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Abstract: Over the last few years, Autonomic Computing has been a key enabler for Cloud system’s dynamic adapta-
tion. However, autonomously managing complex systems (such as in the Cloud context) is not trivial and may
quickly become fastidious and error-prone. We advocate that Cloud artifacts, regardless of the layer carrying
them, share many common characteristics. Thus, this makes it possible to specify, (re)configure and moni-
tor them in an homogeneous way. To this end, we propose a generic model-based architecture for allowing
the autonomic management of any Cloud system. From a “XaaS” model describing a given Cloud system,
possibly over multiple layers of the Cloud stack, Cloud administrators can derive an autonomic manager for
this system. This paper introduces the designed model-based architecture, and notably its core generic XaaS
modeling language. It also describes the integration with a constraint solver to be used by the autonomic man-
ager, as well as the interoperability with a Cloud standard (TOSCA). It presents an implementation (with its
application on a multi-layer Cloud system) and compares the proposed approach with other existing solutions.

1 INTRODUCTION

Cloud Computing is becoming widely considered by
companies when building their systems. The number
of applications developed/deployed for/in the Cloud
is constantly increasing, even where software was tra-
ditionally not seen as central (e.g., cf. the quite re-
cent trend on Cloud Manufacturing (Xu, 2012)). The
Cloud market also provides many varied services,
platforms and infrastructures for customers to support
such Cloud-based systems (Narasimhan and Nichols,
2011). Thus, it becomes more complex for Cloud
providers and users to efficiently design, (re)configure
and monitor their solutions.

There are already several initiatives intending to
provide a more homogeneous Cloud management
support. OASIS TOSCA (OASIS, 2017) is a promis-
ing Cloud standard used in practice by IBM, Cloudify
or HP (for instance). It focuses on allowing an in-

∗Zakarea Al-Shara had a postdoc position in the STACK
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teroperable representation of Cloud applications and
services, as well as their underlying infrastructures.
There is also CloudML (Ferry et al., 2014) that has
been developed, refined and used in different Eu-
ropean projects notably (cf. ARTIST (Menychtas
et al., 2014), MODAClouds (Ardagna et al., 2012)
or PaaSage (Rossini, 2015)). Its objective is to al-
low modeling the provisioning, deployment, monitor-
ing and migration of Cloud systems. From a tech-
nology perspective, some open source environments
are gaining momentum. For example, tools from the
OpenStack (OpenStack Foundation, 2017) ecosystem
aim at providing more integrated compute, storage
and networking resources via commonly shared ser-
vices.

However, these solutions are still facing some
challenges. Firstly, the Cloud heterogeneity makes it
difficult for these approaches to be applied system-
atically in all possible contexts. Indeed, Cloud sys-
tems may involve many resources having various and
varied natures (software and/or physical). Solutions
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to support in a similar way resources coming from
all the Cloud layers (e.g., IaaS, PaaS, SaaS) are thus
required. Secondly, Cloud systems are highly dy-
namic: clients can book/release “elastic” virtual re-
sources at any moment, according to given Service
Level Agreement (SLA) contracts. Solutions need to
reflect and support transparently this dynamicity/elas-
ticity, which is not trivial for systems involving many
different services. Thirdly, Cloud systems are becom-
ing so complex that they cannot be handled manu-
ally and efficiently. This concerns their configura-
tion and monitoring, but also their runtime behavior
to guarantee QoS levels and SLA contracts. This no-
tably involves decision-making and re-configuration
to translate taken decisions into actual actions on the
systems. As a consequence, solutions coming with
an automated support for dealing with these activi-
ties can provide interesting benefits (Krupitzer et al.,
2015).

We propose in this paper a generic model-based
architecture named CoMe4ACloud (Constraints and
Model Engineering for Autonomic Clouds) 2. The
goal is to provide a generic and extensible solution
for the autonomic management of Cloud services, in-
dependently from the Cloud layer(s) they belong to
(i.e., XaaS, cf. Section 2). An initial version of a sup-
porting constraint model has already been proposed
by (Lejeune et al., 2017). However, it does not come
with a proper model-based architecture and a reusable
modeling language directly applicable to all Cloud
layers. Within this paper, we intend to address this
issue via the following contributions:

1. A model-based architecture for XaaS modeling in
order to support generic autonomic management;

• Including the connection with a constraint
solver (Choco (Jussien et al., 2008)) and
a partial mapping to/from a Cloud standard
(TOSCA) for interoperability with external so-
lutions;

2. A related XaaS core modeling language, possibly
supporting any of the possible Cloud layers;

3. An Eclipse-based tooling support, that has been
applied on a realistic multi-layer Cloud system.

The paper is structured as follows. In Section 2,
we introduce the general context and objectives of our
approach. In Section 3, we illustrate and motivate fur-
ther our work via a practical use case. Then, in Sec-
tion 4, we present the overall model-based architec-
ture we propose, including its relation with the Choco
constraint solver and mapping to/from the TOSCA

2This work has been funded by Atlanstic2020, cf.
https://come4acloud.github.io for details.

Cloud standard. In Section 5, we detail our XaaS
generic modeling language as the core element of our
architecture. In section 6, we describe the correspond-
ing tooling support we built in Eclipse and how we
applied it in the context of our use case. In Section
7, we give more insights on the current status of our
approach. We discuss the related work in Section 8
before we conclude in Section 9.

2 BACKGROUND

Cloud services can be carried out by several different
layers of the Cloud stack. However, independently
from the layer(s) they rely on, they always share some
common characteristics (cf. Figure 1).

All Cloud architectures inherently expose and use
services hosted by resources within a multi-layer
stack. Each one of these services can play the role
of 1) consumer of other services in the Cloud stack
and/or 2) provider to other services in the Cloud stack
or eventually to end-users. Client applications can
consume services provided by a given SaaS resource.
This SaaS resource can consume services provided
by a given IaaS resource, which in turn can con-
sume some lower-level services offered by an energy
provider. In all cases, the objectives are very sim-
ilar: 1) Find an optimal balance between costs and
revenues by minimizing the cost of purchased ser-
vices and SLA violation penalties while maximiz-
ing revenues from provided services; 2) Comply with
all SLA and layer(s) internal constraints by having
a manager that can find optimal layer configurations
based on these objectives.

