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Abstract: We propose a methodology and develop a system for generating composite alternative recommendations 
combining user-guided continuous improvement with Pareto optimal trade-off considerations and for 
extracting individual utility. The methodology describes a way to (1) construct a set of Pareto optimal 
recommendations given a selected metric and the user’s current utility, (2) explore the feasibility space by 
relaxing the Pareto optimal constraint in a given dimension, and (3) extract the utility for an individual user 
by capturing the interactions between the user and the system. The system itself consists of (1) a mechanism 
for generating feasible recommendations, (2) implementation of the key algorithms of the methodology, and 
(3) user interface for enabling interaction with the user. 

1 INTRODUCTION 

Composite alternative recommender systems 
recommend a combination of products and services, 
based on multiple criteria such as price, availability, 
and user ratings. They include recommenders for 
vacation packages, investment portfolios, healthcare 
plans, product bundles, and more.  

Consider an example of a sourcing 
recommender. In this case, a recommendation is a 
set of orders, where an order contains a set of item 
quantities to be purchased from a particular supplier. 
Sourcing recommendations are associated with 
multiple criteria such as cost, carbon emissions, and 
fulfillment time. These recommendations are 
composite since they contain multiple suppliers with 
multiple items, and they are multi-criteria because of 
the three metrics mentioned previously. The result of 
generated recommendations must be Pareto-optimal. 

There has been extensive research conducted on 
composite alternative recommenders in recent years. 
This research comprises proposed methods and 
presented systems, addressing both domain specific 
and domain-independent recommenders.Interdonato 
et al (2013) propose a graph-based framework that 
uses Page Rank-style algorithm to learn packages 
that conform to a user preference model. The 
framework is ultimately based on user rankings and 
identifies domain-independence as its key feature. 

CARD (Brodsky, Henshaw and Whittle, 2008) is a 
proposed framework for generating optimal 
composite alternative recommendations. CARD 
utilizes a SQL-based data model for generating the 
recommendation space. It also extends the SQL 
language in order to provide diverse 
recommendations and to provide a mechanism for 
learning user preferences. CARD is a generic 
framework capable of being applied across domains. 
There is no current implementation of the CARD 
framework. FlexRecs (Koutrika, Bercovitz and 
Garcia-Molina, 2009) is a proposed framework for 
providing domain-independent recommendations. 
The recommendation space in FlexRecs is generated 
using workflows designed by system implementers. 
As with CARD, the FlexRecs framework is built on 
top of relational data models and extended relational 
operators. 

These three frameworks address composite 
recommendations, but do not offer a system that 
implements the framework, nor use methodology on 
which the system functionality can be based.  

Xie, Lakshmanan and Wood (2010) present a 
generic package recommender system that uses a 
variation of the knapsack problem to generate 
optimal top-k recommendations. The 
recommendation space in their system is generated 
using individual component recommenders. 
Furthermore, ratings are the only metric used to 
calculate recommendations. TopRecs+ (Khabbaz, 
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Xie and Lakshmanan, 2011) is another generic 
package recommender that uses a variation of the 
knapsack problem to find optimal top-k package 
recommendations. As with Xie et al above, 
TopRecs+ leverages individual item recommenders 
to generate the composite alternative recommender 
space. CompRec-Trip (Xie, Lakshmanan and Wood, 
2011) is a system for recommending travel packages 
by finding the optimal alternatives using user-
supplied preferences and constraints. As Xie et al’s 
other work mentioned above, the system uses 
component recommender systems for generating the 
recommendation space. The system is narrowly 
focused, but allows flexibility through interaction 
with the user. 

These three systems generate composite 
recommendations by aggregating single-item 
recommenders. However, this aggregation does not 
take into account interaction among the components 
of the composite recommendation. Therefore, 
neither offers an integrated composite alternative 
methodology, which is often required when 
components have a non-trivial interaction among 
them. Also, in the case of CompRec-Trip, the system 
is domain-specific and not designed to accommodate 
general recommendation problems. 

Ribeiro, et al (2015) propose two Pareto-efficient 
approaches for recommender systems. In both 
approaches, they propose using recommendation 
accuracy, novelty, and diversity as the objectives to 
consider when generating a Pareto-efficient list of 
recommendations. One approach creates a Pareto-
efficient ranked list from multiple competing 
recommendation algorithms. Their second approach 
creates Pareto-efficient hybrid recommenders built 
from individual recommender algorithms. While 
both approaches apply Pareto-efficiency to their 
recommendations, it is limited to the criteria of 
accuracy, diversity, and novelty. However, many 
package recommendations require diverse user-
defined criteria, such as cost, risk, benefit, etc., 
which is outside the scope of (Ribeiro et al, 2015). 
Neither approach considers continuous user 
feedback. Furthermore, both approaches are 
proposed algorithms that do not include a system to 
implement their methodology. 

