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Abstract: Internet of Thing (IoT) systems, such as smart buildings and smart cities, provide services to users (individuals
and organizations) in various aspect of our lives. To provide such services, IoT systems need to handle data
captured from multiple devices/sensors, and translation of data processing policies agreed by users (high-level)
into commands for devices (device-level). The underlying assumption is that users trust IoT systems in
honoring their policies. However, this trust assumption is incorrectly positioned since IoT systems may not
be honest or may fall victim to cyberattacks. We address such concerns by providing mechanisms to help
in ensuring trust and accountability at the time of translating a contract (agreed and signed policies). The
objective of the proposed scheme is two fold, (1) translation of contracts from a high-level to device-level,
(2) attestation of the translation. We have implemented the proposed scheme for contract translation and
attestation of translation as a module and integrated it with the TIPPERS system (our IoT testbed under
development). The results of our experiments highlight the feasibility of our proposed schemes.

1 INTRODUCTION

IoT systems influence all aspects of modern life
such as health care, transportation, buildings,
infrastructure, and emergency response, among others
(Madakam and Date, 2016; Gubbi et al., 2013).
In this study, we focus particularly in user-centric
IoT systems wherein sensors and devices of diverse
types – cameras, cell phones, WiFi access points
(APs), beacons, occupancy sensors, temperature
sensors, light sensors, and acoustic sensors – are
used to collect data and to create awareness about
user interactions in the IoT space. While the data
collection about users is necessary for the IoT system
to tailor services toward users, it raises several
security and privacy concerns (Varadharajan and
Bansal, 2016; Aikins, 2016; Zhao and Ge, 2013;
Farooq et al., 2015).

To address security and privacy concerns when
collecting and processing users data, IoT systems
can leverage privacy policies (Pappachan et al.,
2017), which enable users to decide how their
data should be collected and processed. Note
that IoT systems are typically designed using a
layered approach to abstract out data from a lower
layer to a higher layer. However, while this data
abstraction is useful in interacting with users through
applications using a higher level of data abstraction

(e.g. application-level) where concepts and properties
that are semantically more meaningful to users are
used, it introduces a semantic gap between high-level
concepts and low-level concepts. Note that this
semantic gap extends to policies and introduces a
complexity of translating the policies from high-level
to device-level. For instance, consider a WiFi AP
in a smart building system, which can record MAC
addresses of devices connected to it. This raw data
may not be meaningful for users. However, when
this data is interpreted in the context of the rooms in
the building, the time, and individuals coming in and
out of the building, then more meaningful information
can be inferred. From the list of MAC addresses,
it would be possible to learn about the habits of
the building’s inhabitants such as frequencies of
individual movements.

To address the policy semantic gap in translating
policies from application-level to the device-level,
specific information about the IoT application domain
is needed. This specific information, which we refer
to as IoT domain knowledge, needs to encompass
information about the IoT smart space, devices and
sensors deployed in the space, and inhabitants of
the space. There have been many approaches in
the literature in building IoT smart space knowledge
bases (Nambi et al., 2014; Balaji et al., 2016; Wang
et al., 2012; Han et al., 2014). For instance, Brick
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(Balaji et al., 2016) is an example of an ontology
to model smart buildings. This complex task of
modeling and generating this knowledge base is
compounded by the need for managing static data as
well as dynamic data.

Given the specific domain knowledge of a system,
translating application policies to device policies is
challenging since the mapping is not one-to-one and
there may be different choices with different levels
of privacy. One high-level policy may needs to be
translated into a number of device policies as multiple
devices may be required to check the contextual
conditions of the policy. For example, consider
a high-level policy stating that “Deliver my work
related messages only when I’m in my office”. The
context in this policy is the user being in the office.
Therefore, one or more devices (with the capability of
precise localization of the user) are required to verify
this context.

To address the aforementioned concerns, we
propose a trustworthy contract translation approach,
which empowers users to retroactively attest contract
translation by the IoT space. A contract is a mutually
agreed and signed policy between the IoT system
and one or more users. Consider a set of devices
(D1,D2, ...,Dn) in an IoT infrastructure and a policy
P that dictates the condition under which the devices
Di can or cannot capture data (Yan et al., 2014). P
may be the policy dictated by the IoT environment
or a result of an agreement between the IoT space
and the subject. In any case, the resulting agreed
policy, when signed by both parties, infrastructure and
user, represents a mutual contract or simply contract
that dictates the norms of data capture about any
individual, especially, in cases where a user consent
is necessary from the privacy perspective.

The attestation of contract translation involves
checking the integrity of the domain knowledge and
the integrity of the translation procedure. We use
a continuous logging mechanism to keep track of
the availability of infrastructure devices at anytime,
which are then used to check the integrity of the
domain knowledge. If the integrity of the domain
knowledge is certified, then the contract translation
procedure is guaranteed to produce correct and
complete device contracts. However, maintaining the
domain knowledge in accordance with the translation
of policies is challenging. For instance, consider
a device in a smart building that is used to locate
individuals in a room. If the device stops working
after a policy is translated to the device before
enforcement, then the translation would not be
correct.

Therefore, the main contributions of this paper are

as follows:
• We introduce IoT policy and contract (agreed

policies) model and a translation approach for
translating high-level contracts into device-level
contracts.
• We propose an attestation of contract translation

approach, based on tamperproof audit logs to attest
the integrity of the contract translation procedure.
• We implemented the contract translation and

attestation of translation approaches as a module
and integrated it with TIPPERS (Mehrotra et al.,
2016). We performed a number of experiments
to analyze the feasibility of the overall proposed
approach.

2 IoT SYSTEM MODEL

Our IoT system model follows a layered design
approach to abstract out the complexity of defining
and enforcing mutual contracts for the devices.
Essential for this design approach are a model of the
devices and the smart space, which we explain in the
following.