We consider the generic notion of XaaS
(Anything-as-a-Service or Everything-as-a-
Service (Duan et al., 2015)) as a way to represent all
possible resources and layers in a Cloud stack as well
as the service-oriented relationships between them.
Any XaaS resource can both provide and consume
services to/from other resources/layers. It also comes
with constraints expressed in joint SLA contracts.

Moreover, frequent on-demand provisioning
makes Cloud environments susceptible to short-term
variations, often preventing them to be managed
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Figure 1: Specific Cloud layers vs. generic XaaS.
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manually. This is why Autonomic Computing
(AC) (Kephart and Chess, 2003) is very popular
in the Cloud community. AC provides architecture
references and guidelines intended to design Auto-
nomic Managers (AMs) that make Cloud systems
self-manageable. The main objective is to free Cloud
administrators of the burden of manually managing
them. Interestingly for us, a generic AM can also be
associated to the notion of XaaS in order to deal ho-
mogeneously with corresponding (re)configurations
(i.e., representations of real systems).

To realize this, it appears fundamental to be able to
model in a generic way such multi-layer Cloud archi-
tectures. Thus, we first need to have a XaaS model-
ing language that allows describing all possible Cloud
topologies as well as corresponding actual system
configurations. Their core structure can be modeled
as directed acyclic graphs (DAGs): the number of ex-
isting nodes/resources is always finite, edges/services
have a stable orientation (consumer vs. producer),
and the usual top-down structure of the Cloud stack
prevents from having cycles. The language also has
to support the proper modeling of some constraints on
the defined topologies (e.g., to reflect SLA contracts).
Modeling Cloud systems, their service-oriented inter-
actions and SLA contracts in an abstract way brings a
significant advantage. Indeed, we can use such an ab-
stract model within a generic decision-making frame-
work to be part of our generic AM. In our case, we
used the help of a constraint solver (see Section 4.1).

As mentioned in Section 1, there are already some
existing Cloud modeling languages and approaches.
However, their intended scopes are slightly different
and their coverage may be limited regarding some
aspects, notably concerning the modeling of the re-
quired constraints. Thus, we made the choice of de-
signing our generic XaaS modeling architecture and
language covering the expression of constraints, as
needed for the associated AM. We compare our ap-
proach with the current related work in Section 8.

3 MOTIVATING EXAMPLE

To further motivate our architecture, and illustrate
later its application, we need a realistic cross-layer
Cloud system. The proposed use case encompasses
two related E-Learning systems from two distinct aca-
demic institutions. The end-users are students, fac-
ulty members and/or administrative staff who actually
consume the deployed E-learning services through a
web browser and/or mobile devices (phones, tablets,
etc.). Hence, the income load may drastically vary
within a business day, according to each client (in-

SaaS

Energy as a Service

Cloud Client

E-Learning

Brown EnergyGreen Energy

IaaS

Large VMSmall VM

SLA: response time

SLA: availability

SLA: % green energy

Figure 2: E-Learning Cloud system - Case study.

stitution) activity. Let us consider a practical session
scheduled for a large group of students, possibly lo-
cated in different campuses. If this session requires
that students frequently interact with the E-learning
application, the service will suffer some overload sit-
uations during the session. As a consequence, the ap-
plication should be able to adapt itself by adjusting the
required compute capacity. The objective is to keep
the service response time at acceptable levels as de-
fined in related SLA contracts. An overview of this
use case is depicted in Figure 2.

Students, as the main end-users of the offered E-
learning facilities, are the clients of a Software-as-a-
Service (SaaS) provider. At the upper level, this SaaS
provides a Cloud-based version of the Moodle learn-
ing management system 3, i.e., an elastic Moodle. The
SaaS provider is a Infrastructure-as-a-Service (IaaS)
client, i.e., it needs compute resources in order to run
the E-learning services. Thus, at the lower level, a
IaaS provides the required services by means of avail-
able VMs. The datacenters of the IaaS provider need
electrical power in order to be able to operate. This
power can be obtained: 1) via equipments deployed
in-situ (i.e., on the campus) allowing for local pro-
duction of green energy (e.g., solar panels, windmills)
or 2) by electricity providers (brown energy) such as
Engie 4 in the form of Energy-as-a-Service (EaaS).
Hence, the IaaS should be capable of adapting itself in
response to clients arrivals/departures or requests/re-
leases of compute resources. Moreover, it should also
adapt to the local energy production and/or to the fluc-
tuating prices of energy applied by EaaS providers.

In all cases, the goal is to autonomically re-
configure the system in order to have the best balance
between 1) costs, which are related to services con-
sumed/bought from providers (e.g., energy, compute

3https://moodle.org
4http://www.engie.com/en
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Figure 3: A model-based architecture.

resources) and 2) revenues, which refer to services of-
fered/sold to clients (e.g., E-learning service). A cou-
ple of XaaS model excerpts from our example (for the
IaaS level) are shown in Section 5, complementary re-
sources (e.g. models of the SaaS level) are also shown
and available in Section 6.2.

4 PROPOSED ARCHITECTURE

The proposed architecture heavily relies on the joint
use of complementary (meta)models as part of an it-
erative process (Atkinson and Kuhne, 2003). On the
one hand, a Topology Metamodel is dedicated to the
specification of the different topologies (i.e., types)
of Cloud systems. This can be realized generically
for systems concerning any of the possible Cloud lay-
ers. On the other hand, a Configuration Metamodel
is intended to the representation of actual configura-
tions (i.e., instances) of such systems. This is realized
by referring to a corresponding (previously specified)
topology. Once again, this metamodel is independent
from any particular Cloud layer and topology/type of
Cloud system. As shown in Figure 3, these two meta-
models are the cornerstones of the proposed architec-
ture and its core language (cf. Section 5).

