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Abstract: The objective of this work is to compare the performance of two brain-computer interfaces developed by our 

research group. Both interfaces collect the electrical signals produced by the human body while a person try 

to move a cursor on a digital screen, using only his thought. The collected signals are classified using the 

artificial neural networks paradigm, where the first interface uses electroencephalogram signals, collected 

from the scalp, to classify the mental command, and the second uses the electrodermal signal, collected from 

any right-hand finger. Besides analysing the performance of the two approaches, this research contributes to 

reduce the training time achieved by similar systems, reported in the literature as being in an average of 45 

days, to about only 40 minutes. Our motivation is to facilitate the accessibility of people with temporary or 

permanent physical limitations. In addition, we have developed a low-cost signal collection platform, 

providing a solution that can help a large group of people. 

1 INTRODUCTION 

The limbic system has an important role in 

controlling the human emotions such as motivation, 

stress and rage (Boucsein, 2012a). The limbic system 

integrates the sensory information from the 

environment with the emotional state, where an 

affective value is attributed to these stimuli, such as 

fear or pleasure. A positive feedback signal is sent for 

each action or intention of action performed correctly, 

resulting in the reinforcement of some synapses. In 

the other hand, wrong actions or intentions are 

discouraged by a similar mechanism (Amaral, 2016), 

(Nishida, 20126). In summary, the limbic system 

generates a signal of approval or rejection for every 

action we take, allowing a person to distinguish 

among what he likes or dislikes. 

Although the limbic lobe is located in the inner 

part of the brain, from where it is very difficult to 

collect signals through an electroencephalogram 

(EEG), this system also controls the electrodermal 

(EDA) response, which is the electrical signal present 

on the skin and its glands. The EDA phenomenon is 

spontaneous and results from changes induced by a 

complex system of elements with different 

electrophysical properties. Moreover, the skin can be 

modeled by a set of resistors and capacitors, in 

relatively simple way, the EDA system can be a fast, 

low cost and low stress training method for brain-

computer interface (BCI) applications (Boucsein, 

2012a), (Blain, 2008). 

On the other hand, another important brain 

interface is the EEG, whose responses are stationary 

in nature and vary at each recording session. The 

procedure for collecting EEG signals uses external 

electrodes and it is safe, inexpensive, non-invasive, 

with a satisfactory time resolution for most BCI 

studies and applications (Leskov, 2000), (Iacoviello, 

2015). The captured signals are a composition of 

many electrical signals emitted by the human body, 

which means that some unwanted signals may be 

captured too. Fortunately, those useless signals can be 

easily eliminated through specific filters (Noteboom, 

2001). 

Applications based on EEG signals could allow an 

interaction between the environment and people, 

translating their imaginary movements into electrical 

signals. The construction of a limbic signal translator 
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system can provide a wide range of home automation 

applications, such as control systems for switching 

electric household appliances, or for similar use in 

hospitals.  

In some researches, the BCI system has proven to 

be a promising tool for applications that help people 

with severe motor limitations and for the 

implementation of remote medical devices (Lin, 

2016) (Boucsein, 2012a). Based on these premises, 

our work aims to reduce the training time needed to 

customize the translation of the limbic signal to 

people with limitations in their motor capacities, 

whether temporary or permanent. This can be useful 

in situations where a person cannot wait a long time 

until he can start using such a system, as during a 

hospital stay. 

The paper is organized as follows. In section 2 we 

present the state art of approaches for modeling of 

control system based on brain signals in BCI 

applications. Section 3 provides a description of our 

control system and the steps of the developed 

algorithm since collecting the signals until the final 

movement of the cursor on the screen. Subsequently, 

in section 4 we conclude with a discussion of our 

results. Finally, section 5 describe future research 

directions. 

