining
following items: the test level, that is, definition of
the software development phase in that the test will
be applied; test technique to be used; test criterion to
be adopted; type of test to be applied in software
(Crespo et al., 2004).

The application of a test criterion is very
important to ensure quality of test cases used. They
assist in choosing the best inputs (test data) from a
generally infinite and impractical set. A test criteria

is a predicate to be satisfied that establishes certain
test requirements, called required elements, that
must be exercised during the execution of the
program, that is, executed by a test data (Rapps and
Weyuker, 1985). The idea is to generate the best
data that can reveal most defects with low cost
(Maldonado, 1991). The number of elements
exercised provides a measure of coverage that can
be used to evaluate the test data set and consider the
test activity to be closed. Testing criteria help the
tester organize the testing process. They should be
chosen according to the available testing effort. Test
coverage measures are defined as a relationship
between test cases required to meet the criteria and
those that were performed. Measures are used to
obtain information on the completeness of the
integration tests.

Test criteria are classified according to the
information used to derive the test requirements
established from three basic techniques: structural,
which uses internal structure of program to derive
test data; functional, which derives test data based
on functional requirements of software; and based
on defects that derive test data based on common
defects committed during software development.

Branch coverage is a testing requirement that all
branches of the program must be exercised. A
branch is the result of a decision, so branch coverage
simply the measures what the decision results have
been tested (Zhu; Patrick and John, 1997). That is,
all branches (decision) taken from each path, true
and false. This helps validate all branches in the
code, ensuring that no branch leads to abnormal
application behaviour.

Path coverage criterion requires that all paths
from the program input to its output run during the
test, though traversing all paths do not guarantee that
all errors will be detected. Another problem is that
programs with loops can have an infinite number of
paths and therefore the criteria of all paths must be
replaced by a weaker one that selects only a subset
of the paths

Data flow criteria are based on the analysis of the
data flow of the program to be tested. It consists in
focusing the assignment of values to the variables
and the later use of these values, establishing that the
occurrence of a variable can be of two types:
definition and use (Rapps and Weyuker, 1985;
Myers, 1979).

The test criterion is used to select and evaluate
the test cases in order to increase the chances of
causing failures or, when this does not happen, to
establish a high level of confidence in the
correctness of the product.

ICEIS 2018 - 20th International Conference on Enterprise Information Systems

122

The process of applying a structural criterion
consists of analysing the implementation of the
application. Next, the paths of implementation to be
executed are defined. After that, the test data from
program inputs domain is selected to ensure that the
selected paths are executed. Then, expected the
outputs for each of chosen inputs are determined.
And so, the test cases are constructed. Finally, a
comparison is made of the outputs obtained with the
outputs expected to verify the success or the failure
of each test case, and can generate a report with
results for analysis.

3 METHODOLOGY OF
SYSTEMATIC REVIEW

Considerable progress has been made in defining
protocol models and conducting systematic reviews
in Software Engineering. Even with all difficulties
still existing in the Software Engineering context to
perform Systematic Reviews (Mian et al., 2005),
some interesting results can already be identified.
We conducted a systematic review (Biolchini et al.
2005) with the objective of identifying, analysing
and evaluating the reading techniques proposed in
the literature. We chose following the steps of
Biolchini et al. (2005) because the authors
performed a systematic review in the area of
software engineering.

The first step of systematic review is define the
objectives, main research sources and criteria,
selection, validation, inclusion and exclusion of the
papers. The research string was being modified in
early April 2017 to middle of April 2017 to adapt to
the standard of advanced searches and to address the
issues of the problem.

The research was restricted to titles, abstracts and
introduction of publications. It was initialized in
middle of April 2017 and finalized in late of May
2017, using ACM Digital Library (http://dl.acm.
org), Periódicos Capes (https://www.periodicos.
capes.gov.br), Engineering Village (https://www.
engineeringvillage.com), IEEE Xplore Digital
Library (http://ieeexplore.ieee.org), Science Direct
(http://.sciencedirect.com) and Scopus (https://www.
scopus.com) databases. Abstracts of works searched
through the search string being read the topics: title,
abstract and introduction. As a criterion to search
and selection, restriction on publication year was
that it must between 2005 and 2017 and were
considered only English material. Concolic testing
was first appeared in 2005 in Godefroid, Klarlund

and Sen (2005) and in Sen, Marinov and Agha
(2005), because of it the interval of years of
publication to be between 2005 and 2017 in the
search string.

3.1 Search Strategy

Search string used to find tools / methods /
techniques / theory / model that apply test criteria in
concolic testing or concrete test. The following
search string were used to research: “(Software OR
Program) AND (Concolic OR Concrete) AND (Test
OR Testing) AND (Branch OR Structural) AND
(Coverage OR Criteria OR Criterion).”

We are looking for papers that present initiatives
to evaluate models / techniques / methods / model /
theory that apply criteria in concolic or concrete test.
We do not select papers that do not consider
concrete/concrete test or tools that do not use this
test technique.