In step (1) a topology model t is defined manu-
ally by a Cloud expert at design time. It specifies a
particular topology of system to be modeled and then
handled at runtime (e.g., a given type of IaaS). This
topology model notably includes the expression of the
corresponding SLAs. In step (2) this topology model
is used as the input of a code generator that translates
it into a Constraint Program (CP), thus encoding these
SLAs as constraints. The goal of this CP and related
constraint solver is to automatically compute a new
suitable system configuration from an original one ac-
cording to the expressed constraints. In step (3) a first
configuration model c0 is initialized, either manually
by a Cloud administrator or automatically by the CP.

In step (4) the CP execution is performed according to
the current system state, represented as configuration
model c0, and to the related set of constraints/SLAs
encoded in the CP. As a result, a new configuration
model c1 is produced. Re-configurations can then oc-
cur whenever required (step (X)), via the re-execution
of the CP taking as input the current configuration
model and producing as output a new updated one.
Thus, the different configuration models (e.g., c0, c1
& cX) are representations of consecutive states of the
modeled Cloud system s at given points in time (see
more details in Section 7).

In parallel, the topology and configuration models
can be transformed at any time into a partial equiva-
lent TOSCA models (step (Y)). Any TOSCA support-
ing tool can then be used to handle such models (step
(Z)). The available tooling support for this whole ar-
chitecture (including the features detailed in the two
next subsections) is presented in Section 6.1.

4.1 A Constraint Solver for an
Automomic Loop

As introduced before, the proposed architecture inte-
grates the use of a constraint solver (Choco (Jussien
et al., 2008) in our case) in order to realize the
decision-making of the autonomic loop allowing to
automatically compute system re-configurations. A
corresponding CP requires three different elements to
find a solution (i.e., in our case a new configuration): a
fixed set of problem variables, a domain function (as-
sociating each variable to a domain) and a set of con-
straints. Our XaaS architecture and its two metamod-
els allow expressing these elements as required by the
constraint model we currently rely on (provided to us
by (Lejeune et al., 2017)).

From a Topology model, the implementation code
is automatically generated for the various node and re-
lationship types. This code also materializes the asso-
ciated constraints (expressing the related SLAs) from
this same model. For the sake of genericity, it actu-
ally calls only base pre-defined classes extended by
the produced topology-specific classes. All this code
is required to actually instantiate the constraint model,
and for the solver to perform its analysis.

The instantiation is realized based on a given Con-
figuration model. To this intent, a Configuration
model is translated into a format that the generated
CP can process. This is then taken as input by the CP
that produces as output a new result providing an opti-
mal solution according to the considered constraints.
Finally, this result is translated back into a Configura-
tion model 5.

5We plan to replace this intermediate representation di-
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4.2 A TOSCA Mapping for
Interoperability

For interoperability reasons, we have quite naturally
chosen to rely on the TOSCA standard from OA-
SIS (OASIS, 2017). However, the expressions/con-
straints we support in our architecture are not part of
the TOSCA scope and so cannot be natively modeled
with this standard. Because of that (cf. also Section
5.2 for complementary reasons), we decided to design
our own XaaS language and to establish a direct (par-
tial) mapping between our metamodels and TOSCA.
Note that a extension of TOSCA could also be envi-
sioned in the future to integrate of our constraint sup-
port into TOSCA.

The proposed mapping covers a large majority of
the structural aspects of our Topology and Configu-
ration metamodels. This way, we are able to auto-
matically initiate corresponding models from existing
TOSCA specifications. From an end-user perspective,
this allows saving time and reusing parts of the al-
ready available data. In the opposite way, we are also
able to export XaaS models as TOSCA specifications.
It is then possible to rely on external relevant TOSCA-
based solutions for dealing with various Cloud man-
agement activities (e.g., system monitoring).

5 CORE MODELING LANGUAGE

As explained before, our proposed architecture relies
on two metamodels forming a core XaaS modeling
language. In what follows, we detail the abstract syn-
tax of this language (i.e., the Topology and Configu-
ration metamodels). We also introduce the concrete
syntax we propose to facilitate its usage by Cloud
experts and system engineers. An implementation
of this language, including the metamodels and full
grammar, can be found from Section 6.1.

5.1 Abstract Syntax: Two Metamodels

As shown in Figure 4, the Topology metamodel cov-
ers 1) the general description of the structure of a
given topology and 2) the constraint expressions that
can be attached to the specified types of nodes and
relationships. Starting by the structural aspects, each
Cloud system’s Topology is named and composed of
a set of NodeTypes and corresponding Relationship-
Types that specify how to interconnect them. It can
also have some global constraints attached to it.

rectly by our Configuration model in the future.

name : String
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Figure 4: Topology metamodel - Design time.

Each NodeType has a name, a set of Attribute-
Types and can inherit from another NodeType. It
can also have one or several specific Constraints at-
tached to it. Cloud experts can declare the impact (in
terms of time, memory, price, etc.) of enabling/dis-
abling nodes at runtime (e.g., a given type of Physi-
cal Machine/PM node takes X seconds to be switched
on/off).

Each AttributeType has a name and value type. It
allows indicating the impact of updating related at-
tribute values at runtime. A ConstantAttributeType
stores a constant value at runtime, a CalculatedAt-
tributeType allows setting an Expression automati-
cally computing its value at runtime.

Any given RelationshipType has a name and de-
fines a source and target NodeType. It also al-
lows specifying the impact of linking/unlinking corre-
sponding nodes via relationships at runtime (e.g., mi-
grating a given type of Virtual Machine/VM node
from a type of PM node to another one can take sev-
eral minutes). One or several specific Constraints can
be attached to a RelationshipType.

A Constraint relates two Expressions according to
a predefined set of comparison operators. An Expres-
sion can be a single static IntegerValueExpression or
an AttributeExpression pointing to an AttributeType.
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identifier : String

Configuration
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name : String
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Figure 5: Configuration metamodel - Runtime.