2 MODELING OF CONTROL 

SYSTEM  

2.1 Electrodermal Activity 

It has already been proven that the EDA signal (also 

known as galvanic skin response) can be used in BCI 

applications (Blain, 2008). We can consider the skin 

as a set of resistors and capacitors, where the glands 

are represented by a voltage source or by charged 

capacitors. In 1966, Montazu and Coles (Nishida, 

2016) proposed an electric model of the skin, which 

can be represented by (1): 

𝑑𝑅𝑡𝑜𝑡 =
𝑅2

2

(𝑅2+𝑅1)
2 𝑑𝑅 (1) 

In (1), resistor R1 represents the equivalent 

resistance located in the dermis, resistor R2 models 

the resistance of the outermost layer of the skin, and 

resistance Rtot models the value of all sweat glands.  

It has already been found that many lesions of the 

spinal cord do not prevent the EDA signal from 

remaining present. In individuals with lesions below 

T8, the EDA signal can be detected in both hands and 

feet, but for lesions between T4 and T8, the signal is 

only present in the hands (Boucsein, 2012b). 

2.2 Electroencephalogram Signals 

We detected the EEG signals based on the 

international system 10-20, which divides the skull 

into 21 points (Plonsey, 1995). The signals captured 

by the EEG are composed by brain signals combined 

with several other electrical signals emitted by the 

human body. However, we are only interested in the 

signals that reflect the intentions of the user and we 

need to eliminate everything that is considered as 

noise. For the procedure of signal filtering, we choose 

the discrete Fourier transform (Najarian, 2006). 

2.3 The Μ Wave 

The 8-12 hz wave and 12-30 (beta waves) are directly 

related to the motor regions of the cerebral cortex, 

what give them a great potential in BCI applications 

(Zhao, 2015). The main advantages of using μ waves 

are their capability of training a user to control the 

amplitude of these waves, and the fact that the 

muscular movements cannot interfere in the 

amplitude of these waves.  

Wolpaw (1991) has already shown that a person 

can be trained to use the brain waves of 8-12hz to 

move a one-dimensional cursor. The author has 

developed a system in which a user moves a cursor 

vertically to reach a moving target. Five volunteers 

participated in an experiment that collected the 

signals with frequency of 3hz and subdivided their 

amplitude into 5 bands of μV. The amplitude of the 

collected signal is used to proportionally increase or 

decrease the size of the cursor offset. However, 

despite achieving a success rate of almost 90%, the 

training time for correct use of μ waves was up to 

three months.  

Jun (Jun, 2015) collected μ waves from the two 

cerebral hemispheres and considered them as binary 

data, combined two by two, forming six different 

combinations. Each combination is used to identify 

commands that activate a mechanical arm (Jun, 

2015). 

3 MATERIAL AND METHODS 

The purpose of this paper is to classify the electrical 

signals emitted by the brain and use then to vertically 

move a cursor on a digital screen. Two types of 

electrical signals were analysed to evaluate which one 

has the best performance in the purposed task. In 
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both, an ANN is used to classify the signal and to 

decide whether the cursor should go up or down. 

In the experiment using EEG signals, these are 

collected according to the international 10-20 

mapping system, which specifies that the electrodes 

should be attached to the C3 or C4 positions of the 

skull (Figure 1).  

 

Figure 1: The international 10-20 mapping system of the 

skull (Wikipedia, 2018). 

During the initial testing phase, we verified the 

need for signal amplification and filtering. So, we 

opted for the Chebychev bandpass filter and shielded 

the circuit to eliminate the noises, including those 

generated by electrical installations. 

The collected signal was analog but we 

discretized in the frequency domain. For the 

discretization, we opted for the discrete Fourier 

transform, obeying the Nyquist criterion, where the 

sampling frequency must be at least twice as high as 

the highest frequency present in the original signal 

(Oliveira, 2017). 

In the experiment using EDA signals, they can be 

collected through any hand finger (Plonsey, 1995), 

(Spliter, 2006).  