To the best of our knowledge, there are no 
proposed recommender systems that combined 
Pareto optimal solutions for arbitrary user-defined 
criteria with continuous user guidance. Nor is there a 
system with this combination of features designed 
for composite alternatives that have complex 
interactions between them.  

To address these limitations, CAPORS (Jeffries 
and Brodsky) was developed. CAPORS introduced a 
methodology and system for recommending Pareto-
optimal composite alternatives based on (1) multi-
criteria optimization and (2) continuous user-guided 
feedback.  

In CAPORS, the trade-off consideration is 
explicitly expressed between designated cost and 
benefit metrics, but not with arbitrary metrics. And, 
while CAPORS allows a user to explore the 
feasibility space to find an optimal recommendation, 
CAPORS was not designed to learn the user’s 
utility.  

Addressing these two limitations of CAPORS is 
the exact focus of this paper. 

First, we propose a methodology for (1) 
generating Pareto optimal recommendations using 
arbitrary metrics and (2) extracting the utility of an 
individual user. The methodology first generates an 
initial set of recommendations based on Pareto-
optimal curve by comparing one of the metrics (the 
default metric) against the default user utility. Then, 
the user iteratively improves the alternatives through 
critique of additional metrics and re-optimizations to 
iteratively discover a feasible recommendation 
closest to that user’s utility. Finally, the user accepts 
the most desired recommendation and a final utility 
for that user is extracted. 

Second, we develop Composite Alternative 
Pareto Optimal Recommender System with 
Individual Utility Extraction (CAPORS-IUX) to 
implement this methodology. CAPORS-IUX is 
implemented using Unity Decision Guidance 
Management System (DGMS) (Brodsky, Luo, and 
Nachawati). CAPORS-IUX also uses the same 
notion of an Analytic Model as CAPORS. An 
analytical model formally describes feasibility 
constraints and metrics of interest as a function of 
parameter and control variables. With the help of 
Unity DGMS, CAPORS-IUX manages the 
workflow of recommendations improvement based 
on three key algorithms. 

Third we have developed algorithms for (1) 
generation of Pareto-optimal curve for the 
recommendation Analytic Model along a selected 
metric and the current user utility, (2) generation of 
Pareto-optimal improvement along a different metric 
and the updated user utility, and (3) calculation of 
the updated user utility. 

Finally, we conduct an experiment using 
synthetic users to demonstrate the ability of 
CAPORS-IUX to find a recommendation that is 
optimal, or very close to optimal, for a given user 
utility. 
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This paper is organized into the following 
sections. Section 2 demonstrates composite 
alternative recommendation using a supply chain 
sourcing example. Section 3 describes the core 
algorithms of the system. Section 4 illustrates the 
system architecture. Section 5 details an 
experimental study conducted to demonstrate utility 
convergence. Section 6 concludes and offers ideas 
for future extensions. 

2 UTILITY EXTRACTION BY 
SOURCING EXAMPLE 

We return to the sourcing example from the original 
paper in order to explain the utility extraction 
methodology. Supply chain sourcing is the process 
of constructing orders for goods to be purchased 
from some universe of suppliers such that 
constraints such as demand are met. For a more 
detailed explanation on supply chain sourcing, 
please refer to Section 2 of the original paper. 

In this scenario, CAPORS-IUX is used to 
generate an order configuration stipulating which 
items are to be ordered from which suppliers and at 
what quantities. As with any recommender system, 
the goal is to generate recommendations with the 
highest predicted utility to the individual user. 

The methodology used by CAPORS-IUX to 
generate the optimal recommended order 
configuration is shown in Figure 1. 

 
Figure 1: State Diagram. 

To generate an initial set of recommendations, an 
initial data structure is used. This data structure 
includes (1) metrics definitions used to evaluate each 
recommendation, (2) an analytic model for 
computing metrics and constraints of a given 
recommendation, (3) variable input for exploring the 
feasible space of composite alternatives, (4) 
configuration setting for maximum number of 
recommendations to generate, (5) configuration 
setting for default metric for user to consider, and 
(6) configuration setting for default utility weights 
(e.g. equal weights for all metrics). 