It can be a NbConnectionExpression representing the
number of NodeTypes connected to a given NodeType
or RelationshipType (at runtime) as predecessor/suc-
cessor or source/target respectively. It can also be
an AggregationExpression aggregating the values of
an AttributeType from the predecessors/successors of
a given NodeType, according to a predefined set of
aggregation operators. It can be a BinaryExpression
between two (sub)Expressions, according to a prede-
fined set of algebraic operators. Finally, it can be
a CustomExpression using any available constraint/-
query language (e.g., OCL, XPath, etc.), the full ex-
pression simply stored as a string. Tools exploiting
corresponding models are then in charge of process-
ing such expressions.

As shown in Figure 5, the Configuration part of
the language is simpler and directly refers to the
Topology one (cf. concepts with dashed lines). An
actually running Cloud system Configuration is com-
posed of a set of Nodes and Relationships between
them.

Each Node has an identifier and is of a given Node-
Type, as specified by the corresponding topology. It
also comes with a boolean value indicating whether it
is actually activated or not in the configuration. This
activation can be reflected differently in the real sys-
tem according to the concerned type of node (e.g., a
given Virtual Machine (VM) is already launched or
not). A node contains a set of Attributes providing
name/value pairs, still following the specifications of
the related topology.

Each Relationship also has an identifier and is of a
given RelationshipType, as specified again by the cor-
responding topology. It simply interconnects two al-
lowed Nodes together and indicates if the relationship
can be possibly changed (i.e., removed) over time,
i.e., if it is constant or not.

5.2 A YAML-like Concrete Syntax

We propose a notation for Cloud experts to quickly
specify their topologies and initialize related config-
urations. It also permits sharing such models in a
simple syntax to be directly read and understood by
Cloud administrators. We first built an XML dialect
and prototyped an initial version. But we observed
that it was too verbose and complex, especially for
newcomers. We also thought about providing a graph-
ical syntax via simple diagrams. While this seems
appropriate for visualizing configurations, this makes
more time-consuming the topology creation/edition
(writing is usually faster than diagramming for Cloud
technical experts). Finally, we designed a lightweight
textual syntax covering both topology and configura-
tion specifications.

To provide a syntax that looks familiar to Cloud
users, we considered YAML and its TOSCA ver-
sion (OASIS, 2017) featuring most of the structural
constructs we needed (for topologies and configura-
tions). We started from this syntax and complemented
it with our language-specific elements, notably con-
cerning expressions and constraints as not supported
in YAML (cf. Section 5.1). We also ignored some
constructs from TOSCA YAML that are not required
in our language (e.g., related to interfaces, require-
ments or capabilities). We can still rely on other ex-
isting notations via our XaaS-TOSCA bridge (cf. Sec-
tion 4.2). For instance, by translating a configuration
definition from our language to TOSCA, users can
benefit from the GUI offered by external tooling such
as Eclipse Winery (Eclipse Foundation, 2017).

We show below how the Cloud experts and ad-
ministrators can write the IaaS layer of the motivating
example from Section 3.

Listing 1: Topology excerpt from our motivating example
(IaaS level).

1 Topology: ELearning -IaaS

2

3 node_types:
4 InternalComponent:

5 PM:

6 derived_from: InternalComponent

7 properties:
8 impactOfEnabling: 40

9 impactOfDisabling: 30

10 ...

11 VM:

12 derived_from: InternalComponent

13 ...

14 Cluster:

15 derived_from: InternalComponent

16 properties:
17 constant ClusterConsOneCPU:

18 type: integer

19 constant ClusterConsOneRAM:
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20 type: integer

21 constant ClusterConsMinOnePM:

22 type: integer

23 variable ClusterNbCPUActive:

24 type: integer

25 equal: Sum(Pred, PM.PmNbCPUAllocated)

26 variable ClusterCurConsumption:

27 type: integer

28 equal: ClusterConsMinOnePM * NbLink(Pred
) + ClusterNbCPUActive *

ClusterConsOneCPU +

ClusterConsOneRAM * Sum(Pred, PM.

PmSizeRAMAllocated)

29 Power:

30 derived_from: ServiceProvider

31 properties:
32 constant PowerCapacity:

33 type: integer

34 variable PowerCurConsumption:

35 type: integer

36 equal: Sum(Pred, Cluster.

ClusterCurConsumption)

37 constraints:
38 PowerCurConsumption less_or_equal:

PowerCapacity

39 ...

40

41 relationship_types:
42 VM_To_PM:

43 valid_source_types: VM

44 valid_target_types: PM

45 PM_To_Cluster:

46 ...

47 Cluster_To_Power:

48 ...

As shown on Listing 1, each node type comes with
its name and the node type it inherits from (if any).
Then, the Cloud expert describes its various attribute
types via the properties field, following the TOSCA
YAML terminology. Similarly, for each relationship
type the Cloud expert gives its name and then indi-
cates its source and target node types.

Listing 2: Configuration excerpt from our motivating exam-
ple (IaaS level).

1 Configuration:
2 identifier: ElarningSystem_0

3 topology: ELearning -IaaS

4 ...

5 Node Power0:

6 type: ELearning -IaaS.Power

7 activated: ’true’

8 properties:
9 PowerCapacity: 1500

10 PowerCurConsumption: 0

11 ...

12 Node Cluster0:

13 type: ELearning -IaaS.Cluster

14 activated: ’true’

15 properties:
16 ClusterCurConsumption: 0

17 ClusterNbCPUActive: 0

18 ClusterConsOneCPU: 1

19 ClusterConsOneRAM: 0

20 ClusterConsMinOnePM: 5

21 ...

22 Node PM0:

23 type: ELearning -IaaS.PM

24 activated: ’true’

25 properties:
26 ...

27 ...