2.1 Device Model

We consider two types of devices, physical devices
that capture raw data and virtual devices that
transform the raw data to semantic data. The physical
devices include user devices and infrastructure.
Physical Device. We model a physical device Di
(e.g., a camera) “used to collect data in an IoT space”
as consisting of the following three sets.
• Device states (Di.states) are the states a device

can be in. For example, a video camera can be
in an “active” state or “inactive” state. Similarly,
a WiFi AP device can be in an “active” state
providing signals to enable wireless devices to
connect to it or it could be “inactive”.

• Device actions (Di.actions) are actions that
trigger a device’s state transition (e.g., “switching
on” or “switching off”) from one state to another.
In addition, a Device action also includes a
function that the device could perform on its
payloads. For instance, after recording a data
stream, if a camera is connected to a server, it can
send the video stream to the server. It can also
encrypt the data, if supported, before streaming it
to the server. If equipped with a logging software,
the camera can even log its own states and actions.
In this example, the actions include “encrypting
data”, “sending data”, and “logging states and
actions”.
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• Device payloads (Di.payloads) are data elements
(observations) generated by the device. The type
of a payload is specific to the device that generates
it. A Device payload is further associated with the
set of functions (Di.payload. f unctions) that can
be performed on it. For instance, a video stream
can be associated with a face detection function
and a face recognition function. Likewise, a WiFi
AP’s payload can be associated with a function
that determines how much time users spend in
a location. These functions can be provided by
devices or the server that processes the payloads.

Note that, while a physical device may contain
multiple sensors (e.g. a video camera has an image
recording sensor, and a sound recording sensor), for
the purpose of defining and enforcing policies, we
consider the whole device as a basic unit.
Virtual Devices. In addition to physical devices,
we consider the concept of a virtual device, which
is essentially a software program used to transform
data from a lower to a higher data abstraction. An
example of virtual device is People Locator, which
reads data from one or more physical devices (e.g.
video cameras, WiFi APs, beacons, etc.) in a space
and locates an individual. Note that one virtual device
can include the data from other virtual devices. For
instance, a People Counter virtual device can take as
input the location information produced by the People
Locator virtual device to count the number of people
present in the space. A Time Spent virtual device can
use the same information to determine the time an
individual spent in the space.

2.2 Domain Knowledge Model

The domain model encapsulates the knowledge
specific to an IoT domain into a domain knowledge
(DK). This DK is necessary in bridging the
semantic gap between the high-level concepts
(e.g. application-level) and device-level concepts.
DK comprises the entities that define the IoT
smart space for the domain. We model entities as
consisting of two types: concepts and properties. The
concepts are essentially the space (DK.space)
and its inhabitants (DK.users) and can be
hierarchically represented. For instance, consider
the smart building domain, a building contains
floors and a floor contains rooms, which can be
represented as Building.Floors.Rooms. Likewise, a
university campus community can be hierarchically
organized (e.g., community.students.undergrad,
community. f aculty.associates). Properties further
refine concepts by giving more information
about the concepts. For instance a room may

have the property of capacity, occupancy, or
temperature (room.capacity, room.occupancy,
room.temperature). A student concept student
may have properties student.id, student.name,
student.phone, and student.gpa. Properties can be
categorized as static or dynamic. Note that the static
properties change rarely while dynamic properties
change often overtime (e.g., room.name is static –
whereas room.temperature is dynamic). This domain
knowledge is necessary in bridging the semantic gap
between the high-level concepts and properties and
device-level concepts and properties.

2.3 Application Model

The application model defines concepts and
properties for representing an application and its
environment. An application makes use of the
semantic data generated by the IoT system through
virtual sensors based on the domain knowledge to
provide services to users. Therefore, the application
concepts and properties need to be in line with
the domain concepts and properties. Application
concepts include the application semantic data, the
services/functionalities that operate on the data.
We model the application semantic data as set of
objects (O), where each object o (o ∈ O) comprises
a set of attributes/properties (o.A). For instance, in
a smart concierge application, an event (e) may be
represented an an object and the properties of the
event (what, when, where, etc.) as the attributes
(e.what,e.when,e.where,etc.). These abstract
application level properties can then be mapped
to the domain properties. For example, e.where
corresponds to the physical location in domain model
where the needs to take place.

3 POLICY AND CONTRACT
MODEL

In this section, we formally define our policy
and contract model, and summarize our logging
mechanism for ensuring that logs cannot be tampered
without detection. Table 1 summarizes the notations
used throughout the paper.

In our IoT system model, a policy defines the
conditions under which the IoT system manages
users’ data (Pappachan et al., 2017). Policies can
be for capture/collection, analysis, sharing, retention,
etc. In this paper, we focus on capture policies,
and from now on, policies refer to capture policies.
A policy determines the data that can be collected,
specifies the form (e.g., encrypted or plaintext) of
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data, and mandates the conditions (e.g., videos record
individuals only when they are detected in a specific
location or only during a specific period of time)
under which the data can be collected.

A policy is first specified at a high-level of data
abstraction using high-level concepts and properties
(Application Model) before being translated into
one or more device-level policies using the domain
knowledge (DK). The device policies are expressed
using the Device Model and are enforced by the IoT
system. As an example, consider a high-level policy
for a smart building stating that the system will not
track an individual in a given space. In this case, any
device Di within the vicinity of the space registered
in DK (Di ∈ DK.devices), which can be used to track
the individual, will be subject to policy enforcement.
This high-level policy will need to be translated to
device-level policies for all such devices to restrict
their operations to enforce the policy.

Table 1: Notations.