3.1 Data Treatment and Analysis  

Our experiments have shown that feelings of 

frustration, anxiety and nervousness decrease the 

amplitude of the EDA signal, while feelings of 

surprise and satisfaction increase their amplitude. In 

both cases, this variation is almost instantaneous, 

occurring soon after the generation of the pulse. After 

this change, the signal converges slowly to its base 

value. 

At the first step of the EDA experiment, we 

generate labelled samples of each type of signal to 

obtain a set of data for the ANN's training phase. The 

samples are built by classifying each collected signal 

as neutral, frustration or surprise (when the cursor did 

not move, move in the wrong direction or move in the 

correct direction, respectively). The EEG experiment 

was conducted in a similar way. 

For the signal collection, an intermittent message 

is positioned at the top or bottom of the screen, 

alternately, and the volunteer should try to move the 

cursor to the indicated direction, using only his 

thought. Each collection set results in 200 samples, 

divided between 100 thoughts of rise and 100 of 

descent.  

After performing a relevance analysis of each 

frequency collected, in each type of signal, the 

frequencies of 8, 10, 12, 16, 18 and 20hz were 

selected for the two types of signal (EDA and |EEG), 

where the 10 and 12hz are the best all, since they are 

found within the spectrum of waves μ. 

For the ANN, we chose a backpropagation MLP, 

a model that is proven to be suitable for pattern 

recognition problems. We tested different 

combinations of neural network parameters and 

architectures, where each configuration was tested 50 

times. The model with the best performance was a 4-

2-1 network, using a quasi-Newton Broydon-

Fletcher-Goldfarb-Shanno (BFGS) function method 

to calculate the minima of a multi-variable objective 

function (Mathworks, 2016), learning rate of 0.6 and 

momentum rate of 0.9. The network inputs were the 

frequencies 8, 10, 12, 16, 18 and 20hz and the output 

was set to 0 (for down moves) or 1 (for up 

movements). For each individual training conducted, 

samples were randomly separated at a rate of 80% for 

training and 20% for testing. 

For both signal type (EEG and EAD), the 

necessary steps, from collecting the signals to the 

final movement of the cursor on the screen, can be 

summarized by the following algorithm: 

1. System training: an initial collection of signals 

is conducted and each of them is stored with 

its classification, UP or DOWN. At this stage, 

the cursor does not move, and the goal is only 

to generate a personal signal pattern for the 

user. 

2. Training of an initial neural network RNA0: 

using the labelled signal samples generated in 

phase 1, and neural network with the 

architecture and parameters defined as 

explained in section 3.1, the goal is to train a 

personalized network for the user. Fifty 

complete trainings were performed in the 

neural network RNA0 to select the one that 

presented the best performance, using a class 

separation threshold of 0.5.  

3. Collection of signal: A new collect occurs and 

now each of them will be classified by the 
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RNA0 and the cursor will be moved 

accordingly.  

4. Training of neural network RNA1: Training of 

a new neural network, RNA1, using the 

signals generated in phase 3, with the same 

architecture, parameters and class separation 

threshold of RNA0, to provide an updated 

network for the user, assuming that his ability 

should have improved after the initial 

experiment. Again, 50 complete trainings 

were performed in RNA1 to select the best 

performance one.  

5. Steps 3 and 4 are repeated twice until the 

RNA3 is trained, which corresponds to four 

test cycles. 

4 RESULTS AND DISCUSSION 

The experiment lasts, on average, 35 minutes and 

Table 1 shows the performance obtained at each step 

of the algorithm, for the EEG signal. From its 

analysis, we can verify that the best performance is 

found at step 2, when RNA1 is used to classify the 

second set of signals, and after that it tends to 

decrease. We can explain this by the intrinsic 

characteristics of the experiment, which caused a 

certain mental fatigue to all volunteers. In special, for 

volunteers 3 and 7 the performance of RNA3 was 

lower than RNA0, maybe reflecting their state of 

tension, who were visibly worried through all the 

experiment. A similar experiment, using the previous 

algorithm, but the EDA signal instead of EEG, was 

conducted and the results are shown in Table 2. 