28 Relationship PM_To_Cluster0:

29 type: ELearning -IaaS.PM_To_Cluster

30 constant: true

31 source: PM0

32 target: Cluster0

33 ...

As explained before, expressions can be used to
indicate how to compute the initial value of an at-
tribute type. For instance, the variable ClusterCur-
Consumption of the Cluster node type is initialized at
configuration level by making a product between the
value of other variables. Expressions can also be used
to attach constraints to a given node/relationship type.
For example, in the node type Power, the value of
the variable PowerCurConsumption has to be lesser
or equal to the value of the constant PowerCapacity
(at configuration level).

As shown on Listing 2, for each configuration the
Cloud administrator provides a unique identifier and
indicates which topology it is relying on. Then, for
each actual node/relationship, its particular type is
explicitly specified by directly referring to the corre-
sponding node/relationship type from a defined topol-
ogy. Each node describes the values of its different
attributes (calculated or set manually), while each re-
lationship describes its source and target nodes.

6 TOOLING SUPPORT &
APPLICATION

In this section, we briefly describe the current imple-
mentation of our approach as well as its application
on a concrete scenario of adaptation.

6.1 Implementation

The proposed model-based architecture has been de-
signed to be deployed by Cloud experts and adminis-
trators in any context requiring some Cloud modeling
(e.g., independently from the autonomic aspects). To
this intent, they come with a corresponding tooling
support. Based on our own experience and the rich
available ecosystem, we decided to work on develop-
ing tooling based on Eclipse/EMF (Steinberg et al.,
2008) for our architecture and corresponding XaaS
language. This choice was reinforced by the fact that
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the Choco constraint solver (Jussien et al., 2008), a
reference solver in the Constraint community (and for
which we have access to a solid expert), has a com-
patible Java API. All the corresponding source code
is available from a Git repository 6.

Constraint
Program

generates

TOSCA 
Model mt

TOSCA 
Metamodel

conforms to

Xtext

XaaS 
Model mx

XaaS 
Metamodels

conforms to

<<XaaS>>
Topo./Config.
elearning.xaas

<<TOSCA>>
Topo./Config.
elearning.xml

TOSCA Tool

ATL

Xtend

EMF/Ecore EMF/Ecore

Eclipse
Winery

ChocoCoMe4ACloud

Cloud
Expert /

Administrator

Figure 6: An Eclipse/EMF-based implementation.

As it can be seen from Figure 6, we made the
choice of using our language as the core repre-
sentation in our approach. The abstract syntax of
our XaaS language has been defined via an Ecore
(meta)model (Steinberg et al., 2008), while its con-
crete syntax has been defined via an Xtext gram-
mar (Bettini, 2016). Thanks to Xtext, we have also
been able to produce a dedicated editor coming with
useful features such as syntax highlighting, code com-
pletion, static checks, etc (cf. Figure 7). The connec-
tion with the constraint solver has been implemented
via corresponding code generator, in Xtend (Bettini,
2016), from our language to 1) the Java API provided
by Choco and 2) the XML format currently expected
by the CP program.

Figure 7: Screenshot of the developed Eclipse-based XaaS
modeling environment.

6https://gitlab.inria.fr/come4acloud/xaas

In addition to this language and constraint sup-
port, we developed the required ATL (Jouault and
Kurtev, 2005) model-to-model transformations so that
our XaaS models can be partially transformed into
TOSCA ones (and vice-versa). Thus, it is possible to
benefit from the tooling already offered by TOSCA-
based solutions (e.g., Eclipse Winery (Eclipse Foun-
dation, 2017) and its provided GUI for monitoring
configurations).

6.2 Application on our Motivating
Example

As a validation of the proposed technical solution, the
presented Eclipse tooling has been deployed based
on our motivating example (cf. Section 3). A com-
plete video-demonstration of this application is avail-
able online 7. It shows 1) the design of the SaaS
layer with our XaaS modeling language, 2) the inter-
operability between the obtained XaaS models and a
TOSCA-based tool (Eclipse Winery (Eclipse Founda-
tion, 2017)) and 3) an illustration of a given adapta-
tion, i.e. a reconfiguration, via our decision-making
architecture (based on the Choco solver).

In the scenario from the video-demo, the modeled
system (more precisely its SaaS-level) evolves from a
current state to another one, both represented as con-
figuration models in our language. In the initial con-
figuration model, described graphically in Figure 8,
a client WebApp is connected to a single instance of
the Moodle application. This application relies on a
Apache Web server and a MySQL server. Both are
running on a same worker node that is deployed on a
single Apache VM (from a unique provider).

In self-adaptative systems, there are two main
types of trigger than can launch a re-configuration: 1)
planned/periodical ones (e.g., every 30 seconds) and
2) event-based ones (e.g., a new client subscribe to a
node, a monitored value changed in the system). In
the scenario presented here, we are in the second case
where a sudden increase of the Apache Web server’s
actual workload has been observed. This is going to
augment the application response time and so conse-
quently reduce the expected incomes and quality of
service. As a result of this observation, the automated
computation of a new configuration (according to the
expressed SLAs) is triggered. The obtained reconfig-
uration is depicted in Figure 9.

In this new configuration model, the Apache Web
server and the MySQL server are now running on two
distinct worker nodes. These nodes are also deployed
on two different Apache VMs, thus reducing the gen-

7http://hyperurl.co/come4acloud
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<<ClientWebApp>>
WebApp0

<<ApacheWebServer>>
WebServer0

<<MySQLServer>>
SQLServer0

<<MoodleApp>>
application0

<<Worker>>
worker0

<<VMProvider>>
provider0

<<ApacheVM>>
VM0

Figure 8: An initial configuration from our motivating ex-
ample (SaaS level).

<<ClientWebApp>>
WebApp0

<<ApacheWebServer>>
WebServer0

<<MySQLServer>>
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<<MoodleApp>>
application0

<<Worker>>
worker1

<<VMProvider>>
provider0

<<ApacheVM>>
VM1

<<Worker>>
worker0

<<ApacheVM>>
VM0

Figure 9: A reconfiguration from our motivating example
(SaaS level).

eral workload and improving the response time of the
whole system accordingly.