The system generates an initial set of 
recommendations and displays to the user. The user 
is presented with four main user interface sections 
(explained in greater detail below and shown in 
Appendix A): (1) a graph, called the Current Trade-
off Graph of recommendations with current utility 
along the x-axis and the metric to consider along the 
y-axis, (2) a table of all current recommendations to 
consider with each of the computed metrics and a 
mechanism for choosing the best recommendation in 
the set, (3) a graph, called the Best-So-Far Graph 
displaying all of the recommendations chosen by the 
user as best in each iterative Current Trade-off 
Graph, and (4) a table of all the best 
recommendations so far chosen by the user. 

The Current Trade-off Graph allows the user to 
consider recommendations by comparing a set of 
recommendations projected onto the Pareto front of 
the feasibility space against a single metric of 
interest. That is, there does not exist a 
recommendation that improves on one metric 
without sacrificing another. Initially, the current 
utility is computed using equal weights for each 
metric and the metric of interest is defined in the 
configuration setting of the initial data structure. 

 

Figure 2: Current Trade-off Graph and Table. 
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For example, the user selects “Rec 2” as the best 
of the currently displayed set of recommendations. 
Upon selection the preferred recommendation is 
added to the Best Recs Graph and Best Recs Table.  

 

Figure 3: Best-So-Far Graph. 

Also, the current utility is updated based on the 
selection, and the Current Trade-off Graph and 
Current Trade-off Table are updated to reflect the 
new utility calculations. 

Next, the user can (1) generate a new set of 
recommendations by improving upon one of the 
metrics for the recommendation, (2) remove the 
recommendation from the list, or (3) accept the 
recommendation as the final, best overall 
recommendation. 

In our example, the user selects the column 
containing the recommendation and then the row 
containing the Order Emissions metric. The Improve 
button is pressed and the Current Trade-off Graph 
and Table are updated with a new set of 
recommendations. The y-axis of the Current Trade-
off Graph will be the selected metric to improve, and 
the x-axis will be the current utility that was 
calculated the last time the user selected a Best 
recommendation. 

 

Figure 4: Updated Current Trade-off. 

Now, the user selects new Rec 2 as the new best 
recommendation so far. The recommendation is 
added to the Best So Far graph and table, and the 
utilities are all recalculated and updated in the 
graphs and tables. The Best So Far graph always 
displays recommendations from highest utility to 
lowest utility, left to right. 

 

Figure 5: Updated Best-So-Far. 

To finalize the process this example, the user 
chooses Best 1 as the most optimal recommendation 
by selecting the Best 1 column and pressing the 
Accept button. A final user utility is then calculated. 
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3 KEY ALGORITHMS 

CAPORS-IUX is implemented using three main 
algorithms. These algorithms are responsible for 
generating a set of recommendations for considera-
tion and for updating the user-specific utility. 

The first algorithm is the paretoOptimal 
algorithm for generating recommendations. This  
 

algorithm takes as input (1) an analytic model am, 
(2) variable input vi, (3) metrics definitions m, (4) 
metric weights for y-dimension y-dim, (5) metric 
weights for x-dimension x-dim, (6) number of points 
to generate L, and (7) epsilon e. 

A two-dimensional space is created using a 
linear combination of metrics in the y direction and a 
linear combination of metrics in the x direction. 
These linear combinations are determined by the 
weights passed in for each dimension.  Both 
dimensions are normalized to [0, 1]. 

L unit vectors are then generated for the space. 
The directions of the vectors are evenly spaced from 
the x-axis to the y-axis. 

 

Figure 6: Candidate Utility Vectors. 

A point on each vector is then produced by using 
the linear combination of the weighted x-axis 
metrics for the x component of the point, and a 
linear combination of the weighted y-axis metrics 
for the y component of the point. This point captures 
the preferred recommendation by the user for the 
associated vector direction. 

However, this point might not represent a point 
in the space of feasible recommendations. Therefore, 
a final step is performed that projects this point onto 
the Pareto-front. 

 

Figure 7: Projection onto Utility Vector. 