In Figure 2, we show the distribution curves of the 

EEG signals collect at each phase of the experiment, 

from volunteer #3. From the analysis of these graphs, 

we can see that the distributions of the two types of 

mental commands are indeed distinct, especially 

during the first and the second phases. After that, the 

performance begins to fall, as shown by the greater 

approximation between the curves, increasing the 

area of confusion between the signal patterns. 

In Figure 3, we show the distribution curves of the 

EDA signals collected in each phase of the 

experiment, from the volunteer # 5. Differently from 

the distribution of EEG signals, the EAD distributions 

show that, for this type of signal, the performance 

continues to improve as new trainings are conducted. 

Table 1: EEG recognition performance during the training phase of the neural networks. 

Volunteer 
%Hints of 

ANN0 

%Hints of 

ANN1 

%Hints of 

ANN2 

%Hints of 

ANN3 

1 56.52 78.26 69.57 60.87 

2 73.91 78.26 82.61 73.91 

3 60.87 78.26 65.22 73.91 

4 60.87 65.22 86.96 78.26 

5 65.22 65.22 82.61 73.91 

6 69.57 73.91 60.87 78.26 

7 73.91 73.91 82.61 78.26 

8 73.91 69.57 78.26 78.26 

Table 2: EDA recognition performance during the training phase of the neural networks. 

Volunteer 
%Hints of 

ANN0 

%Hints of 

ANN1 

%Hints of 

ANN2 

%Hints of 

ANN3 

1 78.94 78.94 47.37 78.95 

2 73.68 63.16 63.16 84.21 

3 63.16 89.47 84.21 78.95 

4 65.52 65.52 82.76 65.52 

5 62.07 75.86 82.76 100 

6 84.21 73.68 78.95 78.95 

7 82.36 85.29 70.59 67.65 

8 61.76 82.35 82.35 85.29 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 2. Distribution of EEG signals for the thoughts of rise (green) and fall (red) of volunteer #3.

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 3: Distribution of EDA signals for the thoughts of rise (green) and fall (red) of volunteer #5. 
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5 FUTURE WORK 

The EDA signal is controlled by the limbic system 

(Fausett, 1994), which also generates the approval 

and disapproval responses, defining our choices and 

actions (Boucsein, 2012b). Proper modelling of this 

behaviour can generate interesting solutions for 

people with such severe physical limitations that they 

cannot express their needs and feelings. Since the 

electronic circuit used in this work has a low cost, the 

use of EDA can, more quickly than conventional BCI 

using EEG, generate solutions that reach a larger part 

of the population. 

Other studies found in the literature related the use 

of the EDA signal to correct the commands generated 

by the EEG signal (Boucsein, 2012a), but we have 

shown in this work that the training time of a BCI 

application can be reduced by using the EDA signal 

instead of the EEG. In addition, the technology 

developed by our research group, which included the 

design and development of a custom acquisition 

circuit, can reduce the cost of this type of BCI 

application, opening possibilities for its use in other 

fields of research. While a wifi EEG headset plus 

electrodes could cost almost U$800.00, an EDA 

detector can be bought by only U$10.00. 

The choice for the ANN paradigm for signal 

recognition was also a good decision. As we 

predefine the network architecture and training 

parameters, and parameterize the training process, 

potential users of our BCI system do not need any 

technical knowledge to learn how to use it. 

For a future work, it will be interesting to explore 

the limits of the EDA signal applied to BCI, such as 

collecting EDA signals from more than one region, 

for example, from the right and left hand at the same 

time. The combination of these signals could increase 

the variety of responses and, consequently, the 

number of possible BCI applications. Tsukahana 

(2002) presents another approach for electrodermal 

signal codification, generating more than one binary 

signal to increase the choices of movements for the 

user. 
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