7 CURRENT STATUS

Within this paper, we presented in details the context
of our approach (cf. Sections 2 & 3) as well as its un-

derlying architecture (cf. Section 4) and core model-
ing language (cf. Section 5). Model-based principles
and techniques acted as the required framework for
bridging together the involved domains (i.e., Cloud
and Constraint) in a common integrated architecture.
The use of models, as core pivot representations to
be homogeneously used and shared both inside and
outside the proposed architecture, illustrates this in
practice. Modeling also acted as an enabler/facilita-
tor for designing, building and handling the architec-
ture’s core language. Indeed, having a cleaner lan-
guage definition and easier-to-maintain implementa-
tion is also an important aspect in our cross-domain
context. Thanks to this architecture and language, we
are able to provide a generic support for the auto-
mated reconfiguration of multi-layer Cloud systems.
In coming Section 8, we compare our approach with
the state-of-the-art in this area.

The implementation we propose (cf. Section 6)
comes with other interesting challenges to tackle. We
list below the most relevant ones and give insights on
how we plan to address them in the future (or how we
are already working on it for some of them).
• Runtime. The required synchronization between

the XaaS models and the actual system they rep-
resent must be developed for each specific XaaS
target. To preserve genericity as much as possible,
we propose to implement a common adaptor inter-
face for each target running system. Thus, we are
currently working on building such a connector
for the OpenStack (OpenStack Foundation, 2017)
popular open source IaaS platform. At the SaaS
level, we are also developing an Amazon integra-
tion for benchmarking our motivating example.

• Scalability. We provide a generic system-
independent approach, so it has a certain price in
terms of the scalability of the related constraint
model/problem to be solved. However, we are
already able to find solutions (i.e., new configu-
rations) quite efficiently (e.g., in 10 seconds) for
models of relatively important size (e.g., several
hundreds of nodes simulating virtual/physical ma-
chines). Other alternatives could be studied fur-
ther in order to improve performances even more:
for instance, we could consider hierarchizing the
constraints (modeling the SLAs) to avoid combi-
natorial explosion.

• Language V&V. The current version of our XaaS
modeling language comes with support for basic
syntactical validation. However, we currently do
not verify the correctness of the topologies and/or
configuration described in our language. For ex-
ample, we do not provide features allowing to ver-
ify a priori that the Cloud expert is not expressing
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conflicting constraints in a given topology model.
Relying on some existing verification solutions,
such a support could be added to our approach in
order to improve its general user experience.

• Integration with Cloud Standards. To go
further than the current interoperability with
TOSCA, we could propose the original features of
our core XaaS modeling language (e.g., the sup-
port for expressions/constraints) to the TOSCA
standardization group. This way, we could col-
lect their practical feedback which could eventu-
ally lead to a deeper integration of our approach
with the well-known and used TOSCA standard.

8 RELATED WORK

To discuss our approach, we identified common char-
acteristics we believe important for autonomic Cloud
(modeling) solutions. Table 1 compares our approach
with other existing work regarding different criteria:

• Genericity - The solution can support all Cloud
system layers (e.g., XaaS), or is specific to some
particular and well-identified layers;

• UI/Language - It can provide a proper user inter-
face and/or a modeling language intended to the
different Cloud actors;

• Interoperability - It can interoperate with other
existing/external solutions, and/or is compatible
with a Cloud standard (e.g., TOSCA);

• Runtime support - It can deal with runtime aspects
of Cloud systems, e.g., provide support for auto-
nomic loops and/or synchronization.

In the industrial Cloud community, there are many
existing multi-cloud APIs/libraries 8 9 and DevOps
tools 10 11. APIs enable IaaS provider abstraction,
therefore easing the control of many different Cloud
services, and generally focus on the IaaS client side.
DevOps tools, in turn, provide scripting language and
execution platforms for configuration management.
They rather provide support for the automation of the
configuration, deployment and installation of Cloud
systems in a programmatical/imperative manner.

The Cloudify12 platform overcomes some of these
limitations. It relies on a variant of the TOSCA
standard (OASIS, 2017) to facilitate the definition
of Cloud system topologies and configurations, as

8Apache jclouds: https://jclouds.apache.org
9Deltacloud: https://deltacloud.apache.org

10Puppet: https://puppet.com
11Chef: https://www.chef.io/chef/
12http://cloudify.co

well as to automate their deployment and monitor-
ing. In the same vein, Apache Brooklyn13 lever-
ages Autonomic Computing (Kephart and Chess,
2003) to provide support for runtime management
(via sensors/actuators allowing for dynamically mon-
itoring and changing the application when needed).
However, both Cloudify and Brooklyn focus on the
application/client layer and are not easily applica-
ble to all XaaS layers. Moreover, while Brook-
lyn is very handy for particular types of adaptation
(e.g., imperative event-condition-action ones), it may
be limited to handle adaptation within larger architec-
tures (i.e., considering many components/services and
more complex constraints). Our approach, instead,
follows a declarative and holistic approach which is
more appropriated for this kind of context.

The European project 4CaaSt proposed the
Blueprint Templates abstract language (Nguyen et al.,
2011) to describe Cloud services over multiple
PaaS/IaaS providers. The Cloud Application Model-
ing Language (Bergmayr et al., 2014) studied in the
ARTIST EU project (Menychtas et al., 2014) sug-
gests using profiled UML to model (and later de-
ploy) Cloud applications regardless of their underly-
ing infrastructure. Similarly, the mOSAIC EU project
proposes an open-source and Cloud vendor-agnostic
platform (Sandru et al., 2012). StratusML (Ham-
daqa and Tahvildari, 2015) provides another language
for Cloud applications dealing with different layers
to address the various Cloud stakeholders concerns.
All these approaches focus on enabling the deploy-
ment of applications (SaaS or PaaS) in different IaaS
providers. Thus they are quite layer-specific and do
not provide support for autonomic adaptation.