We used 4 criteria to include papers:
 CI1: Empirical study of concolic /concrete test
 CI2: Tool / methods / techniques / theory /

model concolic testing
 CI3: Methods of path generation
 CI4: Concrete test

And 2 criteria to exclude papers:
 CE1: Test tools that are not concolic or

concrete
 CE2: Do not indicate how to generate test data

and do not use concolic tool

3.2 Study Selection

Although search string defined was very specific to
research, we still found a large number of false
positives. Because the search string presents
concrete, some papers related to construction were
found. After we conducted a study selection
criterion in those primary studies, selected papers
were validated to study selection process, as shown
on Table 1. Search string used to find tools /
methods / techniques / theory / model.

Since initial selection of papers was made
through reading of abstract and introduction of those
that were accepted (87), articles were read fully and
it was verified if they answered the research
questions. Through initial selection it was verified
that there were 25 articles that were submitted by
more than one database, for example, Majumdar and
Sen (2007) is presented by ACM, Engineering
Village, IEEE and Scopus databases. It was decided
to leave classified paper according to its original
base, i.e., if the IEEE base redirected certain article

A Systematic Review of Concolic Testing with Aplication of Test Criteria

123

to ACM database, this article is classified as
belonging to ACM database and so on. New
selection can be seen through column Second
Selection - Selected Papers in Table 1.

The extraction of data was done with the aid of
spreadsheets that contained forms with general
information of the studies as: title, authors, place of
publication, year of publication.

Table 1: Number of papers presented by search string.

Database
Total

presented
by Database

First Selection
Second

Selection

Excluded
Papers

Repeated
Papers

Included
Papers

Selected
Papers

ACM 24 10 3 10 9

CAPES 250 247 0 3 1

Engineering
Village

31 16 9 6 1

IEEE 103 52 2 49 26

Science
Direct

64 64 3 0 0

Scopus 44 20 8 16 8

Manual - - - 3 3

Total 516 409 25 87 48

In addition, we also conducted research in
Google (https://www.google.com.br) search engine
performing manual technique and 3 more articles
were included because they deal with the research
topic, increasing the number of included papers to
48.

Papers that presented only coverage criterion
without relating methodologies or concolic/concrete
test tools were excluded. This phase was supported
by a quality questionnaire, in which were adapted 3
questions, according Biolchini et al. (2005):
 Q1: Is used any data generation technique?
 Q2: Is any test criteria applied with concolic

testing?
 Q3: Is any concolic tool used or developed?

Figure 1 shows that interest in the subject has
been growing over the years. In 2016, 8 articles were
published related to the subject and presents this
information according to corresponding database.
Table 2 shows number of publications over the years
in selected database. After checking, it was found 6
articles that before had been included, but were
excluded in second selection phase, because they
only addressed the topic of coverage, not mentioning

concolic/concrete test or concolic/concrete tools. As
part of systematic review survey was conducted at
end of May, it may not present some papers that are
from 2017 year.

Figure 1: Selected papers per publication year.

Table 2: Selected papers per publication year.

Figure 2 shows number of papers found in years
2005 to 2017 in each database. The IEEE portal has
the largest number of publications in the search
period, except in year 2010, that SCOPUS has
surpassed the number of publications on the subject.

Figure 2: Year of publication of included papers.

0

2

4

6

8

10

Ye
ar

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

Papers

0
1
2
3
4
5
6
7
8

20
05

20
07

20
09

20
11

20
13

20
15

20
17

SCOPUS

SCIENCE
DIRECT
IEEE

ENGINEERING
VILLAGE
CAPES

ACM

ICEIS 2018 - 20th International Conference on Enterprise Information Systems

124

Figure 3: The most used concolic testing tools.

4 RESULTS AND DISCUSSIONS

Among the steps necessary for systematic review
practice is to track the best evidence and critically
assess the validity, impact, and applicability of the
evidence. To achieve the objective of this review, 3
research questions were elaborated as mentioned in
section 3.1.

In Table 1 we show the total of articles presented
and selected by each database: ACM database
obtained 9 articles selected, CAPES 1 article,
Engineering Village 1 article, IEEE 26 articles,
Scopus 8 and Manual Search 8 articles totalling 48
articles selected.

In order to answer Q1 we had 38 papers that use
concolic testing for generating test data. Other 3
papers performing mutation test introduced by
Hamlet (1977) and DeMillo et al. (1978), mutation
analysis is based on the production of syntactical
alterations of code under test aiming at producing
semantically different program versions. The
different program versions are called mutated
versions as each one contains a simple syntactic
change of the original code.

For Q2 the analysis shows that the most used test
criterion is the branch coverage with 67% as we can
see in Figure 4. Then, we have path coverage with
24%. The most significant scalability challenge in
path-based testing is how to handle the exponential
number of paths in program. Path explosion is
mainly due to nested calls, loops and conditions
(Krishnamoorthy; Michael and Loganathan, 2010).
And with 6% Condition/Decision Coverage
(MC/DC) that is a structural coverage criterion
requiring that each condition within a decision is
shown by execution to independently and correctly
affect outcome of the decision (Chilenski and
Steven, 1994).