Ui User DU User devices

I Infrastructure DI Infrastructure devices

E Entity Cert Public key certificate

Di Devices DC Context devices

Di.id Device identity Di.owner Device owner

pk Public key sk Secret key

PI Infrastructure policy PU User policy

PR Reconciled policy CT Contract

CS Contract Server T S Trusted Server

DK Domain Knowledge LM Log Manager

Ph
i High-level policy Pd

i Device-level policy

Sh
i Subject Ch

i Policy context

Rh
i Policy resource Ah

i policy action

Ci Device context Si Device state

Ai Device action ts timestamp

State Hardware configuration Action Active operation

O Data object set o Data object

3.1 High-Level Policies

A high-level policy or application-level policy
defines the context (conditions) under which an IoT
system can collect and process users data using
high-level concepts and properties described using
the application model. The policy defines which
subject can perform what actions, on which resources
of users or the infrastructure, and under what
context. We model a high-level policy Ph

i as a tuple
〈Sh

i ,C
h
i ,Ri,Ah

i 〉, where Sh
i is the subject of the policy,

Ch
i is the context in which the policy applies, Ri is

the resource subject to access restriction, and Ah
i is

the action the subject Sh
i is allowed to performed on

the resource Ri. The high-level policy model can be
interpreted as follows.

If the context Ch
i is true, permit the subject

Sh
i to perform the action Ah

i on the user or
infrastructure resource Ri.

For instance, consider the high-level policy “Allow
smart concierge application to acquire Bob’s fine
grained location for directions.” This policy can be
mapped to the high-level policy model as follows.

If using for directions, permit the smart
concierge to access Bob’s fine grained
location data.

The context dictates what an subject/application is
permitted or not permitted to do with users data.
The context itself is modeled as a set of conditions
on contextual variables including location, time, and
activity. A contextual condition is a boolean function
on the observations generated from the devices
payloads.

3.2 Device-Level Policies

We consider two types of device policies – device
state policies that restrict the states a device can
sustain (as per the policy) in different conditions, and
device payload policies that specify which actions
must be executed on the payload generated by the
device. A device state policy Pd

i is modeled as a
triple 〈Di,Ci,Si〉, where Di is the device to which
the policy Pd

i applies, Ci is a context in which the
policy applies, and Si (Si ∈ Di.states) is the state of
the device. The device state policy is to define that
the device must be in state Si if the context Ci is true.
Similarly, a device payload policy Pd

i is modeled as a
triple 〈Di,Ci,Ai〉, where Di is the device to which the
policy Pd

i applies, Ci is a context in which the policy
applies, and Ai = ai1ai2 . . .aim is a sequence of actions
ai j ∈Di.actions that must be applied to the payload if
the context Ci is true.

In both, state and payload policies, the context
dictates what the device is allowed to do in the IoT
space. The context itself is modeled as a set of
conditions on contextual variables including location,
time, and activity. A contextual condition is a boolean
function on the payload of the device Di (specified in
the policy) or the payload of other device(s) in the
IoT infrastructure. For a given policy Pd

i , we refer
to the device Di for which the policy is specified
as Pd

i .device, and context Ci as Pd
i .context. For

Pd
i .context, we further define Pd

i .context.devices as a
set of devices {D j} whose payloads are referred to in
Pd

i .context.
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3.3 Contracts

A contract is an agreed and signed policy between the
IoT system and one or more users, which represents
an undeniable agreement between them. On the
one hand, users use high-level policies (preferences)
to restrict access to their private data. On the
other hand, the IoT infrastructure uses high-level
policies to define users data collection and processing
practices. An agreed high-level contract is the result
of reconciling users preferences and an infrastructure
policy, which is agreed by both parties, users and the
infrastructure. We model a contract between a user Ui
and the infrastructure I as
CT = [Ph

j ,SignI(Ph
j ,DKl),SignUi(P

h
j ,DKl)],

where Ph
j is the agreed policy, DKl the DK to use

for the translation, SignI the infrastructure’s signature,
and SignUi the user’s signature.

Before agreeing to a policy, a negotiation process
needs to happen between the system and users
(Ramakrishna, 2008; Sun et al., 2017). This
negotiation process not only needs to be interactive,
but also needs to accommodate the dynamic changes
in the IoT system. The negotiation process may
involve trade-offs wherein both, a user and the
system, has to give away some privileges in order to
gain some benefits. For example, in a smart concierge
application, users may have to give away location
privacy to receive other services such as receiving
mails related to work. Note that, since our goal in
this study is about contract translation and translation
attestation, we will not describe any solution for
policy negotiation.

Our attestation of contracts translation requires
verifiable domain knowledge, which in turn requires
verifiable device states and actions logs. In the
following section, we describe our tamper-proof
audit logs mechanism for ensuring that all logs are
verifiable.

3.4 Tamper-Proof Audit Logs

A tamper-proof logging mechanism enables the
creation of audit logs that cannot be tampered without
detection. The logs are kept consistent with respect
to the time they were recorded. We consider the
case of untrusted devices, but connected to a trusted
server for generating the tamper-proof audit logs. In
addition, we consider a trusted contract server for
generating public/private key pairs and for creating
and attesting contracts for entities in the IoT space.
The trusted server securely encrypts the generated
log events based on the contracts between users and
infrastructure.

4 SYSTEM OVERVIEW

We explain a brief overview of our IoT framework
regarding policy negotiation, translation and
attestation. The overall framework comprises
four layers: Infrastructure, System, Application, and
Trust. The core of the framework comprises the
following seven main components: User Devices,
Infrastructure Devices, Contract Server, Trust Server,
Log Manager, and Domain Knowledge Manager.

Domain Model
Log 

Manager

Data and Logs

Contracts

Application Layer

Application 3

System Layer

Infrastructure Layer

Physical Sensors and Devices

Domain Knowledge 
Manager

Application 1 Application 2

Policy Manager

Trusted Server 
(Data and Logs Encryption and Signature)

Contract Server
(Keys and 
Contract)

Trust Layer

Users Devices

Trust Layer

Figure 1: IoT System High-Level Design.