The MODAClouds EU project (Ardagna et al.,
2012) introduced some support for runtime man-
agement of multiple Clouds, notably by proposing
CloudML as part of the Cloud Modeling Framework
(CloudMF) (Ferry et al., 2013; Ferry et al., 2014).
As in our approach, CloudMF provides a generic
provider-agnostic model that can be used to describe
any Cloud provider as well as mechanisms for run-
time management by relying on Models@Runtime
techniques (Blair et al., 2009). In the PaaSage
EU project (Rossini, 2015), CAMEL (Achilleos
et al., 2015) extended CloudML and integrated other
languages such as the Scalability Rule Language
(SRL) (Domaschka et al., 2014). The framework Sa-
loon (Quinton et al., 2016) was also developed in this
same project, relying on feature models to provide
support for automatic Cloud configuration and selec-
tion. However, contrary to our generic approach, in
these cases the adaptation decisions are delegated to

13https://brooklyn.apache.org
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Table 1: Comparing different Cloud (modeling) solutions (X for full support, ∼ for partial support).

Genericity UI / Interop- Runtime
Language erability support

APIs/DevOps X X
Cloudify X X X
Brooklyn X X ∼

4CaaSt (Nguyen et al., 2011) X
ARTIST-CAML (Bergmayr et al., 2014) X X

mOSAIC (Sandru et al., 2012) X ∼
Stratus ML (Hamdaqa and Tahvildari, 2015) X X

CloudMF (Ferry et al., 2013; Ferry et al., 2014) X ∼
PaaSage-CAML (Achilleos et al., 2015) X ∼

SRL (Domaschka et al., 2014) ∼ X X
Saloon (Quinton et al., 2016) X X

ARCADIA (Gouvas et al., 2016) X X ∼
Descartes (Kounev et al., 2016) X X
MODAClouds (Pop et al., 2016) X X

(Garcı́a-Galán et al., 2014) X X X
CoMe4ACloud X X ∼ ∼

3rd-parties tools and tailored to specific problems/-
constraints (da Silva et al., 2014).

Recently, the ARCADIA EU project proposed a
framework to cope with highly adaptable distributed
applications designed as micro-services (Gouvas
et al., 2016). While in a very early stage and with
a different scope than us, it may be interesting to fol-
low this work in the future. Among other existing
approaches, we can cite the Descartes modeling lan-
guage (Kounev et al., 2016) based on high-level meta-
models to describe resources, applications, adaptation
policies, etc. A generic control loop is proposed on
top of it to fulfill some requirements for quality-of-
service and resource management. Quite similarly,
Pop et al., (Pop et al., 2016) propose an approach for
the deployment and autonomic management at run-
time on multiple IaaS. However both approaches are
targeting only Cloud systems structured as a SaaS de-
ployed in a IaaS, whereas our approach allows mod-
eling Cloud systems at any layer. In (Garcı́a-Galán
et al., 2014), feature models are used to define the
configuration space (along with user preferences) and
game theory is considered as a decision-making tool.
This work focuses on features that are selected in
a multi-tenant context, whereas our approach targets
the automated computation of SLA-compliant config-
urations in a cross-layer manner.

To the best of our knowledge, there is currently
no work that features at the same time genericity
w.r.t. the Cloud layers, interoperability with standards
(such as TOSCA), high-level modeling language sup-
port and some autonomic runtime management capa-
bilities. The proposed model-based architecture de-
scribed in this paper is a first step in this direction.

9 CONCLUSION

The proposed architecture and related XaaS modeling
language intend to provide a generic solution for the
autonomous runtime management of heterogeneous
Cloud systems. To realize this, we notably rely on
Constraint Programming as a decision-making tool to
automatically obtain system configurations respecting
specified SLA contracts. A main objective of this pa-
per was to provide a suitable interface with our archi-
tecture, via its core XaaS modeling language, to both
Cloud experts and administrators. Another goal was
to have generic XaaS models that can possibly inter-
operate with standards (e.g., TOSCA).

In the future we intend to apply our approach to
other contexts somehow related to Cloud Computing,
such as in the domain of Fog Computing for instance.
This is expected to come with particular challenges
in terms of scalability notably. Thus, the defined ar-
chitecture and modeling language will have to be re-
evaluated in the light of this new Fog context. We
foresee their needed evolution in order to be able to
efficiently model and support Fog characteristics such
as a higher geographic distribution, the diversity of
the involved resources/services, their reliability, etc.

Finally, we are aware that specifying constraints
for the considered systems and their SLAs can be
a difficult and time-consuming activity. Moreover,
the quality of the produced contraints highly depends
on human knowledge and experience (e.g., from the
Cloud Experts/Administrators). To limit potential er-
rors and improve the efficiency of our approach, it
would be interesting to be able to exploit automati-
cally the historical data of the modeled systems. To
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this end, we plan to explore the possible use of some
Machine Learning techniques which could guide or
assist the constraint specification process.

REFERENCES
Achilleos, A. P., Kapitsaki, G. M., Constantinou, E., Horn,

G., and Papadopoulos, G. A. (2015). Business-
Oriented Evaluation of the PaaSage Platform. In
IEEE/ACM UCC 2015, pages 322–326.

Ardagna, D., Nitto, E. D., Casale, G., Petcu, D., Mo-
hagheghi, P., Mosser, S., Matthews, P., Gericke, A.,
Ballagny, C., D’Andria, F., et al. (2012). MODA-
Clouds: A Model-driven Approach for the Design and
Execution of Applications on Multiple Clouds. In
MiSE@ICSE 2012, pages 50–56.

Atkinson, C. and Kuhne, T. (2003). Model-Driven Devel-
opment: a Metamodeling Foundation. IEEE Software,
20(5):36–41.

Bergmayr, A., Troya, J., Neubauer, P., Wimmer, M., and
Kappel, G. (2014). UML-based Cloud Application
Modeling with Libraries, Profiles, and Templates. In
2nd CloudMDE@MODELS 2014, pages 56–65.