For answering Q3 we have analysed selected
papers regarding concolic testing tools that were
used. As we can see in Figure 3 the most used
concolic testing tool in this systematic review is
CREST (Burnim and Sen, 2008), 38%,that is an
open-source tool for C programs. Then comes
CUTE (Concolic Unit Testing Engine) (Sen and
Agha, 2006) and KLEE (Cadar, Dunbar and Engler,
2008) tool, the first one is a tool for C program
implement concolic testing and handle input data

31%

18%

13%

10%

10%

5%

2%
2%

3% 3% 3%

 CREST (Burnim and Sen, 2008)

KLEE (Cadar, Dunbar and Engler,
2008)
CUTE (Sen and Agha, 2006)

jCUTE (Sen and Agha, 2006)

PathCrawler (Williams et al. ,
2005)
AUSTIN (Lakhotia et al., 2008)

DART (Godefroid Klarlund and
Sen, 2005)
Sage (Godefroid, Levin and
Molnar, 2008)
iConSMutate(Sarkar, Basu and
Wong, 2014)
CREST-BV (Kim et al., 2012)

SynConSMutate(Sarkar, Basu and
Wong, 2013)

A Systematic Review of Concolic Testing with Aplication of Test Criteria

125

structures and multi-threading KLEE is implemented
as a modified LLVM (Low Level Virtual
Machine)virtual machine targeting LLVM bytecode
programs (Kim et al. 2012). jCute (Java Concolic
Unit Testing Engine) (Sen and Agha, 2006) is
created for Java programs. Most notably AUSTIN
(AUgmented Search–based TestINg) (Lakhotia et
al., 2008) cannot generate meaningful inputs for
strings, void and function pointers, as well as union
constructs (Lakhotia; Harman and Gross, 2010).
PathCrawler (Williams et al., 2005) is an automatic
generator of test case inputs to ensure structural
coverage of C source code. The exhaustive
exploration of the source code can also be used to
demonstrate the absence of certain runtime errors or
anomalies that may indicate a potential bug (or
cause future maintenance problems) in any program
(Kosmatov et al., 2013).

Figure 4: Testing criteria applied.

4.1 Tools and Analysis

Table 3 presents a summary of properties of the
concolic testing tools (Godboley et al., 2016).
Abbreviation used in Table 3 are given below with
its meaning:
 “✓” supports the feature.
 “X” the tool does not support the feature.
 “P” the tool supports partially the feature.
 “-” unknown

For instance, CREST is an open source for C
programs which does not support pointer, but KLEE
that is also an open source for C programs does. As
the goal of concolic testing is to generate test inputs
which result in higher path coverage, the ability to
generate these inputs depends on efficiency of its
underlying constraint solver and most of them do not
support float or double types, and they are unable to
handle non-linear arithmetic constraints.

We can see in Table 3 that 6 of the concolic
testing tools are for C: Austin, CREST, CUTE,
DART and KLEE; 5 for Java: CATG, jCUTE,
JDART, jFuzz and LCT; 2 for SQL language:
iConSMutate and SynConSMutate; 1 for machine
code: SAGE. The majority of concolic testing tools
do not support variable of float/double type, pointers,
native calls, non-linear arithmetic operations and
function pointer. Only one of the tools stands out,
jDART (Luckow, et al., 2016) a dynamic symbolic
tool for Java that supports CORAL, SMTInterpol and
Z3solvers and is able to handle software with
constraints containing bit operations, floating point
arithmetic and complex arithmetic operations. The
study showed that 5 of the concolic tools are open
source: CREST, CUTE, KLEE, jCUTE and DART
(Table 3), only the last one is not for Linux Platform.
CREST uses YICES construct solver, CUTE and
DART uses LP_Solvers and KLEE uses STP.

Table 4 shows the related concolic testing tools
that we separated by data test generation and
coverage criteria. For 48 papers listed, 37 generate
data using the concolic execution: (Qu and
Robinson, 2011), (Xu et al. ,2011), (Kim et al.
,2012), (Dong et al., 2013), (Godboley, Sahani and
Mohapatra, 2015), (Williams, 2010), (Godboley et
al., 2017), (Su et al., 2014), (Lakhotia; McMinn and
Harman, 2009), (Kim; Cha and Bae, 2013),
(Baluda, 2011), (Papadakis, and Malevris, 2011),
(Baluda; Denaro and Pezze, 2016), (Dutta;
Godboley and Mohapatra, 2016), (Lu et al., 2016),
(Jin et al., 2015), (Giantsios; Papaspyrou and
Sagonas, 2017), (Huang et al., 2012), (Köroglu and
Sem, 2016), (Wassermann et al., 2008), (Inkumsah
and Xie, 2007), (Wang and Zeng, 2015), (Garg et
al., 2013), (Burnim and Sem, 2008), (Majumdar,
Saha and Wang, 2010), (Tanno et al. , 2015),
(Kosmatov et al. , 2012), (Dhok;Ramanathan and
Sinha, 2016), (Luckow, et al., 2016), (Jayaraman, et
al., 2009) and (Kähkönen, et al., 2011); 3 use
mutation: (Papadakis, and Malevris, 2011), (Sarkar,
Tanmoy, Basu and Wong, 2014) and (Sarkar, Basu
and Wong, 2013) . Most of the studies (38) (Qu and
Robinson, 2011), (Xu et al., 2011), (Kim et al. ,
2012), (Dong et al., 2013), (Godboley, Sahani and
Mohapatra, 2015), (Godboley et al., 2017), (Su et
al., 2014), (Lakhotia; McMinn and Harman, 2009),
(Kim; Cha and Bae, 2013), (Baluda, 2011),
(Papadakis, and Malevris, 2011), (Baluda; Denaro
and Pezze, 2016), (Dutta; Godboley and Mohapatra,
2016), (Lu et al., 2016), (Jin et al., 2015),
(Giantsios; Papaspyrou and Sagonas, 2017), (Huang
et al., 2012), (Köroglu and Sem, 2016), (Majumdar
and Xu, 2007), (Wassermann et al., 2008),

ICEIS 2018 - 20th International Conference on Enterprise Information Systems

126

Table 3: Summary of properties and limitations of concolic testing tools adapted from Godboley et al. (2016).