The Infrastructure Devices component contains
all the stationary and mobile devices DI owned and
controlled by the IoT infrastructure, which are used
to sense the IoT environment. Recall that, for
each policy Pd

j , a subset Pd
j .context.devices (Context

Devices) of DI is used to check the conditions that
form the context Pd

j .context in which the policy Pd
j

must be in effect. The User Devices component
comprises all the user devices (DU ) registered with
the IoT system such as cellphones or tablets. These
devices are used to identify users in the system.
Through these devices, users interact with the system
to define their data collection preferences, sign mutual
contracts with the infrastructure, and attest contracts
translation. The Trusted Server component is used
to generate audit logs from the device payloads
and encrypt the logs before sending them to LM
for storage. The Contract Server (CS) is a third
party entity responsible for reconciling infrastructure
policies and users’ preferences into agreed policies
and mediating the signing of the agreed policies
into mutual contracts through a contract negotiation
mechanism. The Log Manager (LM) component
stores contracts negotiated between users and the
infrastructure, logs of devices states and actions.
The logs are used during the remote attestation to
verify contracts translation adherence. The Domain
Knowledge Manager component manages the rapidly

IoTBDS 2018 - 3rd International Conference on Internet of Things, Big Data and Security

136



changing domain knowledge, i.e., static and dynamic
data produced by the sensors and about the sensors.
It is also used to retrieve DK during the contract
translation and attestation of contract translation.

4.1 Trust Model

Our trust model here is unidirectional such that each
type of device has to possess trustworthy attributes in
order to gain trust of the system. In particular, we can
enumerate the course of trust building as below:

• Assumption 1 (Trust origination): All devices
must be validated initially through a registration
phase. In this phase, devices produce trustworthy
attributes, i.e., device identity, functionality,
intended durability, purpose, permission, etc.
After the verification of these attributes, the
device gains an initial trust from the system
manager.

• Assumption 2 (Trust expansion): Beyond the
initial phase of trust origination, all devices
are then allowed to function (as verified for)
and gradually build the trustworthiness through
verifiable logs, with respect to the verifying
controller system.

We provide the details of the trust origination as
the device setup phase in Section 6. We assume
that there must exist a trust building protocol as an
auxiliary module. For example, there exists a variety
of checkpoint protocols that enable the fault tolerance
property. A checkpointing protocol would record the
essential snapshots (in the form of device activity
logs) of the system over the course of time. Therefore,
in case of attestation the system would assure an intact
trustworthiness until most recent snapshot in the past
was checkpointed accurately. However, we do not
propose any checkpointing method in this paper. We
assume that by integrating an efficient checkpointing
protocol we can leverage the trust expansion from
the point of trust origination. We considers attack
scenarios that have the potential to be queried out
by a malicious infrastructure against the contract
translation, and device states and action logs, which
can result in compromising users private data.

• Scenario 1 (Interconnected devices). In this
scenario, we consider the set of devices that
interconnects with peer devices across the
network. In particular, the presence of these
devices can be detected hence verified through
the unique identity used for communication over
wireless radio channels. For example, a device
would use a physical or MAC address and connect
through a WiFi AP. In this case, the AP can

securely bind a communication activity across the
channel with respect to a unique MAC identity.
Therefore, the payload at the AP can be used
to detect and prove the presence of a specific
device. Our contract translation and attestation
schemes consider only the interconnected devices
and guarantee the consistency claims regarding
DK.

• Scenario 2 (Standalone devices). In this scenario,
we consider the set of devices that remain
standstill and does not connect to the network.
In particular, we consider the portable devices
that can sense the environment while residing
as a passive device. Clearly, the aim is to
sense/capture any sensitive information without
sharing any information about itself or the
environment. Therefore, the presence of these
devices must be revealed so that each device is
accountable regarding any sensitive information
that it captures.

• Scenario 3 (Unfound devices). In this scenario,
we consider the set of devices that intentionally
delay the trust origination phase, i.e., initial
registration with the host network, even if
the device possess trustworthy attributes as
mentioned above. The small interval for which
a device was not registered with the system, the
device was still present inside the environment
similar to a standalone device. In this case, there
is no accountability for this interval in which
device acted passively, i.e., what if the device
had first recorded some sensitive information
and registered later on as a device abiding to
policy? The detection of a delayed registration is
not straightforward without using device activity
claims from the device hardware itself. In
this paper, we do not consider this scenario in
which device can record sensitive information in
a subliminal manner.

• Scenario 4 (Active threat to attestation of contract
translation). In this scenario, we consider an
active threat to the contract translation, which
can actively manipulate DK, i.e., changing DK
(information about device layout, positioning,
counting, identity, functioning, status, etc.) to
affect the policy actuation. In this case, the
active adversary gains the access to DK server (or
already has the access) and performs a malicious
write on the domain knowledge server before the
read command (from policy manager) to actuate a
fabricated policy. The adversary either misuses
the access privileges or manipulates the access
privileges (to wrongfully gain access to otherwise
inaccessible DK).
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5 HIGH-LEVEL POLICY
TRANSLATION

Let us consider our high-level policy model (Ph
i ),

device policy model (Pd
j ), and the domain knowledge

(DK) of the IoT space, as explained in Section 3.
The goal is to map the set of elements of the source
policy Ph

i to the set of elements of one or more of the
destination policy Pd

j using DK. This requires finding
the set of policy devices ({D1,D2, . . . ,Dm}) and/or
set of virtual devices ({V1,V2, . . . ,Vn}) that the policy
applies to. For each policy device (Di) or virtual
device (Vi), find its contextual conditions (Ci), context
devices (DC), and state (Si) or actions (Ai). In the
following, we describe the main steps of our approach
for the translation. We use the example of Figure 2 to
illustrate the process. In this example, Bob’s policy
statement “Do not video record me when I am in room
2065.” is translated into our high-level policy model
as follows:
If [(User.id = “Bob”) AND (User.location = “room
2065”)] THEN (Concierge.Action = “No Video”)
ON (Owner.Resource = “Bob Face”).
Explicitly, we have the following mappings to the
elements of the policy model: (Sh

i = “Concierge”),
(Ch

i = “room2065”), (Ah
i = “No Video”), (Ri =

“Bob Face”), (Ph
i .C attribute = “Location”).