paretoOptimal(am, vi, m, y-dim, x-dim, L, e) 

recs  [] 
for i=0 to L-1 do { 
  alpha_i  e + [((π/2 – 2e) / L) * i] 
  w_xi cos(alpha_i) 
  w_yi sin(alpha_i) 
  rec_i  max_utility(am, vi, m, w_xi, w_yi, x-dim, y-dim, e)  
  recs  recs + {w_xi, w_yi, rec_i} 
} 
return recs 
 
function max_utility(am, vi, m, w_x, w_y, x-dim, y-dim, e)  
  optimal_rec  argmax{rec_utility}(compute_rec) 
  return optimal_rec 
 
function compute_rec(am, vi, m, w_x, w_y, x-dim, y-dim, e) 
  model_output  am(vi) 
  model_constraints  model_output.constraints 
  num_metrics  m.length 
  sum_x 0 
  sum_y 0 
  for i in num_metrics do { 
   weight_i  x-dim[i] 
   value_i  model_output.metrics[i] 
   sum_x  sum_x + (weight_i * value_i) 
  for i in num_metrics do { 
   weight_i  y-dim[i] 
   value_i  model_output.metrics[i] 
   sum_y  sum_y + (weight_i * value_i) 
  rec_utility  (w_x * sum_x) + (w_y * sum_y) 
  return {model_output, rec_utility} 
 

The second algorithm, improveMetric, is used 
to generate a new set of recommendations based on 
improving one metric while relaxing the Pareto-
optimal constraints of the others. This algorithm 
takes as input (1) an analytic model am, (2) variable 
input vi, (3) metrics m, (4) current utility cu, (5) 
metric to improve mp, (6) number of points to 
generate L, and (7) epsilon e. 

 This algorithm simply leverages the 
paretoOptimal algorithm by setting the y-dim to 1 
for the metric corresponding to mp, and the x-dim to 
the weight of current utility for all metrics not mp. 
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improveMetric(am, vi, m, cu, mp, L, e) 

  num_metrics  m.length 
  x-dim[1,…,num_metrics] 0 
  y-dim[1,…,num_metrics] 0 
  y-dim[mp]  1 
  for i=0 to num_metrics-1 do{ 
   x-dim[i] = cu[i] 
  return paretoOptimal(am, vi, m, y-dim, x-dim, L, e) 
 

Finally, the extractUtility algorithm, calculates 
the user’s utility using the x and y components of the 
underlying vector for the user’s preferred 
recommendation point. This algorithm takes as input 
(1) selected recommendation srec and (2) the current 
utility cu. The output is the normalized user utility. 

The mechanism for extracting the utility involves 
recovering the underlying vector that was projected 
onto the Pareto-front by the paretoOptimal 
algorithm. This algorithm takes as input (1) selected 
recommendation srec, (2) current utility cu, (3) 
metrics m, and (4) current metric-to-consider mp. 

extractUtility(srec, cu, m, mp) 

axis  srec.axis 
w_x  axis.x 
w_y  axis.y 
y_weight  1 
num_metrics  m.length 
user_utility  [] 
sum_utility  0 
for i=0 to num_metrics do { 
  if i==mp then { 
   user_utility  user_utility + w_yi 
   sum_utility  sum_utility + w_yi 
  } 
  else { 
   x_weight = cu[i] 
   user_utility  user_utility + (x_weight * w_xi) 
   sum_utility  sum_utility + (x_weight * w_xi) 
  } 
normalized_utility  [] 
for i=0 to num_metrics-1 do { 
  normalized_utility  user_utility[i] / sum_utility 
}  
return normalized_utility 
 

4 SYSTEM ARCHITECTURE 

The system consists of two core internal 
components: (1) Recommendation Engine, which 
implements paretoOptimal, improveRec, and 
extractUtility algorithms, and (2) Recommendation 
User Interface for displaying results and enabling 
user-guided improvement of recommendations. The 
Recommendation Engine is further integrated with 
Unity DGMS for: (1) generating recommendation 

space and computing metrics, and (2) executing 
argmin and argmax functions.  

 

Figure 8: System Architecture. 

The Recommendation Engine must be initialized 
with a data structure that contains (1) metrics 
definitions used to evaluate each recommendation, 
(2) an analytic model for computing metrics and 
constraints of a given recommendation, (3) variable 
input for exploring the feasible space of composite 
alternatives, (4) configuration setting for maximum 
number of recommendations to generate and (5) 
configuration setting for default metric for user to 
consider, and (6) configuration setting for default 
utility weights (e.g. equal weights for all metrics). 

The Recommendation Engine integrates with 
Unity DGMS in order to generate the domain-
specific recommendations based on the input model. 
Furthermore, Unity DGMS provides the capability 
of calculating metrics on each recommendation.  

The JSON output of the recommendation engine 
is fed directly to the user interface. The user 
interface is written in HTML and JavaScript. The 
JavaScript functions of the user interface perform 
the following: (1) load the recommendation JSON 
records; (2) bind JSON data to D3JS (Data Driven 
Documents, 2016) charting library; (3) format the 
Current Tradeoff Graph; (4) display Current 
Tradeoff Table; (5) format the Best So Far Graph; 
(6) display Best So Far Table; (7) load improved 
recommendations from Unity DGMS; (8) handle all 
user interactions (best, remove, improve, accept). 