 Language Open
Source

Platform Construct
Solvers

Support for
float/double

Support
for

pointer

Support
for

native
call

Support for
non-
linear

arithmetic op.

Support
for

function
pointer

Austin C - - - ✓ ✓ - - ✓
CATG Java ✓ - - X - - - -

CREST C ✓ Linux YICES X X X - X

CUTE C ✓ Linux LP_Solver X ✓ X P X

DART C ✓ - LP_Solver X X X - X

iConSMutate SQL - - - - - - - -

jCUTE Java ✓ Linux - X - - X X

jDART Java ✓ - CORAL,
SMTInterpol,

and Z3
solvers,

✓ ✓ ✓ ✓ ✓

jFuzz Java - - - - - - - -

KLEE C ✓ Linux STP X ✓ P ✓ -

LCT Java ✓ - SMT
Boolector or

YICES

✓ - - - -

Path Crawler C and C++ - - - - - X - -

SAGE Machine
Code

- Windows Disolver X - - - -

SynConSMutate SQL - - - - - - - -

Table 4: Related papers of Data Test Generation, Test Criteria and Concolic testing Tools.

Papers

Data Test
Generation

Coverage Criteria
Concolic testing Tools

Concolic Mutation
Branch

Coverage
Path

Coverage
MC/DC

Used Implemented

(Qu and Robinson, 2011)
✓ ✓

DART, CUTE,
jCUTE,
PathCrawler, SAGE

(Xu et al. ,2011) ✓ ✓ CREST

(Kim et al. ,2012) ✓ ✓ SCORE

(Dong et al., 2013) ✓ CREST

(Godboley, Sahani and Mohapatra,
2015)

✓ ✓

jCUTE Architectural model
for branch coverage
Enhancement
(ABCE)

(Williams, 2010) ✓ ✓ PathCrawler

(Godboley et al., 2017)
✓ ✓

jCUTE Green Analysis of
Branch Coverage
Enhancement

(Su et al., 2014) ✓ ✓ KLEE and CREST

(Lakhotia; McMinn and Harman,
2009)

✓ ✓
CUTE and AUSTIN

(Kim; Cha and Bae, 2013) ✓ ✓ SAGE

(Baluda, 2011) ✓ ✓

(Papadakis, and Malevris, 2011)
 ✓ ✓

 Concolic execution
tool

(Baluda; Denaro and Pezze, 2016) ✓ ✓ CREST and KLEE

(Dutta; Godboley and Mohapatra,
2016)

✓ ✓
 CREST COLT

(Lu et al., 2016) ✓ ✓

A Systematic Review of Concolic Testing with Aplication of Test Criteria

127

Table 4: Related papers of Data Test Generation, Test Criteria and Concolic testing Tools (cont.).

Papers

Data Test
Generation

Coverage Criteria Concolic testing Tools

Concolic Mutation Branch
Coverage

Path
Coverage

MC/DC Used Implemented

(Jin et al., 2015) ✓ ✓ COMEDY

(Giantsios; Papaspyrou and Sagonas,
2017)

✓ ✓

(Huang et al., 2012) ✓ ✓ KLEE CRAX

(Köroglu and Sem, 2016) ✓ ✓ CREST

(Majumdar and Xu, 2007) ✓ CUTE CESE

(Wassermann et al., 2008) ✓ ✓ ✓

(Godboley et al., 2013a) ✓ CREST

(Baluda, 2011) ✓ CREST and KLEE

(Inkumsah and Xie, 2007) ✓ ✓ Evacon

(Wang and Zeng, 2015) ✓ ✓ SAGE CrashFinderHB

(Garg et al., 2013) ✓ ✓

(Burnim and Sem, 2008) ✓ ✓ CREST

(Seo and Kim, 2014) ✓ CREST

(Majumdar and Sen, 2007) ✓ ✓ CUTE

(Sarkar, Tanmoy, Basu and Wong, 2014) ✓ ✓ iConSMutate

(Inkumsah and Xie, 2008) ✓ ✓ Evacon

(Godboley et al., 2013b) ✓ ✓ CREST

(Kim et al., 2012) ✓ ✓ CREST-BV and
KLEE

(Gao et al. , 2016) ✓ ✓ KLEE LLSPLAT

Mouzarani, Sadeghiyan and Zolfaghari,
2015)

✓ ✓ KLEE

(Baluda et al., 2010) ✓ ✓ Star (Software
Testing by
Abstraction
Refinement)

(Kosmatov et al. , 2013) ✓ ✓ PathCrawler

(Mao, Yu and Chen, 2012) ✓

(Sarkar, Basu and Wong, 2013) ✓ ✓ SynConSMutate

(Majumdar, Saha and Wang, 2010) ✓ ✓ SPLAT

(Dinges and Agha, 2014) ✓ jCUTE.