This policy is translated into two device policies using
the knowledge of the smart building space.

Bob Policy: Do not video record me when I’m in room 2065.

AP1: IF [(User.id = “Bob” ) AND (User.location = “2065”)) THEN 
(App.Action = “NO_VIDEO”) ON (Resource= “Bob_Face”)
AP1.context_attribute = “Location”

Location=2065 à CoveringSensors=[Cam1, Cam1, Wifi1, 
Beacan1]
Policy Owner Context Attributes: {Bob_Face, Bob_MAC}
1. Policy Devices : {Cam1: Video, Cam2: Video}
Observations: Video à [KnownFace], MACB à [MACAddress], 
MAC à [MACAddress]
2. Context Devices = {Cam1, Cam2, Beacon1}
3. Context Conditions:
{Attribute=Beacon1.payload, op= CONTAINS, 
Value=Bob_MAC}
{Attribute=Cam1.payload, op= CONTAINS, Value=Bob_Face}
{Attribute=Cam2.payload, op= CONTAINS, Value=Bob_Face}
4. Payload Policy Actions: [(Cam1, MaskFace), (Cam2, 
MaskFace)]

High-Level Policies

Translation

Device-Level Policies

Rooms to Sensors: 
{"RoomID": “2065”,  “CoveringSensors”: [“Cam1”, “Cam2”, 
“Beacon1”, “Wifi1”, “Micro1”] }

Sensors Metadata:
{”ID": "Cam1",  "DataType": "Video",  "Coverage": ["2065"] }
{”ID": "Cam2",  "DataType": "Video",  "Coverage": ["2065"] }
{”ID": "Beacon1",  "DataType": "MACB",  "Coverage": 
["2065"] }
{”ID": "Wifi1",  ”DataType": "MAC", "Coverage": ["2065"] } 

Data Processing:
{"DataType":"Video", "VirtualSensors":[ 
{"Name":"FaceDetector", "Observation": "Face”, 
“PreciseLocation”: “No”}, {"Name":"FaceRecognizer", 
"Observation":"KnownFace”, “PreciseLocation”: “YES”}]}
{"DataType": "MACB", "VirtualSensors":[ 
{"Name":"UserLocator", "Observation": ”MACAddress”, 
“PreciseLocation”: “YES”}]}, {"DataType":"MAC", 
"VirtualSensors": [{"Name":"UserLocator", "Observation": "
MACAddress ”, “PreciseLocation”: “NO”}]}

Domain Knowledge

DP1: IF {(Beacon1.payload  CONTAINS “Bob_MAC”) OR [FaceRecognizer.Recognize(Cam1.payload) = “Bob_Face”)]  THEN 
(FaceRecognizer.MaskFace(Cam1.payload, “Bob_Face”))

DP2: IF {(Beacon1.payload  CONTAINS “Bob_MAC”) OR [FaceRecognizer.Recognize(Cam2.payload) = “Bob_Face”)]  THEN 
(FaceRecognizer.MaskFace(Cam2.payload, “Bob_Face”))

Figure 2: Policy Translation Example.

Step 1: Finding Policy Devices. Recall that
a high-level policy Ph

i is defined in terms of a
context attribute Ph

i .C attribute such as location and
activity. In our running example of Figure 2,
we have Ph

i .C attribute = “Location”. Devices
subject to policy are those which are located at the
location specified at Ph

i .C
h
i and which can capture

data (payload), which can be enriched to produce
the high-level observation/resource Ph

i .Ri. In our
running example, Ph

i .Ri corresponds to “Bob Face”

and “Bob MAC”, and Ph
i .C

h
i to “room 2065”. Then,

the policy devices will correspond to all video
cameras (which capture video that can be processed
to retrieve Bob’s face), which are {Cam1,Cam2}.
The result of this step is a set of policy devices
{Ph

i .device}.
Step 2: Finding Context Devices. Given a policy
device D j from Step 1 and the high-level policy
context attribute Ph

i .C attribute, we first determine
the set of context devices C j for D j by finding
the set of all virtual devices V in DK.vdevices
that can produce values Ph

i .C value for the policy
owner. In our example, Ph

i .C value = “Bob Face”
is produced by FaceRecognizer, and Ph

i .C value =
“Bob MAC”, is produced by PeopleLocator. So, V =
{FaceRecognizer,PeopleLocator}, We then, identify
all physical devices DC in DK.devices, which collect
data needed by the virtual devices in V . In our
example, DC = {Cam1,Cam2,Wi f i1,Beacon1}. The
result of this step is a list of context devices
(Pd

i .context.devices) for each device policy D j.
Step 3: Generating Context for Policy Devices.
Given a policy device Pd

j .device and a set of context
devices Pd

j .context.devices associated with it, the
context of Pd

j is defined as set of conditions, where
each condition is a boolean function of the form
〈Attribute Operation Vale〉, where Attribute =
Dl .payload, Operation = Dl .payload.operation,
and Value = Ph