Bettini, L. (2016). Implementing Domain-Specific Lan-
guages with Xtext and Xtend. Packt Publishing Ltd.

Blair, G., France, R. B., and Bencomo, N. (2009). Models@
run.time. IEEE Computer, 42:22–27.

da Silva, M. A. A., Ardagna, D., Ferry, N., and Prez,
J. F. (2014). Model-Driven Design of Cloud Ap-
plications with Quality-of-Service Guarantees: The
MODAClouds Approach. In SYNACS 2014, pages 3–
10.

Domaschka, J., Kritikos, K., and Rossini, A. (2014). To-
wards a Generic Language for Scalability Rules. In
ESOCC, pages 206–220.

Duan, Y., Fu, G., Zhou, N., Sun, X., Narendra, N. C., and
Hu, B. (2015). Everything as a Service (XaaS) on the
Cloud: Origins, Current and Future Trends. In IEEE
CLOUD 2015, pages 621–628.

Eclipse Foundation (2017). Winery project.
https://projects.eclipse.org/projects/soa.winery.

Ferry, N., Rossini, A., Chauvel, F., Morin, B., and Solberg,
A. (2013). Towards Model-Driven Provisioning, De-
ployment, Monitoring, and Adaptation of Multi-cloud
Systems. In IEEE CLOUD 2013, pages 887–894.

Ferry, N., Song, H., Rossini, A., Chauvel, F., and Solberg,
A. (2014). CloudMF: Applying MDE to Tame the
Complexity of Managing Multi-cloud Applications.
In IEEE/ACM UCC 2014, pages 269–277.

Garcı́a-Galán, J., Pasquale, L., Trinidad, P., and Ruiz-
Cortés, A. (2014). User-centric Adaptation of Multi-
tenant Services: Preference-based Analysis for Ser-
vice Reconfiguration. In ACM SEAMS 2014, pages
65–74.

Gouvas, P., Fotopoulou, E., Zafeiropoulos, A., and Vas-
silakis, C. (2016). A Context Model and Poli-
cies Management Framework for Reconfigurable-by-
design Distributed Applications. Procedia Computer
Science, 97(Supplement C):122 – 125.

Hamdaqa, M. and Tahvildari, L. (2015). Stratus ML: A
Layered Cloud Modeling Framework. In IEEE IC2E
2015, pages 96–105.

Jouault, F. and Kurtev, I. (2005). Transforming Models with
ATL. In ACM/IEEE MODELS 2005, pages 128–138.

Jussien, N., Rochart, G., and Lorca, X. (2008). Choco: an
Open Source Java Constraint Programming Library.
In OSSICP@CPAIOR’08.

Kephart, J. O. and Chess, D. M. (2003). The Vision of Au-
tonomic Computing. IEEE Computer, 36(1):41–50.

Kounev, S., Huber, N., Brosig, F., and Zhu, X. (2016).
A Model-Based Approach to Designing Self-Aware
IT Systems and Infrastructures. IEEE Computer,
49(7):53–61.

Krupitzer, C., Roth, F. M., VanSyckel, S., Schiele, G., and
Becker, C. (2015). A Survey on Engineering Ap-
proaches for Self-adaptive Systems. Pervasive and
Mobile Computing, 17:184–206.

Lejeune, J., Alvares, F., and Ledoux, T. (2017). Towards
a Generic Autonomic Model to Manage Cloud Ser-
vices. In CLOSER 2017.

Menychtas, A., Konstanteli, K., Alonso, J., Orue-
Echevarria, L., Gorronogoitia, J., Kousiouris, G.,
Santzaridou, C., Bruneliere, H., Pellens, B., Stuer,
P., Strauss, O., Senkova, T., and Varvarigou, T.
(2014). Software Modernization and Cloudifica-
tion Using the ARTIST Migration Methodology and
Framework. Scalable Computing : Practice and Ex-
perience, 15(2):131–152.

Narasimhan, B. and Nichols, R. (2011). State of Cloud Ap-
plications and Platforms: The Cloud Adopters’ View.
IEEE Computer, 44(3):24–28.

Nguyen, D. K., Lelli, F., Taher, Y., Parkin, M., Papazoglou,
M. P., and van den Heuvel, W.-J. (2011). Blueprint
Template Support for Engineering Cloud-based Ser-
vices. In ServiceWave 2011, pages 26–37.

OASIS (2017). Topology and Orchestration Spec-
ification for Cloud Applications (TOSCA) and
YAML (TOSCA Simple Profile). https://www.oasis-
open.org/standards.

OpenStack Foundation (2017). OpenStack
Open Source Cloud Computing Software.
https://www.openstack.org.

Pop, D., Iuhasz, G., Craciun, C., and Panica, S. (2016).
Support Services for Applications Execution in Multi-
clouds Environments. In ICAC 2016, pages 343–348.

Quinton, C., Romero, D., and Duchien, L. (2016). SA-
LOON: a Platform for Selecting and Configuring
Cloud Environments. Software: Practice and Expe-
rience, 46:55–78.

Rossini, A. (2015). Cloud Application Modelling and Ex-
ecution Language (CAMEL) and the PaaSage Work-
flow. In ESOCC 2015, pages 437–439.

Sandru, C., Petcu, D., and Munteanu, V. I. (2012). Build-
ing an Open-Source Platform-as-a-Service with Intel-
ligent Management of Multiple Cloud Resources. In
IEEE UCC 2012, pages 333–338.

Steinberg, D., Budinsky, F., Merks, E., and Paternostro, M.
(2008). EMF: Eclipse Modeling Framework. Pearson
Education.

Xu, X. (2012). From Cloud Computing to Cloud Manufac-
turing. Robotics and Computer-Integrated Manufac-
turing, 28(1):75–86.

CLOSER 2018 - 8th International Conference on Cloud Computing and Services Science

212