(Tanno et al. , 2015) ✓ ✓ CATG

(Kosmatov et al. , 2012) ✓ ✓ PathCrawler

(Dhok;Ramanathan and Sinha, 2016) ✓ ✓

(Luckow, et al., 2016) ✓ ✓ jDart

(Jayaraman, et al., 2009) ✓ ✓ jFuzz

(Kähkönen, et al., 2011) ✓ ✓ LCT

ICEIS 2018 - 20th International Conference on Enterprise Information Systems

128

(Inkumsah and Xie, 2007), (Wang and Zeng, 2015),
(Garg et al., 2013), (Burnim and Sem, 2008), (Seo
and Kim, 2014), (Majumdar and Sen, 2007),
(Sarkar, Tanmoy, Basu and Wong, 2014), Inkumsah
and Xie, 2008), (Kim et al., 2012), (Gao et al. ,
2016), (Mouzarani, Sadeghiyan and Zolfaghari,
2015), (Baluda et al., 2010) (Mao, Yu and Chen,
2012), (Sarkar, Basu and Wong, 2013), (Majumdar,
Saha and Wang, 2010) and (Dhok;Ramanathan and
Sinha, 2016) use the branch coverage and 9 use path
coverage (Williams, 2010), (Wassermann et al.,
2008), (Kosmatov et al. , 2013), (Dinges and Agha,
2014), (Tanno et al. , 2015), (Kosmatov et al. ,
2012), (Luckow, et al., 2016), (Jayaraman, et al.,
2009) and (Kähkönen, et al., 2011); and 2 MC/ DC
(Godboley et al., 2013a) and (Godboley et al.,
2013b).

None of the 48 analysed articles works with the
data flow test criteria, showing the necessity to study
concolic testing along with this criterion.

5 RELATED WORK

For more than three decades, symbolic execution has
been used in the context of software testing to
generate test data with test criteria (King, 1976),
(Cadar and Sen, 2013). However, symbolic
execution has challenges. Several approaches have
been proposed to improve problems such as path
explosion, competition, complex data, constraint
solvers, and integration with external libraries
(Pasareanu and Visser 2009), (Godefroid 2012),
Cadar and Sen 2013).

In (Majumdar and Sen, 2005) they implement a
hybrid concolic testing using the CUTE tool, to
achieve branch coverage for C programs. They
present an algorithm that merges the application of
random testing with concolic testing for exploitation
in depth and width of the program.

In (Baluda et al., 2010) they proposed a
technique that combines static and dynamic analysis
approaches to identify infeasible program elements
that can be eliminated from the structural coverage
calculation to obtain accurate coverage data. The
approach identifies a relevant number of impractical
elements, the elements that belong statically to the
code, but cannot be executed under any input
condition. They implemented a prototype tool Star
(Software Testing by Abstraction Refinement), built
based on the Crest. The technique can also generate
new test cases that execute the discovered elements,
thus increasing the structural coverage of the
program.

In (Majumdar and Xu, 2007) they address the
problem of automatic generation of test inputs for
large programs. The authors have developed the
CESE tool, which implements the generation of test
using symbolic grammars for C programs. The work
presents a test input generation algorithm that
combines the advantages of the selective and
enumerative test generation and the generation of
directed symbolic test.

In (Qu and Robison, 2009) identify existing
concolic testing techniques and tools, identifying the
languages and the platforms that it run. Then they
identify the limitations of identified concolic testing
techniques and tools, also study the limitations, as
well as how they may affect the effectiveness
(measured in branch coverage) of test suites
generated in large programs.

In (Seo and Kim, 2014) they introduce the
context-guided search (CGS) strategy, in that the
search is guided by the set of branches. The CGS
selects a branch from a new set to the next input. In
addition CGS excludes irrelevant branches in the
context information calculating domain. They
implement the CGS strategy using two concolic test
tools: CREST and CarFast.

In (Dhok's, Ramanathan and Sinha, 2016) they
found an extension of the concolic testing for Java
Script (JS) programs that causes the generation of a
large number of inputs. The authors have proposing
an approach that incorporates a type of intelligent
awareness to the conventional test, thus reducing the
number of inputs generated for JS programs.

The main difference between our work and the
ones above is that through this work is provides an
overview of a research area, identifying the quantity,
types of research undertaken, and the frequency of
publications over time to identify trends. We could
verify the necessity of studies that combine the
concolic testing and the structural criteria of test
considering data flow to evaluate the quality of the
applied test.

6 CONCLUSION

The systematic review was conducted by means of a
review protocol that specified the methods used
during the conduction of the work. The methodology
defined in the protocol were necessary and sufficient
to obtain the primary studies necessary to achieve
the research. The systematic review proved to be an
effective, though time-consuming, methodology
which involved hard work in reading and analyzing

A Systematic Review of Concolic Testing with Aplication of Test Criteria

129

primary studies in order to obtain answers to the
questions raised for the research.

Through the systematic review, 48 related papers
that addresses concolic testing and test criteria.
Through systematic review process, we could
identify a deficiency related the application of
test criteria that are not branch coverage or path
(Figure 4).