i .C value. In our example, the set
of policy devices is {Cam1,Cam2} and the set of
context devices is {Cam1,Cam2,Wi f i1,Beacon1}.
The set of corresponding conditions for
Cam1 is {Cam1.payload = “Bob Face”,
Beacon1.payload = “Bob MAC”} and for Cam2
{Cam2.payload = “Bob Face”, Beacon1.payload =
“Bob MAC”}. Note that Wi f i1 is not used. This is
because alone, it cannot provide precise location of a
user. The result of this step is a set of conditions for
each device policy.
Step 4: Device Policy State and Actions. A
device policy can be either state or payload policy.
The type of policy to use is determined by the
action Ah

i of the high-level policy Ph
i . Our domain

knowledge includes a mapping between the actions
of a given application to the states and actions of
the devices. Using this mapping as a lookup table,
for each application action, we can determine the
corresponding state or set of actions for the policy
devices. In our example, this mapping is follows.
(Concierge, No Video) corresponds to (Camera.State
= “OFF” or Camera.Action = “MaskFace”).
Contract Translation Algorithm. The policy
translation algorithm (ContractTranslate) describes
the overall approach of the contract translation. It

IoTBDS 2018 - 3rd International Conference on Internet of Things, Big Data and Security

138



takes a high-level policy Ph
i and a domain knowledge

DK as input, and then generates a set of device
policies {Pd

1 ,P
d
2 , . . . ,P

d
k } as output, where k is the

number of device policies and d is the device identity.

Algorithm 1 : High-Level Contract Translation Algorithm
Pseudocode.
contractTranslate() {
1. Through the Log Manager (LM), the algorithm

retrieves the high-level policy (Ph
i ) and the current

Domain Knowledge (DK j).
2. Then it retrieves the context from Ph

i .context.
3. If C attribute is equal to ”Location”, then it

retrieves the space ID, Location.ID, from Ph
i .C

h
i .

4. Using Location.ID and DK, it runs the procedure,
findPolicyDevices() [Step 1], which outputs the
list of policy devices,
PD = {D1,D2, . . . ,Dm},
PD = f indPolicyDevices(Location.ID,DK).

5. For each policy device D j in PD
(a) It runs the function, findContextDevices()

[Step 2], to find the set of context devices,
CD j = {D1,D2, . . . ,Dm},
CD j = f indContextDevices(Ph

i ,DK,D j).
(b) It runs the function,

generateContextConditions() [Step 3], to
generate contextual conditions C j,
C j = generateContextCondition(Ph

i ,CD j,D j).
(c) It determine the type of device policy to

generate using Ai from Ph
i and DK.

(d) For device state policy, it runs the function,
getState() [Step 4], to output the permitted
state S j,
S j = getState(Ai,Ph

i ,DK).
(e) For device payload policy, it runs the function,

getActions() [Step 4], to output the actions
allowed to be run on D j.Payload.
A j = getActions(Ai,Ph

i ,DK)
(f) It then composes the device policy Pd

j for D j,
Pd

j =< D j,C j,S j > for device state policy or
Pd

j =< D j,C j,A j > for device payload policy.
6. It returns the sets {Pd} and {CD}.
}

6 ATTESTATION OF CONTRACT
TRANSLATION SCHEME

A high-level contract is an agreed and signed
high-level policy between the IoT system and users.
Since the translation of a high-level policy to a set of
device policies is controlled by the IoT system, our
goal is to ensure that the translation of a signed policy
is accountable and verifiable through DK. More

precisely, our solution guarantee the integrity of the
translation process in a retroactive manner such that
any privacy violations are detectable. The overall
translation attestation schema consists of sequential
phases, i.e., setup phase, log collection phase,
attestation of domain knowledge phase, attestation of
policy translation phase.

6.1 Setup Phase

During the setup phase, all entities (E) involved with
the IoT system are first registered with the Contract
Server (CS) viz., Trusted Server (T S), Infrastructure
(I), set of Infrastructure Devices (DI), and set of
User Devices (DU ). We assume that each user Ui
has a dedicated device Di (Di ∈ DU ) such as a smart
phone to interact with the IoT space. We use Public
Key Infrastructure (PKI) to secure communications
between all entities in the IoT system. Initially, we
assume that CS has a certificate with a public/private
key pair (CS.cert,CS.sk,CS.pk), and has distributed
the public key CS.pk to all entities in E. This enables
all entities to encrypt all messages with CS.pk before
sending them to CS. CS plays the role of the PKI and
we assume that it cannot be tampered with.

Entities Registration to CS. After an entity Ei
(Ei ∈ E) sends a request for registration to CS, CS
generates a certificate with a public/private key pair
(Ei.cert,Ei.sk,Ei.pk) and sends back to the entity.
Then, CS distributes the key Ei.pk to all other entities.
This certificate is revoked or renewed only by CS.
After all the entities are registered with CS, then
secure channels are created between all entities.
Users Registration to Infrastructure. Following the
creation of secure channels between all entities is
the registration of the user devices DU with I.
Each Di of a user Ui sends its certificate (Ui.cert),
public key (pkDi ), and unique identity (Di.id) to I
for registration viz, (Di.id,Ui.id,Ui.cert,Di.pk). We
assume that the infrastructure devices (DI) are not
powerful enough to handle certificates management
and this task is left to I. Upon receiving the request
for registration, I verifies the public key Di.pk of Di
using Ui.cert. Then, the infrastructure registers Di
and sends an acknowledgment message back to Di.
The registration enables the infrastructure to create
a user to device identity binding and to uniquely
identify the user. In addition, all registered DI will
be recorded inside DK for a subsequent contract
translation procedure.
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6.2 Device States and Actions Logs
Collection

We use T S to generate and secure logs of states
and actions of all devices in the IoT space. T S
is responsible for authenticating all devices using
their identities, generating audit logs using their
payloads, and encrypting logs before forwarding them
to LM. A continuous stream of data produced
by each device Di is collected by T S to generate
the log format as e j

Di
=( j,Di.id,Di.state,Di.action, ts),

where i is the device’s index, j the log sequence
number, Di.id the unique device identity, state the
device state, action the action performed by the
device, and ts the timestamp. T S then encrypts
each log entry using the key Kl (encrypt(Kl ,e

j
Di
)),

indexes the encrypted log before forwarding the
resulting tamper-proof audit log to LM for storage as
e j

Di
=(seq,Di.id, ts,encrypt(Kl ,e

j
Di
)), where seq is the

global sequence number.