5 EXPERIMENTAL STUDY 

We conduct an experimental study using synthentic 
users, in order to measure the performance of the 
system. Performance is measured by how fast, and 
to what degree, the system converges in presenting 
the user with the most optimal recommendation, 
based on the user’s known utility. For this 
experiment, we use the sourcing example from 
Section 2. 
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To initialize the experiment, a set of ten 
synthetic users is created by generating a random 
utility for each user. The random utility is an array 
of random weights, one for each metric. 

User 1 [0.54636, 0.1495, 0.3041] 
User 2 [0.3393, 0.0763, 0.5844] 
User 3 [0.2262, 0.0862, 0.6876] 
User 4 [0.1378, 0.3556, 0.5066] 
User 5 [0.7261, 0.2243, 0.0495] 

Figure 9: First 5 Synthetic User Utilities. 

The experiment is run by iterating through each 
synthetic user and executing the system’s algorithms 
until convergence between the system recommended 
alternative and the preferred user alternative is 
reached. Convergence is defined as when the 
distance between the system recommended 
alternative and the preferred user alternative stops 
improving. 

At the start of a user iteration, the optimal 
recommendation is calculated using DGMS, given 
the assigned user utility. This recommendation 
serves as ground truth when measuring convergence. 

Next, a first set of Pareto-optimal 
recommendations are generated using default utility 
of [0.33, 0.33, 0.33] with the cost metric as the first 
metric to consider. A utility gap is then generated. 
We define utility gap UG by  

ܩܷ = ܷܷܤ − ܷܷܤ(ܿ݁ݎݏ)ܷܷ  

BUU=best user utility and UU(srec) is the user 
utility of the system recommendation. If the utility 
gap is zero, indicating that the system found the 
optimal recommendation, the user iteration is 
complete. 

Otherwise, the best-so-far recommendation is 
chosen based on the assigned user utility. This 
causes the system to extract an updated system 
utility for the user. The next metric to consider is 
then determined by computing the gap between the 
system utility and user utility for each metric. The 
metric with the largest gap is chosen as the next 
metric to consider. 

The improveMetric algorithm is then called 
with the new metric to consider and the updated 
system utility, to generate a new set of 
recommendations. A new utility gap is calculated 
and the experiment checks for convergence. If 
convergence is not reached, another cycle of 
recommendations begins. 
 

runExperiment(num_users, num_metrics) 
convergences = [] 
for i=1 to num_users do { 
   utility_gap  Inf 
   last_utility_gap  Inf 
   done  false 
   step  1 
   user_convergence = {} 
   user_utility  randomizeWeights(num_metrics) 
   system_utility  [0.33, 0.33, 0.33] 
   bestUserUtility  findBestRecommendation(user_utility) 
   recs  paretoOptimal(…) 
   while done == false do { 
     bestSystemUtility  max(recs.utility) 
     utility_gap  abs(bestUserUtility – bestSystemUtility) /  
                                    bestUserUtility 
     user_convergence[step] = utility_gap 
     if (utility_gap == 0) or (utility_gap >= last_utility_gap) {  
       done  true 
       convergences convergences + user_convergence 
     } 
     else { 
       best_so_far  findBestSoFar(recs, user_utility) 
       system_utility  extractUtility(best_so_far, …) 
       next_metric  findNextMetric(best_so_far, user_utility 
                                  system_utility) 
       recs  improveMetric(next_metric, system_utility, …)   
     } 
     step  step + 1 
     last_utility_gap  utility_gap 
   } 
}  
return convergences 

The utility gaps and rates of convergence across 
all of the users in the experiment are collected and 
plotted. As seen in Figure 10, the system converges 
to the optimal recommendation within 3 steps, or the 
number of metrics. 

 
Figure 10: Convergence Results. 

6 CONCLUSIONS 

In this paper we proposed a methodology and present-
ed a system for generating composite alternative 
recommendations combining user-guided continuous 
improvement with Pareto optimal trade-off 
considerations and for extracting individual utility.  
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This methodology improves upon earlier 
research by providing a way to iteratively construct 
Pareto-optimal recommendations such that the 
individual user’s utility can be extracted. 

Furthermore, we developed a system, CAPORS-
IUX, to implement the methodology. We also 
provided experimental results that prove the ability 
of CAPORS-IUX to converge on the true utility of 
the individual user. 

In future work, we will extend the concept of 
utility extraction beyond the individual to the group 
level.  
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