The problem of generating test data to achieve
adequate coverage is an inherently automated
activity. This automation ensures a significant
impact because the generation of test data is an
arduous and time-consuming task.

One limitation for elaborating this article was
that this work was originated from a software
engineering lectures, being executed in just a few
months. Having the main challenge the definition of
the search string covering the largest number of
works related to the research theme within the range
of 2005 to 2017.

This research allowed to verify the necessity of
studies that combine concolic testing and structural
criteria of test to evaluate the quality of the applied
test.

Our objective with this work was to perform a
study about papers that deal with concolic testing
and test criteria. Thus, we can see a lack with respect
to data flow criteria of software test. We intend to
make an approach to generate test data to cover only
test requirements selected by users considering data
flow and control criteria along concolic test which
will be our future work.

ACKNOWLEDGEMENTS

We thank the support from Department of
Informatics from Federal University of Paraná
(UFPR) and Federal Technological University of
Paraná (UTFPR – Câmpus Pato Branco).

REFERENCES

Ammann, Paul, and Jeff Offutt. Introduction to software
testing. Cambridge University Press, 2016.

Baluda, Mauro, et al. "Structural coverage of feasible
code." Proceedings of the 5th Workshop on
Automation of Software Test. ACM, 2010.

Baluda, Mauro. "Automatic structural testing with
abstraction refinement and coarsening." Proceedings
of the 19th ACM SIGSOFT symposium and the 13th
European conference on Foundations of software
engineering. ACM, 2011.

Baluda, Mauro, Giovanni Denaro, and Mauro Pezze.
"Bidirectional symbolic analysis for effective branch
testing." IEEE Transactions on Software Engineering
42.5 (2016): 403-426.

Biolchini, J., Mian, P. G., Natali, A. C., Travassos, G. H.
(2005) “Systematic Review in Software Engineering:
Relevance and Utility”, Technical Report, PESC -
COPPE/UFRJ.

Burnim, Jacob, and Koushik Sen. "Heuristics for scalable
dynamic test generation." Automated Software
Engineering, 2008. ASE 2008. 23rd IEEE/ACM
International Conference on. IEEE, 2008.

Cadar, Cristian, Daniel Dunbar, and Dawson R. Engler.
"KLEE: Unassisted and Automatic Generation of
High-Coverage Tests for Complex Systems
Programs." OSDI. Vol. 8. 2008.

Cadar, C. and Sen, K. Symbolic execution for software
testing: three decades later. Communications of the
ACM, 56(2):82–90. 2013.

Chilenski, John Joseph, and Steven P. Miller.
"Applicability of modified condition/decision
coverage to software testing." Software Engineering
Journal 9.5 (1994): 193-200.

Crespo, Adalberto Nobiato, et al. "Uma metodologia para
teste de Software no Contexto da Melhoria de
Processo." Simpósio Brasileiro de Qualidade de
Software (2004): 271-285.

DeMillo, R. A., Lipton, R. J., & Sayward, F. G. (1978).
Hints on test data selection: Help for the practicing
programmer. Computer, 11(4), 34–41. doi:10.1109/C-
M.1978.218136.

Dhok, Monika, Murali Krishna Ramanathan, and Nishant
Sinha. "Type-aware concolic testing of JavaScript
programs." Software Engineering (ICSE), 2016
IEEE/ACM 38th International Conference on. IEEE,
2016.

Dinges, Peter, and Gul Agha. "Targeted test input
generation using symbolic-concrete backward
execution." Proceedings of the 29th ACM/IEEE
international conference on Automated software
engineering. ACM, 2014.

Dong, Qixing, et al. "A Search Strategy Guided by
Uncovered Branches for Concolic testing." Quality
Software (QSIC), 2013 13th International Conference
on. IEEE, 2013.

Dutta, Arpita, Sangharatna Godboley, and Durga Prasad
Mohapatra. "COLT: Extending Concolic testing to
measure LCSAJ Coverage." Region 10 Conference
(TENCON), 2016 IEEE. IEEE, 2016.

Gao, Min, et al. "LLSPLAT: Improving Concolic testing
by Bounded Model Checking." Source Code Analysis
and Manipulation (SCAM), 2016 IEEE 16th
International Working Conference on. IEEE, 2016.

Garg, Pranav, et al. "Feedback-directed unit test
generation for C/C++ using concolic execution."
Proceedings of the 2013 International Conference on
Software Engineering. IEEE Press, 2013.

Giantsios, Aggelos, Nikolaos Papaspyrou, and
Konstantinos Sagonas" Concolic testing for functional
languages." Science of Computer Programming

ICEIS 2018 - 20th International Conference on Enterprise Information Systems

130

 (2017).
Godboley, Sangharatna, et al. "Enhanced modified

condition/decision coverage using exclusive-nor code
transformer." Automation, Computing, Communica-
tion, Control and Compressed Sensing (iMac4s), 2013
International Multi-Conference on. IEEE, 2013 (a).

Godboley, Sangharatna, et al. "Increase in modified
condition/decision coverage using program code
transformer." Advance Computing Conference (IACC),

 2013 IEEE 3rd International. IEEE, 2013 (b).
Godboley, Sangharatna, et al. "Making a concolic testinger

achieve increased MC/DC." Innovations in Systems and
Software Engineering 12.4 (2016): 319-332.