6.3 Attestation of Domain Knowledge
Integrity

Ensuring the integrity and consistency of the
translation algorithm requires the verification of
current domain knowledge DK regarding resource
addition, modification, and deletion from the IoT
system. DK contains information about the IoT space
(DK.space), users (DK.users), devices (DK.devices),
and virtual devices (DK.vdevices). We first assume
that DKi at time ti is verified. We also assume a
high-level policy Ph

l was translated at time t j using
DK j. Then, we use logs (Log) of states and actions of
devices to check the integrity of DK.

The general idea behind domain knowledge
attestation is to check currently available device logs
and then search inside those logs for any foreign
device trails by using methods (Srinivasan et al.,
2008) such as wireless fingerprinting, Domain Name
Server (DNS) query, traffic rates, etc. A foreign
device is the one that is not registered as part of DK.
However, it is cumbersome to quantify the scope,
i.e., both spatially and temporally, of searching the
dynamically streaming logs over the channel and the
DK logs, respectively. The spatial scope of search
inside the dynamic streaming of logs is to localize
a physical space, meaning, if more than half of the
infrastructure devices belongs to a hall/office/cabin
then the system can speculate on the state of the
rest of the devices in that same physical space; at
least as long as the system collects enough evidences.
Similarly, the temporal scope of the search inside the

DK logs is to search for a time-proof (t p) verifying the
latest updates as a closest link to previous history. In
particular, (t p) provides a time bound on the staleness
of DK, the higher is the deviation from the current
time, the higher is the chance that contracts translated
during that period (tcurrent - tt p) were inconsistent.

6.4 Attestation of Contract Translation

We perform the attestation of the translation of a
high-level policy Ph

i to a set of device policies
(Pd

1 ,P
d
2 , . . . ,P

d
m) by replaying the contract translation

algorithm using the associated, verified domain
knowledge DKl . The overall attestation process
comprises the following verification tasks: (1) Check
the integrity of the translation procedure, and (2)
Check the integrity of the translated device policies
as advertised by the IoT system.
Attestation of Contract Translation Algorithm.
We assume that whenever the IoT system translates
a policy, it will inform the Contract Server (CS) about
DK used and resulting device policies (Pd∗), and
mutually sign DK and Pd∗ with CS. The algorithm for
contract translation (ContractAttest) receive inputs as
a high-level policy (Ph

i ), verifiable domain knowledge
(DK j), a hash MAC on the most recently upgraded
version of translation algorithm (ContractTranslate),
the log of devices (Log j), and the set of device
policies (Pd∗) translated by the system. It then outputs
either contract violated or not violated.

The followings summarize the steps of
ContractAttest

Algorithm 2 : Attestation of High-Level Contract
Translation Algorithm Pseudocode.

attestContractTranslation() {
1. It runs the function for checking DK integrity

IntegrityDK = checkIntegrityDK(DK j,Log j)
2. If (IntegrityDK = FALSE)

(a) It returns “Violation”
3. ELSE

(a) It runs the translation algorithm
contractTranslate(Ph

i ,DK j),
to acquire the set of device policies,
Pd = {Pd

1 ,P
d
2 , . . . ,P

d
m}

(b) It compares Pd and Pd∗

(c) If Pd = Pd∗

It returns “No Violation”
(d) ELSE

It returns “Violation”
}

The function checkIntegrityDK() implements the
attestation of domain knowledge integrity as
described in the above sections.
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7 EXPERIMENTAL EVALUATION

We implemented prototypes of the contract
translation algorithm and the attestation of
contract translation algorithm as a module to be
integrated with TIPPERS (Mehrotra et al., 2016).
TIPPERS consists of a six-story campus building,
which has classrooms, laboratories, conference
rooms, offices, kitchens, and bathrooms. It is
thoroughly instrumented with many types of devices
(beacons, WiFi APs, video cameras, microphones)
as well as various sensors (occupancy/motion,
light, temperature and HVAC). It has a large
infrastructure development component designed to
allow plug-n-play integration of diverse security
and privacy methods. It currently works under
the assumption that infrastructure devices are
trusted by users to collect data solely based on the
policies established by the IoT environment, which
makes it an ideal system for testing and validating
real-time contract translation and attestation related
experiments.

We performed a number of experiments to analyze
the feasibility of our approach. In particular, we
studied the performance overhead associated with the
translation of contracts, the attestation of the contract
translation procedure, the storage of encrypted logs.
All the data sets used in the experiments are generated
by TIPPERS.

7.1 Contract Translation Overhead

We performed two experiments to analyze the
contract translation overhead: the impacts of the
number of policy devices and the number of context
devices. For the former, we fixed the number of
context devices to 2 and vary the number policy
devices as shown in Table 2. For each set of
devices, we measured the time it took to run the
contract translation (ContractTranslate) to translate
one policy. Table 2 summarizes the results of this
experiment.

Table 2: Contract translation execution time in function of
the number of policy devices.

Policy Devices 10 20 30 40 50
Time (ms) 304 360 437 439 474
Policy Devices 60 70 80 90 100
Time (ms) 523 562 572 722 745

For the later, we fixed the number of policy
devices to 2 and vary the number context devices
as shown in Table 3. For each set of devices,
we measured the time it took to run the contract
translation (ContractTranslate) to translate one

policy. Table 3 summarizes the results of this
experiment.