Godboley, Sangharatna, Arun Sahani, and Durga Prasad
Mohapatra. "ABCE: a novel framework for improved
branch coverage analysis." Procedia Computer
Science 62 (2015): 266-273.

Godboley, Sangharatna, et al. "An Automated Analysis of
the Branch Coverage and Energy Consumption Using
Concolic testing." Arabian Journal for Science and
Engineering 42.2 (2017): 619-637.

Godefroid, Patrice, Nils Klarlund, and Koushik Sen.
"DART: directed automated random testing." ACM
Sigplan Notices. Vol. 40. No. 6. ACM, 2005.

Godefroid, Patrice, Michael Y. Levin, and David A.
Molnar. "Automated whitebox fuzz testing." NDSS.
Vol. 8. 2008.

Hamlet, R. G. (1977). Testing programs with the aid of a
compiler. IEEE Transaction on Software Engineering,
3(4), 279–290. doi:10.1109/TSE.1977.231145.

Huang, Shih-Kun, et al. "Crax: Software crash analysis for
automatic exploit generation by modeling attacks as
symbolic continuations." Software Security and
Reliability (SERE), 2012 IEEE Sixth International
Conference on. IEEE, 2012.

Inkumsah, Kobi, and Tao Xie. "Evacon: A framework for
integrating evolutionary and concolic testing for
object-oriented programs." Proceedings of the twenty-
second IEEE/ACM international conference on
Automated software engineering. ACM, 2007.

Inkumsah, Kobi, and Tao Xie. "Improving structural
testing of object-oriented programs via integrating
evolutionary testing and symbolic execution."
Proceedings of the 2008 23rd IEEE/ACM
International Conference on Automated Software
Engineering. IEEE Computer Society, 2008.

Jayaraman, Karthick, et al. "jFuzz: A concolic whitebox
fuzzer for Java." (2009).

Jin, Hao, et al. "Concolic metamorphic debugging."
Computer Software and Applications Conference
(COMPSAC), 2015 IEEE 39th Annual. Vol. 2. IEEE,
2015.

Kähkönen, K., Kindermann, R., Heljanko, K., & Niemelä,
I. Experimental comparison of concolic and random
testing for Java Card applets. In: Model Checking
Software. Springer Berlin Heidelberg, 2010. p. 22-39.

Kähkönen, Kari, et al. "LCT: An open source concolic
testing tool for Java programs." Proceedings of the 6th
Workshop on Bytecode Semantics, Verification,
Analysis and Transformation (BYTECODE). 2011.

Kim, Su Yong, Sungdeok Cha, and Doo-Hwan Bae.
"Automatic and lightweight grammar generation for
fuzz testing." Computers & Security 36 (2013): 1-11.

Kim, Yunho, et al. "Industrial application of concolic testing
approach: A case study on libexif by using CREST-BV
and KLEE." Software Engineering (ICSE), 2012 34th
International Conference on. IEEE, 2012.

Kosmatov, Nikolai, and Nicky Williams. "Tutorial on
automated structural testing with pathcrawler."
Proceedings of the 6th international conference on
Tests and Proofs. Springer-Verlag, 2012.

Kosmatov, Nikolai, et al. "Structural Unit Testing as a
Service with PathCrawler-online.com." Service
Oriented System Engineering (SOSE), 2013 IEEE 7th
International Symposium on. IEEE, 2013.

Köroglu, Yavuz, and Alper Sen. "Design of a Modified
Concolic testing Algorithm with Smaller Constraints."
CSTVA@ ISSTA. 2016.

Krishnamoorthy, Saparya, Michael S. Hsiao, and
Loganathan Lingappan. "Tackling the path explosion
problem in symbolic execution-driven test generation
for programs." Test Symposium (ATS), 2010 19th
IEEE Asian. IEEE, 2010.

Lakhotia, Kiran, Mark Harman, and Phil McMinn.
"Handling dynamic data structures in search based
testing." Proceedings of the 10th annual conference on
Genetic and evolutionary computation. ACM, 2008.

Lakhotia, Kiran, Phil McMinn, and Mark Harman.
"Automated test data generation for coverage: Haven't
we solved this problem yet?." Testing: Academic and
Industrial Conference-Practice and Research
Techniques, 2009. TAIC PART'09.. IEEE, 2009.

Lakhotia, Kiran, Mark Harman, and Hamilton Gross.
"AUSTIN: A tool for search based software testing for
the C language and its evaluation on deployed
automotive systems." Search Based Software
Engineering (SSBSE), 2010 Second International
Symposium on. IEEE, 2010.

Lu, Jiawen, et al. "Complexity analysis and comparison of
test paths based on DSE." Software Engineering,
Artificial Intelligence, Networking and
Parallel/Distributed Computing (SNPD), 2016 17th
IEEE/ACIS International Conference on. IEEE, 2016.

Luckow, Kasper, et al. "JDart: A dynamic symbolic
analysis framework." International Conference on
Tools and Algorithms for the Construction and
Analysis of Systems. Springer Berlin Heidelberg, 2016

Maldonado, J. C. Critérios Potenciais Usos: Uma
Contribuição ao Teste Estrutural de Software.
Orientador: Prof. Dr. Mário Jino (Tese) ICMC/USP.
São Carlos/SP, 1991.

Majumdar, Rupak, and Ru-Gang Xu. "Directed test
generation using symbolic grammars." Proceedings of
the twenty-second IEEE/ACM international conferen-
ce on Automated software engineering. ACM, 2007.

Majumdar, Rupak, and Koushik Sen. "Hybrid concolic
testing." Software Engineering, 2007. ICSE 2007. 29th
International Conference on. IEEE, 2007.

Majumdar, Rupak, Indranil Saha, and Zilong Wang.
"Systematic testing for control applications." Formal

A Systematic Review of Concolic Testing with Aplication of Test Criteria

131

Methods and Models for Codesign (MEMOCODE),
2010 8th IEEE/ACM International Conference on.
IEEE, 2010.

Mao, Chengying, Xinxin Yu, and Jifu Chen. "Swarm
intelligence-based test data generation for structural
testing." Computer and Information Science (ICIS),
2012 IEEE/ACIS 11th International Conference on.
IEEE, 2012.

Mian, Paula; Conte, Tayana Uchoa; Natali, Ana Candida

 Cruz; Biolchini, Jorge; Travassos, G. H.. Lessons
Learned on Applying Systematic Reviews to Software
Engineering. In: WSESE2005- Workshop Series in
Empirical Software Engineering, 2005, Oulu.
Proceedings of the 3rd International Workshop
“Guidelines For Empirical Work” in the Workshop
Series on Empirical Software Engineering 2005.
Kaiserslautern: Fraunhofer Center, 2005. v. 1. p. 1-6.

Mouzarani, Maryam, Babak Sadeghiyan, and Mohammad
Zolfaghari. "Smart fuzzing method for detecting stack-
based buffer overflow in binary codes." IET Software
10.4 (2016): 96-107.

Myers, G. J. Art of Software Testing. John Wiley & Sons,
Inc., New York, NY, USA, 1979.

Papadakis, Mike, and Nicos Malevris. "Automatically
performing weak mutation with the aid of symbolic
execution, concolic testing and search-based testing."
Software Quality Journal 19.4 (2011): 691.

Qu, Xiao, and Brian Robinson. "A case study of concolic
testing tools and their limitations." Empirical Software
Engineering and Measurement (ESEM), 2011
International Symposium on. IEEE, 2011.

Rapps, S., e Weyuker, E. Selecting software test data
using data flow information. IEEE Transactions on
Software Engineering 11, 04 (April), 367–375, 1985.

Sarkar, Tanmoy, Samik Basu, and Johnny Wong.
"Synconsmutate: Concolic testing of database
applications via synthetic data guided by sql mutants."
Information Technology: New Generations (ITNG),
2013 Tenth International Conference on. IEEE, 2013.

Sarkar, Tanmoy, Samik Basu, and Johnny Wong.
"iConSMutate: Concolic testing of Database
Applications Using Existing Database States Guided
by SQL Mutants." Information Technology: New
Generations (ITNG), 2014 11th International
Conference on. IEEE, 2014.

Sen, Koushik, Darko Marinov, and Gul Agha. "CUTE: a
concolic unit testing engine for C." ACM SIGSOFT
Software Engineering Notes. Vol. 30. No. 5. ACM,
2005.

Sen, Koushik, and Gul Agha. "CUTE and jCUTE:
Concolic unit testing and explicit path model-checking
tools." CAV. Vol. 6. 2006.

Seo, Hyunmin, and Sunghun Kim. "How we get there: A
context-guided search strategy in concolic testing."
Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering.
ACM, 2014.

Su, Ting, et al. "Automated coverage-driven test data
generation using dynamic symbolic execution."
Software Security and Reliability, 2014 Eighth

 International Conference on. IEEE, 2014.
Tanno, Haruto, et al. "TesMa and CATG: automated test

generation tools for models of enterprise applications."
Proceedings of the 37th International Conference on
Software Engineering-Volume 2. IEEE Press, 2015.

Xu, Zhihong, et al. "A hybrid directed test suite
augmentation technique." Software Reliability
Engineering (ISSRE), 2011 IEEE 22nd International
Symposium on. IEEE, 2011.

Wang, W. and Zeng, Q. Evaluating Initial Inputs for
Concolic testing. In: Theoretical Aspects of Software
Engineering (TASE), 2015 International Symposium
on. IEEE, 2015. p. 47-54.

Wassermann, Gary, et al. "Dynamic test input generation
for web applications." Proceedings of the 2008
international symposium on Software testing and
analysis. ACM, 2008.

Williams, Nicky, et al. "PathCrawler: Automatic
Generation of Path Tests by Combining Static and
Dynamic Analysis." EDCC. Vol. 3463. 2005.

Williams, Nicky. "Abstract path testing with
PathCrawler." Proceedings of the 5th Workshop on
Automation of Software Test. ACM, 2010.

Zhu, Hong, Patrick AV Hall, and John HR May.
"Software unit test coverage and adequacy." ACM
computing surveys (csur) 29.4 (1997): 366-427.

ICEIS 2018 - 20th International Conference on Enterprise Information Systems

132