The results of these two experiments indicate that
the contract translation overhead is linear in function
of the number of policy devices as well as the number
context devices.

Table 3: ContractTranslate execution time in function of
the number of context devices.

Policy Devices 10 20 30 40 50
Time (ms) 245 252 255 257 260
Policy Devices 60 70 80 90 100
Time (ms) 263 265 267 273 274

7.2 Attestation of Contract Translation
Overhead

In this experiment, we analyzed the computation
overhead associated with the attestation the contract
translation algorithm, ContractAttest. For a given
DK, we considered a varying number of device states
logs to use to attest the translation of a given contract
as shown in Table 4. For each set of logs, we recorded
the running time of ContractAttest. The results of this
experiment are summarized in Table 4.

The result of this experiment also shows that
the computation overhead associated with the
ContractAttest algorithm is linear in function of the
number of device states logs.

Table 4: ContractAttest execution time in function of the
size of the device states logs.

Logs 10,000 20,000 30,000 40,000
Time (ms) 643 847 1,023 1,133
Logs 50,000 60,000 70,000 80,000
Time (ms) 1,244 1,391 1,534 1,617

7.3 Log Generation and Storage
Overheads

In this experiment, we analyzed the overheads
associated with encrypting logs and storing the
encrypted logs. We considered a set of 5 devices and
their workloads collected for a period of 6 hours. For
each device, we measured the time it took to create
logs from the payload and encrypt the logs. We also
measured the size of the logs. Table 5 summarizes the
results of the experiment.

From these results, we can observe that the
average time to process a log entry is about 0.32
ms. We can also observe that the average size of an
encrypted log entry is 128 bytes. Both are not very
significant.
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Table 5: Device states and actions logs generation and
storage overheads.

Device Logs Time (ms) Size(KB)
Device 1 20,601 8,839 2,636
Device 2 17,247 5,157 2,208
Device 3 17,251 5,018 2,208
Device 4 17,252 4,963 2,208
Device 5 17,242 5,149 2,207

8 RELATED WORK

IoT frameworks are generally modeled through
ontology creation (Wang et al., 2012; Nambi et al.,
2014). In (Wang et al., 2012), IoT domain ontology
is developed, which facilitate IoT service discovery,
resource management, service testing, composition,
and adaptation. Similarly, in (Nambi et al., 2014),
an ontology based unified semantic knowledge base
is introduced that captures the complete dynamics
of the entities. It supports semantic definition
and representation of IoT entities, dynamic service
discovery and matching based on user request,
service composition and orchestration in dynamic
environments. However, we emphasize on data
abstraction regarding privacy-policy through mutual
contract creation and a remote attestation to verify
policy enforcement in a retroactive manner.

In our model, the IoT infrastructure collecting
and storing the logs is not fully trusted. Therefore,
we propose a method of policy translation and the
attestation of translation through log verification.
Secure audit logging techniques (Schneier and
Kelsey, 1999; Waters et al., 2004; Ma and Tsudik,
2009; Chadwick and Fatema, 2012) detect any
tampering with the logs and guarantee integrity
property. Basically, audit logging techniques cannot
prevent tampering of the logs, rather, they guarantee
that any attempts in tampering of the audit logs can be
detected provably. In general, cryptographic methods
ensure that logs stored by a logging facility remain
intact. However, the log processing must be precise
to maintain the efficiency during integrity verification.
For example, in (Waters et al., 2004) hash chains
are used for integrity protection and identity-based
searchable encryption.

Remote attestation is being considered as viable
mechanism for ensuring trust in IoT devices. It
can be used to establish a static or dynamic root
of trust in embedded and cyber-physical systems
such as IoT systems (ElDefrawy et al., 2017).
Three approaches have been proposed in remote
attestation: hardware-based (based on the security

provided by a Trusted Platform Module (TPM), a
secure co-processor), software-based (doesn’t rely
on any secure co-processor or CPU-architecture
extensions), and hybrid (software-hardware
co-designs) (ElDefrawy et al., 2017). In our IoTtrust
framework, we consider a hybrid remote attestation,
which is implemented through the Contract Server
and Trusted Server.

The emerging blockchain technology makes use
of a shared ledger between the members of a network
to maintain an immutable record of every transaction
being executed (Swan, 2015). A blockchain doesn’t
rely on a central authority or trusted intermediary to
validate transactions; rather, a consensus protocol is
used by its members to guarantee trust, accountability,
and transparency across the network. The recent
design of private blockchains includes the concept
of “channel” to enable granular data isolation. Only
authenticated peers to a specific channel can share
data in that channel. However, our system model
is different from the peer-to-peer model assumed in
most of the blockchain based solutions.

9 CONCLUSION AND FUTURE
WORK

In this paper, we propose contract translation and
attestation of contract translation schemes, which
ensure trust and confidence in the translation of
data collection and processing contracts from the
high-level of data abstraction to the device-level.
Both, users and the IoT infrastructure, can undeniably
check mutual contracts between them, which defines
the norms of data capture about the users. The
translation attestation depends on the audit logs
generated during data collection. In order to
guarantee that audit logs are tamper-proofed, our
solution rely on a trusted server, which securely
generates and encrypts the audit logs. To evaluate
our proposed contract attestation and translation
attestation schemes, we implemented them as a
module to be integrated with TIPPERS (Mehrotra
et al., 2016). The results of the preliminary
experiments highlight the feasibility of the overall
approach.

With the emerging innovations in processors’
design technology, such as modern ARM processors,
TrustZone and hardware virtualization are being
incorporated into those processors (Winter, 2008;
Choi et al., 2014). These hardware based security
mechanisms enable secure computation at the
hypervisor level of the processors (Mirzamohammadi
et al., 2017). In the future, this technology can be used
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to move the logs sealing inside the devices, thereby
removing the need of a trusted server.
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